首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于气候态定义了西伯利亚高压指数(SH index)、东亚大槽指数(ET index)和高低压系统间的东亚经向风指数(V index),使用回归分析探究西伯利亚高压和东亚大槽在季节内尺度上对东亚地区冬季温度的影响机理,构建线性模型对冬季华南地区季节内尺度温度进行延伸期预报。结果表明:西伯利亚高压和东亚大槽系统变化中最显著的是季节内尺度信号;季节内尺度SH index和ET index对V index的贡献分别为82.6% 和42.2%;3个指数的回归模态在对流层中层对应西北-东南向低频罗斯贝波列缓慢东南传播,低层水汽、近地面层环流、降水及2 m温度场配置良好,当西伯利亚高压深厚或东亚大槽发展时,经向风关键区北风强盛,有利于冬季高纬度地区干冷空气向东亚输送;V index对华南地区冬季季节内尺度2 m气温的有效预报时效达25 d。  相似文献   

2.
Interdecadal variability of the East Asian summer monsoon in an AGCM   总被引:3,自引:0,他引:3  
It is well known that significant interdecadal variation of the East Asian summer monsoon (EASM) occurred around the end of the 1970s. Whether these variations can be attributed to the evolution of global sea surface temperature (SST) and sea ice concentration distribution is investigated with an atmospheric general circulation model (AGCM). The model is forced with observed monthly global SST and sea ice evolution through 1958-1999. A total of four integrations starting from different initial conditions are carried out. It is found that only one of these reproduces the observed interdecadal changes of the EASM after the 1970s, including weakened low-level meridional wind, decreased surface air temperature and increased sea level pressure in central China, as well as the southwestward shift of the western Pacific subtropical high ridge and the strengthened 200-hPa westerlies. This discrepancy among these simulated results suggests that the interdecadal variation of the EASM cannot be accounted for by historical global SST and sea ice evolution. Thus, the possibility that the interdecadal timescale change of monsoon is a natural variability of the coupled climate system evolution cannot be excluded.  相似文献   

3.
Monerie  Paul-Arthur  Robson  Jon  Dong  Buwen  Hodson  Dan 《Climate Dynamics》2021,56(1-2):381-398

We assess the effects of the North Atlantic Ocean Sea Surface Temperature (NASST) on North East Asian (NEA) surface temperature. We use a set of sensitivity experiments, performed with MetUM-GOML2, an atmospheric general circulation model coupled to a multi-level ocean mixed layer model, to mimic warming and cooling over the North Atlantic Ocean. Results show that a warming of the NASST is associated with a significant warming over NEA. Two mechanisms are pointed out to explain the NASST—North East Asia surface temperature relationship. First, the warming of the NASST is associated with a modulation of the northern hemisphere circulation, due to the propagation of a Rossby wave (i.e. the circumglobal teleconnection). The change in the atmosphere circulation is associated with advections of heat from the Pacific Ocean to NEA and with an increase in net surface shortwave radiation over NEA, both acting to increase NEA surface temperature. Second, the warming of the NASST is associated with a cooling (warming) over the eastern (western) Pacific Ocean, which modulates the circulation over the western Pacific Ocean and NEA. Additional simulations, in which Pacific Ocean sea surface temperatures are kept constant, show that the modulation of the circumglobal teleconnection is key to explaining impacts of the NASST on NEA surface temperature.

  相似文献   

4.
Impacts of Coastal SST Variability on the East Asian Summer Monsoon   总被引:4,自引:0,他引:4  
The impacts of the seasonal and interannual SST variability in the East Asia coastal regions (EACRSST) on the East Asian summer monsoon (EASM) have been examined using a regional climate model (PδRCM9) in this paper. The simulation results show that the correlation between the EACRSST and the EASM is strengthened after the mid-1970s and also the variability of the EACRSST forcing becomes much more important to the EASM interannual variability after the mid-1970s. The impacts of the EACRSST on the summer precipitation over each sub-region in the EASM region become weak gradually from south to north, and the temporal evolution features of the summer precipitation differences over North and Northeast China agree well with those of the index of EASM (IEASM) differences.
The mechanism analyses show that different EACRSST forcings result in the differences of sensible and latent heat flux exchanges at the air-sea interface, which alter the heating rate of the atmosphere. The heating rate differences induce low level air temperature differences over East Asia, resulting in the differences of the land-sea thermal contrast (LSTC) which lead to 850 hPa geopotential height changes. When the 850 hPa geopotential height increases over the East Asian continent and decreases over the coast of East China and the adjacent oceans during the weakening period of weakens consequently. On the contrary, the EASM enhances during the strengthening period of the LSTC.  相似文献   

5.
利用1958—2014年夏季NCEP/NCAR大气环流资料和中国486站降水观测资料,通过多种统计诊断方法,从与夏季中国东部3类不同雨型分布相联系的东亚高低层风场变化特征出发,依据与雨带变化密切联系的高层200 hPa纬向风定义了一个新的东亚副热带夏季风指数。分析表明,该指数不仅能反映夏季东亚大气环流的变化特征,兼顾北方冷空气活动和南方东亚夏季风环流变化,同时还能反映夏季中国东部降水南北差异的年际特征。强东亚副热带夏季风指数年,高层中纬度西风急流位置偏北,低层西太平洋副热带高压偏强偏北,有利于冷空气活动位置偏北和东亚东部西南暖湿气流向北推进,中国东部多以Ⅰ类雨型为主;弱东亚副热带夏季风指数年的环流变化刚好相反,中国东部多以Ⅲ类雨型为主。与现有东亚夏季风指数的对比分析表明,该指数在反映中国东部南北区域降水变化的差异方面有很大改进。  相似文献   

6.
In order to assess how the Bonin high affects interannual variability of the East Asian summer monsoon (EASM) around the Korean Peninsula, the pulsation of the Bonin high and its association with teleconnection patterns was examined. The major factor for the interannual intensity of the EASM is the center position of the Bonin high rather than its center pressure. Up to 12 harmonics over time can be used to reconstruct the Bonin high, demonstrating its intraseasonal variation. The interannual variability of the Bonin high correlates with the Tibet high. This correlation is dominant for the EASM onset time, though not its retreat. The primary teleconnection pattern, reliant up on the interannual variability of the Bonin high, is the Western Pacific oscillation (WPO) in April. In relation to long-term variability, the correlation between the WPO and the Bonin high appears to contribute to the retreat stage of the EASM, which has itself increased since the mid-1970s. Furthermore, the WPO in May and the Tibet correlation has marked the onset rather than the retreat of the EASM since the 1970s. This highly correlated pattern since the mid-1970s may be the result of El Niño.  相似文献   

7.
The seasonal predictability of various East Asian winter monsoon (EAWM) indices was investigated in this study based on the retrospective forecasts of the five state-of-the-art coupled models from ENSEMBLES for a 46-year period of 19612006.It was found that the ENSEMBLES models predict five out of the 21 EAWM indices well,with temporal correlation coefficients ranging from 0.54 to 0.61.These five indices are defined by the averaged lower-tropospheric winds over the low latitudes (south of 30°N).Further analyses indicated that the predictability of these five indices originates from their intimate relationship with ENSO.A cross-validated prediction,which took the preceding (November) observed Nifo3.4 index as a predictor,gives a prediction skill almost identical to that shown by the model.On the other hand,the models present rather low predictability for the other indices and for surface air temperature in East Asia.In addition,the models fail to reproduce the relationship between the indices of different categories,implying that they cannot capture the tropicalextratropical interaction related to EAWM variability.Together,these results suggest that reliable prediction of the EAWM indices and East Asian air temperature remains a challenge.  相似文献   

8.
Summary The authors examine relationships between the East Asian winter monsoon and the ENSO, particularly on the interdecadal timescales. Based on the analyses of SLP data from 1899 to 1997, the East-Asian winter monsoon index (WMI) is defined as the zonal difference of SLP between ∼120° E and ∼160° E. It is found that 18 out of 28 strong winter monsoon years are either before the development of an El Ni?o or during the decaying La Ni?a event, 12 out of 28 weak winter monsoon are before the development of a La Ni?a or during the decaying El Ni?o event. There is a significant positive correlation coefficient value of about 0.49 between the normalized 11-yr running mean of WMI and ENSO index, however, the WMI-ENSO relationship is not consistently highly correlated. The temporal evolution of correlation between WMI and ENSO indices in both 11-yr and 21-yr moving window shows that the WMI-ENSO relationship clearly undergo low-frequency oscillation. Obviously, both observational and IPSL air-sea coupled modeling WMI index has a near-decadal peak with PDO timescales and internal peaks with ENSO timescales by applying the Multitaper method. Moreover, the cross wavelet and wavelet coherence analysis of WMI/ENSO indicate that there is a larger significant sections with an in phase behavior between WMI and ENSO at period of 20–30 yrs, suggesting that the interdecadal variation of the WMI-ENSO relationship might exist.  相似文献   

9.
This study investigates the seasonal scale variability of the East Asian winter monsoon (EAWM), which is distinguished from the seasonal cycle with temporal variation throughout winter. Winters lasting 120 days (Nov. 17–Mar. 16) for a period of 64 years from the NCEP daily reanalysis data set are used to study the seasonal scale variability of the EAWM. Cyclostationary empirical orthogonal function (CSEOF) analysis is adopted to decompose the variability of the EAWM. The second CSEOF mode of 850-hPa temperature exhibits a seasonal scale variation, the physical mechanism of which is explained in terms of physically consistent variations of temperature, geopotential height, sea level pressure, wind, and surface heat fluxes. The seasonal-scale EAWM exhibits a weak subseasonal and a strong interannual variability and has gradually weakened during the 64 years. In a weak EAWM phase, the land-sea contrast of sea level pressure declines in East Asia. Consistent with this change, low-level winds decrease and warm thermal advection increases over the eastern part of mid-latitude East Asia. Latent and sensible heat fluxes are reduced significantly over the marginal seas in East Asia. However, during a strong EAWM phase, the physical conditions in East Asia reverse. A large fraction of the variability of the EAWM is explained by the seasonal cycle and the seasonal scale variation. A two-dimensional EAWM index was developed to explain these two distinct components of the EAWM variability. The new index appears to be suitable for measuring both the subseasonal and the interannual variability of the EAWM.  相似文献   

10.
This study investigates the space–time evolution of the East Asian winter monsoon (EAWM) and its relationship with other climate subsystems. Cyclostationary Empirical Orthogonal Function (CSEOF) analysis and the multiple regression method are used to delineate the detailed evolution of various atmospheric and surface variables in connection with the EAWM. The 120 days of winter (November 17–March 16) per year over 62 years (1948–2010) are analyzed using the NCEP daily reanalysis dataset. The first CSEOF mode of 850-hPa temperatures depicts the seasonal evolution of the EAWM. The contrast in heat capacity between the continent and the northwestern Pacific results in a differential heating in the lower troposphere. Its temporal evolution drives the strengthening and weakening of the Siberian High and the Aleutian Low. The anomalous sea level pressure pattern dictates anomalous circulation, in compliance with the geostrophic relationship. Thermal advection, in addition to net surface radiation, partly contributes to temperature variations in winter. Latent and sensible heat fluxes (thermal forcing from the ocean to the atmosphere) increase with decreased thermal advection. Anomalous upper-level circulation is closely linked to the low-level temperature anomaly in terms of the thermal wind equation. The interannual variability of the seasonal cycle of the EAWM is strongly controlled by the relative strength of the Siberian High to the Aleutian Low. A stronger than normal gradient between the two pressure systems amplifies the seasonal cycle of the EAWM. The EAWM seasonal cycle in the mid-latitude region exhibits a weak negative correlation with the Arctic Oscillation and the East Atlantic/West Russia indices.  相似文献   

11.
1.IntroductionThelargestinterannualvariabilityassociatedwiththeENSOcycleexistsinmonsoonregionsliketheAfricanmonsoon,Australianmonsoon,Pan--AmericanmonsoonandAsianmonsoon(RopelewskiandHalpert,1987;WebsterandYang,1992;JuandSlingo,1995).OnebasicquestionishowtorepresenttheAsianmonsoonanditsvariability.WebsterandYang(1992)foundareasonableindexbyaveragingthezonalwindshearbetween850hpaand200hpaovertheSouthAsianregion(40--110E,0--20N)todescribetheSouthAsianmonsooncirculationanditsvariability.…  相似文献   

12.
The Twentieth Century Reanalysis (20thCR) dataset released in 2010 covers the period 1871-2010 and is one of the longest reanalysis datasets available worldwide. Using ERA-40, ERA-Interim and NCEP-NCAR reanalysis data, as well as HadSLP2 data and meteorological temperature records over eastern China, the performances of 20thCR in reproducing the spatial patterns and temporal variability of the East Asian winter monsoon (EAWM) are examined. Results indicate that 20thCR data: (1) can accurately reproduce the most typical configuration patterns of all sub-factors differences in the main circulation fields over East Asia involved in the EAWM system, albeit with some in comparison to ERA-40 reanalysis data; (2) is reliable and stable in describing the temporal variability of EAWM since the 1930s; and (3) can describe the high-frequency variability of EAWM better than the low-frequency fluctuations, especially in the early period. In conclusion, caution should be taken when using 20thCR data to study interdecadal variabilities or long-term trends of the EAWM, especially prior to the 1930s.  相似文献   

13.
本文利用基于地球系统模式CESM1开展的北大西洋多年代际振荡理想化数值试验,研究了北大西洋多年代际振荡对东亚夏季气候的影响.结果显示,北大西洋多年代际振荡可以通过中纬度罗斯贝波以及热带开尔文波的传播两种途■影响东亚夏季气候.当北大西洋多年代际振荡处于正位相时,一方面,偏暖的北大西洋通过激发一条从北大西洋向下游传播的中纬度大气罗斯贝波列导致东亚陆地气压降低而西北太平洋气压升高,使得东亚-西北太平洋之间的海陆气压差增强;另一方面,偏暖的北大西洋激发赤道开尔文波东传,激发西北太平洋对流层低层出现反气旋式环流异常.通过以上两种途■,正位相的北大西洋多年代际振荡最终导致东亚夏季风增强,东亚地区夏季出现北湿南干和偏暖的气候.  相似文献   

14.
In this paper, the dynamical effects of divergent wind on the intraseasonal variability of atmospheric circulation over East Asia are analyzed by using the function of Rossby-wave source and the energy exchanging function be-tween divergent component and rotational component of the flow.The results analyzed from the observed data show that the advection of vorticity by divergent wind caused by the heating due to the monsoon rainfall in the south to the Yangtze River and the strong convective activities around the Philippines may play an important role in the northward jump of westerly jet stream during the seasonal transition from spring circulation to summer circulation over East Asia. Due to the northward movement of the advection of vorticity by the divergent wind, the energy transformation from divergent component into rotational component can be caused over the Yellow River basin and Northwest China and will cause the intensification of the zonal flow there. Thus, the jet stream abruptly shifts northward to North China.Moreover, the analysed results also show that the advection of vorticity by divergent wind caused by the heating due to the strong convective activities around the Philippines also plays an important role in the intraseasonal varia-bility of the circulation over East Asia during the seasonal transition from summer to winter. With the southward movement of the advection of vorticity by the divergent wind, the energy transformation from divergent component into rotational component can be caused over East Asia, especially over the Yangtze-Huaihe River basin. Therefore, the jet stream gradually moves southward from North China to the Yangtze River basin.  相似文献   

15.
Changma, which is a vital part of East Asian summer monsoon (EASM) system, plays a critical role in modulating water and energy cycles in Korea. Better understanding of its long-term variability and change is therefore a matter of scientific and societal importance. It has been indicated that characteristics of Changma have undergone significant interdecadal changes in association with the mid-1970s global-scale climate shift and the mid-1990s EASM shift. This paper reviews and revisits the characteristics on the long-term changes of Changma focusing on the underlying mechanisms for the changes. The four important features are manifested mainly during the last few decades: 1) mean and extreme rainfalls during Changma period from June to September have been increased with the amplification of diurnal cycle of rainfall, 2) the dry spell between the first and second rainy periods has become shorter, 3) the rainfall amount as well as the number of rainy days during August have significantly increased, probably due to the increase in typhoon landfalls, and 4) the relationship between the Changma rainfall and Western Pacific Subtropical High on interannual time scale has been enhanced. The typhoon contribution to the increase in heavy rainfall is attributable to enhanced interaction between typhoons and midlatitude baroclinic environment. It is noted that the change in the relationship between Changma and the tropical sea surface temperature (SST) over the Indian, Pacific, and Atlantic Oceans is a key factor in the long-term changes of Changma and EASM. Possible sources for the recent mid-1990s change include 1) the tropical dipole-like SST pattern between the central Pacific and Indo-Pacific region (the global warming hiatus pattern), 2) the recent intensification of tropical SST gradients among the Indian Ocean, the western Pacific, and the eastern Pacific, and 3) the tropical Atlantic SST warming.  相似文献   

16.
The interannual variability of East Asian winter monsoon(EAWM) circulation from the Development of a European Multi-Model Ensemble(MME) System for Seasonal to Inter-Annual Prediction(DEMETER) hindcasts was evaluated against observation reanalysis data.We evaluated the DEMETER coupled general circulation models(CGCMs)’ retrospective prediction of the typical EAWM and its associated atmospheric circulation.Results show that the EAWM can be reasonably predicted with statistically significant accuracy,yet the major bias of the hindcast models is the underestimation of the related anomalies.The temporal correlation coefficient(TCC) of the MME-produced EAWM index,defined as the first EOF mode of 850hPa air temperature within the EAWM domain(20-60 N,90-150 E),was 0.595.This coefficient was higher than those of the corresponding individual models(range:0.39-0.51) for the period 1969-2001;this result indicates the advantage of the super-ensemble approach.This study also showed that the ensemble models can reasonably reproduce the major modes and their interannual variabilities for sea level pressure,geopotential height,surface air temperature,and wind fields in Eurasia.Therefore,the prediction of EAWM interannual variability is feasible using multimodel ensemble systems and that they may also reveal the associated mechanisms of the EAWM interannual variability.  相似文献   

17.
为了改进耦合模式对东亚夏季风的模拟,本文发展了一个基于中国科学院地球系统模式的海洋资料同化系统。基于该同化系统,本文开展了同化观测海温的试验,并将同化试验的结果与传统的AMIP试验进行比较。结果表明,同化系统显著改进了对西北太平洋地区降水的气候态和季节循环、与ENSO和东亚夏季风相关联的东亚地区的降水和环流异常等的模拟。本文的工作表明,海气相互作用对东亚夏季风的模拟非常重要。耦合框架下的海洋资料同化系统可以在引入观测信息的同时不切断海气相互作用,这是同化试验较之AMIP试验有显著改进的原因所在。  相似文献   

18.
1.IntroductionOvertheEastAsiaregion,themostprominentsurfacefeatureofthewintermonsoonisstrongnortheasterliesalongtheeastflankoftheSiberianhighandthecoastofEastAsia.At500hPathereisabroadtroughcenteredaboutatthelongitudesofJapan.Thedominantfea-tureat2O0hPaistheEastAsianjetwithitsmaximumlocatedatjustsoutheastofJapan.Thisktisassociatedwithintensebaroclinicity,largeverticalwindshearandstrongadvectionofcoldair(StaffmembersofAcademiaSinica,l957,LauandChang,1987;BoyleandChen,1987;Chenetal.,1991…  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号