首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Evolution of mountain landscapes is controlled by dynamic interactions between erosional processes that vary in efficiency over altitudinal domains. Evaluation of spatial and temporal variations of individual erosion processes can augment our understanding of factors controlling relief and geomorphic development of alpine settings. This study tests the application of detrital apatite (U‐Th)/He thermochronology (AHe) to evaluate variable erosion in small, geologically complex catchments. Detrital grains from glacial and fluvial sediment in a single basin were dated and compared with a bedrock derived age‐elevation relationship to estimate spatial variation in erosion over different climate conditions in the Teton Range, Wyoming. Controls and pitfalls related to apatite quality and yield were fully evaluated to assess this technique. Probability density functions comparing detrital age distributions identify variations in erosional patterns between glacial and fluvial systems and provide insight into how glacial, fluvial, and hillslope processes interact. Similar age distributions representing erosion patterns during glacial and interglacial times suggest the basin may be approaching steady‐state. This also implies that glaciers are limited and no longer act as buzzsaws or produce relief. However, subtle differences in erosional efficiency do exist. The high frequency of apatite cooling ages from high altitudes represents either rapid denudation of peaks and ridges by mass wasting or an artifact of sample quality. A gap in detrital ages near the mean age, or mid‐altitude, indicates the fluvial system is presently transport limited by overwhelming talus deposits. This study confirms that sediment sources can be traced in small basins with detrital AHe dating. It also demonstrates that careful consideration of mineral yield and quality is required, and uniform erosion assumptions needed to extract basin thermal history from detrital ages are not always valid.  相似文献   

2.
40Ar–39Ar dating of detrital white micas, petrography and heavy mineral analysis and whole‐rock geochemistry has been applied to three time‐equivalent sections through the Siwalik Group molasse in SW Nepal [Tinau Khola section (12–6 Ma), Surai Khola section (12–1 Ma) and Karnali section (16–5 Ma)]. 40Ar–39Ar ages from 1415 single detrital white micas show a peak of ages between 20 and 15 Ma for all the three sections, corresponding to the period of most extensive exhumation of the Greater Himalaya. Lag times of less than 5 Myr persist until 10 Ma, indicating Greater Himalayan exhumation rates of up to 2.6 mm year?1, using one‐dimensional thermal modelling. There are few micas younger than 12 Ma, no lag times of less than 6 Myr after 10 Ma and whole‐rock geochemistry and petrography show a significant provenance change at 12 Ma indicating erosion from the Lesser Himalaya at this time. These changes suggest a switch in the dynamics of the orogen that took place during the 12–10 Ma period whereby most strain began to be accommodated by structures within the Lesser Himalaya as opposed to the Greater Himalaya. Consistent data from all three Siwalik sections suggest a lateral continuity in tectonic evolution for the central Himalayas.  相似文献   

3.
Sediments deposited in the Late Cenozoic basins of the Central European Rift System, including the Upper Rhine Graben (URG) and the Lower Rhine Embayment (LRE), document the drastic extension of the Rhine's catchment towards the Central Alps in the Late Pliocene by distinct heavy mineral assemblages. This outstanding change in principal sediment sources should be accompanied by a change towards distinctly younger (i.e. Tertiary) detrital mineral cooling ages. Therefore, it provides a particularly well‐suited framework to explore the thermochronological provenance record in relation to heavy mineral assemblages. In this multi‐proxy approach we (i) exploit and elaborate detrital zircon (U–Th)/He thermochronology (ZHe) for sediment provenance surveys, (ii) document shortcomings if only a single geochronological method is employed, and (iii) obtain tighter constraints on the sources of Paleo‐Rhine sediments. Our results are based on Pliocene and Pleistocene sediment samples from the northern URG (drill core Ludwigshafen P36) and the LRE (lignite mine Hambach). In a Late Pliocene URG sample, Variscan and Permo‐Triassic cooling ages dominate the age spectra of the ZHe and Zircon fission track (ZFT) thermochronometers. The youngest ages are Late Cretaceous and these zircons show rare earth element signatures that suggest derivation from hydrothermally affected basement rocks of the URG margins. In contrast, a Lower Pleistocene URG sample contains significant Tertiary age components that unequivocally indicate Alpine sources. This cardinal difference coincides well with a significant change in the heavy mineral assemblage. The extension of the catchment of the Rhine towards the Central Alps is considered to occur no earlier than the latest Pliocene (i.e. after ~3.0 Ma). Despite strongly contrasting heavy mineral compositions, the Pliocene and Pleistocene samples from the LRE show largely similar ZHe and ZFT age distributions dominated by Permo‐Triassic and Variscan ages. Admixture of zircon‐dominated, but overall heavy mineral‐poor sediment derived from local drainages of the Rhenish Massif likely explains this apparent contradiction in sediment provenance proxies. Tertiary cooling ages occur in both Pliocene and Pleistocene LRE samples. Zircon Th/U ratios and U/Pb ages reveal that the young age component in Late Pliocene sediments from the LRE is not derived from the Alps but from Oligocene trachytic members of the Central European volcanic centres of the Vogelsberg, Westerwald, and/or Siebengebirge. The integration of ZHe and ZFT techniques with zircon geochemistry and U/Pb geochronology adds the respective advantages of each method and allows for a very detailed picture of detrital zircon provenance.  相似文献   

4.
《Basin Research》2018,30(3):395-425
The Centinela Mining District (CMD), Atacama Desert (northern Chile), includes several mid‐late Eocene porphyry Cu deposits that contains supergene mineralization and provides access to a record of gravel deposits that host syn‐sedimentary exotic Cu mineralized bodies. By studying these gravels, we reconstruct the unroofing history and constrain the geomorphological conditions that produced supergene and exotic Cu mineralization. We present an integrated study based on stratigraphic and sedimentological data, lithology clast counts, 40Ar/39Ar and U/Pb ages from interbedded tuff layers and U/Pb detrital zircon geochronology data. To relate the gravel deposition episodes to the timing of the supergene mineralization, we provide in‐situ and exotic supergene mineral ages (40Ar/39Ar and K‐Ar). Six gravel units were deposited between the mid‐Eocene and the mid‐Miocene. The Esperanza gravels were deposited concurrently with the emplacement of porphyry Cu deposits at depth. The subsequent Tesoro I, II and III and Atravesado gravels register the unroofing of these deposits, from the advanced argillic zone to the sericitic and prophylitic hypogene zones. The Arrieros gravels register landscape pediplanation, that is, denudational removal and wear of the landscape to base level on a relatively stable tectonic regime, occurring roughly contemporaneous with supergene activity. The supergene mineral ages of the CMD define a time span (ca. 25–12 Ma) during which most of the supergene ages cluster in northern Chile. This time span corresponds with a period of warm and humid climate conditions in the southern hemisphere. We conclude that landscape pediplanation favours supergene mineralization and helps preserve the former supergene mineralized zones from significant erosion. Low erosion rates during pediplanation may constitute a necessary condition for the efficiency of the supergene processes in such semi‐arid climate.  相似文献   

5.
Fission‐track, U–Pb and Pb–Pb analyses of detrital heavy mineral populations in depositional basins and modern river sediments are widely used to infer the exhumational history of mountain belts. However, relatively few studies address the underlying assumption that detrital mineral populations provide an accurate representation of their entire source region. Implicit in this assumption is the idea that all units have equal potential to contribute heavy minerals in proportion to their exposure area in the source region. In reality, the detrital mineral population may be biased by variable concentrations of minerals in bedrock and differential erosion rates within the source region. This study evaluates the relative importance of these two variables by using mixing of U–Pb zircon ages to trace zircon populations from source units, through the fluvial system, and into the foreland. The first part of the study focuses on the Marsyandi drainage in central Nepal, using tributaries that drain single formations to define the U–Pb age distributions of individual units and using trunk river samples to evaluate the relative contributions from each lithology. Observed mixing proportions are compared with proportions predicted by a simple model incorporating lithologic exposure area and zircon concentration. The relative erosion rates that account for the discrepancy between the observed and predicted mixing proportions are then modelled and compared with independent erosional proxies. The study also compares U–Pb age distributions from four adjacent drainages spanning ~250 km along the Himalayan front using the Kolmogorov–Smirnov statistic and statistical estimates of the proportion of zircon derived from each upstream lithology. Results show that, along this broad swath of rugged mountains, the U–Pb age distributions are remarkably similar, thereby allowing data from more localized sources to be extrapolated along strike.  相似文献   

6.
The syntectonic continental conglomerates of the South‐Central Pyrenees record the late stages of thin‐skinned transport of the South‐Pyrenean Central Units and the onset of exhumation of the Pyrenean Axial Zone (AZ) in the core of the orogen. New magnetostratigraphic data of these syntectonic continental conglomerates have established their age as Late Lutetian to Late Oligocene. The data reveal that these materials were deposited during intense periods of tectonic activity of the Pyrenean chain and not during the cessation of the deformation as considered previously. The magnetostratigraphic ages have been combined with new detrital apatite fission track (AFT) thermochronology from AZ‐derived granite cobbles within the syntectonic conglomerates. Distribution of the granitic cobbles with different AFT ages and track lengths combined with their depositional ages reveal information on the timing and rate of episodes of exhumation in the orogen. Some AFT ages are considerably older than the AFT ages of the outcropping AZ granitic massifs, indicating erosion from higher crustal levels within the massifs than presently exposed or from completely eroded plutons. Inverse thermal modelling reveals two well‐defined periods of rapid cooling in the hinterland at ca. 50–40 and ca. 30–25 Ma, with another poorly defined cooling episode at ca. 70–60 Ma. The lowest stratigraphic samples experienced postburial annealing caused by the deposition of younger syntectonic sediments during progressive burial of the south Pyrenean thrust and fold belt. Moreover, samples from the deeper stratigraphic levels also reveal postorogenic cooling during the Late Miocene as a response to the excavation of the Ebro River towards the Mediterranean Sea. Our data strongly support previous ideas about the burial of the South Pyrenean fold and thrust belt by Late Palaeogene syntectonic conglomerates and their subsequent re‐excavation and are consistent with other thermochronological data and thermal modelling from the interior part of the orogen.  相似文献   

7.
Fission‐track (FT) analysis of detrital zircon from synorogenic sediment is a well‐established tool to examine the cooling and exhumation history of convergent mountain belts, but has so far not been used to determine the long‐term evolution of the central Himalaya. This study presents FT analysis of detrital zircon from 22 sandstone and modern sediment samples that were collected along three stratigraphic sections within the Miocene to Pliocene Siwalik Group, and from modern rivers, in western and central Nepal. The results provide evidence for widespread cooling in the Nepalese Himalaya at about 16.0±1.4 Ma, and continuous exhumation at a rate of about 1.4±0.2 km Myr?1 thereafter. The ~16 Ma cooling is likely related to a combination of tectonic and erosional activity, including movement on the Main Central thrust and Southern Tibetan Detachment system, as well as emplacement of the Ramgarh thrust on Lesser Himalayan sedimentary and meta‐sedimentary units. The continuous exhumation signal following the ~16 Ma cooling event is seen in connection with ongoing tectonic uplift, river incision and erosion of lower Lesser Himalayan rocks exposed below the MCT and Higher Himalayan rocks in the hanging wall of the MCT, controlled by orographic precipitation and crustal extrusion. Provenance analysis, to distinguish between Higher Himalayan and Lesser Himalayan zircon sources, is based on double dating of individual zircons with the FT and U/Pb methods. Zircons with pre‐Himalayan FT cooling ages may be derived from either nonmetamorphic parts of the Tethyan sedimentary succession or Higher Himalayan protolith that formerly covered the Dadeldhura and Ramgarh thrust sheets, but that have been removed by erosion. Both the Higher and Lesser Himalaya appear to be sources for the zircons that record either ~16 Ma cooling or the continuous exhumation afterwards.  相似文献   

8.
Detrital fission‐track studies on sedimentary basins surrounding eroding mountain belts provide a powerful tool to reconstruct exhumation histories of the source area. However, examples from active arc‐trench systems are sparse. In this study, we report detrital apatite fission‐track (AFT) data from Holocene and Pleistocene turbiditic trench and modern river sediments at the Chilean margin (36°S‐47°S). Sediment petrography and detrital AFT data point to different major sediment sources, underlining the need for multidisciplinary studies: whereas sediment petrography indicates the erosion of large volumes of volcanic detritus, no such volcanic signal is seen in the detrital age pattern. Areally subordinate plutonic units are identified as the main, often unique sources. This result has important implications for studies of fossil systems, where the feeder areas are eroded, and where the youngest age population is often interpreted to indicate active volcanism. For the southernmost part of the study area in the Patagonian Andes, where the source area is mainly composed of granitoids, the sediment is derived from only small portions along the main divide, pointing to focused glacial erosion there. Our detrital AFT data show no exhumational signal that could be related to the subduction of the actively spreading Chile Ridge at c. 47°S and to the opening of a slab window beneath the South American Plate.  相似文献   

9.
ABSTRACT Zircon is the most widely used mineral in detrital dating studies because it is common to multiple rock types, is chemically and physically resistant, and can endure successive cycles of burial, metamorphism and erosion. Zircon also has the advantage that single grains may be dated by either the fission‐track (FT) or U–Pb method, which, because of their contrasting thermal sensitivities (total resetting occurs at temperatures > 320 °C for FT and > 700–900 °C for U–Pb), can provide unique information about both the age structure and the thermal evolution of a sediment source. However, single method‐based bias and difficulties associated with interpreting measured ages can influence both the quality and the level of useful provenance information. For example, the zircon FT system is sensitive to metamorphic overprinting and hence measured ages alone cannot be interpreted as unambiguously dating formation age of the source rock. In contrast, U–Pb zircon data have high resistance (700–900 °C) to thermal overprinting and therefore recorded formation ages may not relate to an immediate source but may instead reflect a polycyclical history. The focus of this paper is to examine, from a practical standpoint, the provenance potential of detrital zircon fission track data and to investigate the method's complementary role as an aide to the interpretation of high‐temperature detrital U–Pb zircon data by combining U–Pb and FT methods in a single study.  相似文献   

10.
Constraining the thermal and denudational evolution of continental margins from extensional episodes to early orogenic stages is critical in the objective to better understand the sediment routing during the growth of orogenic topography. Here, we report 160 detrital zircon U/Pb ages and 73 (U‐Th)/He ages from Albian, Upper Cretaceous and Eocene sandstones from the south‐central Pyrenees. All samples show dominant zircon U/Pb age peaks at 310–320 Ma, indicating a primary contribution from Variscan granites of the central Pyrenean Axial Zone. A secondary population at 450–600 Ma documents zircon grains sourced from the eastern Pyrenees. Zircon (U‐Th)/He ages recovered from older samples document, a Triassic age peak at ca. 241 Ma, corresponding to denudation coeval with the initiation of Atlantic rifting. An Early Cretaceous cooling event at ca. 133 Ma appears consistent with rift‐related exhumation and thermal overprint on the Iberian margin. The (U‐Th)/He age peaks from ca. 80 Ma to ca. 68 Ma with decreasing depositional ages are interpreted to reflect the southward‐migrating thrust‐related exhumation on the pro‐wedge side of the Pyrenean orogen. The increase in lag times, from ca. 15 Ma in the Tremp Formation (ca. 65 Ma) to 28 Ma in the Escanilla Formation (ca. 40 Ma), suggests decreasing exhumation rates from 0.4 km Myr–1 to 0.2 km Myr–1. The apparent inconsistency with convergence rates is used to infer that rocks cooled at 68 Ma may have resided in the crust before final exhumation to the surface. Finally, the cooling event observed at 68 Ma provides support to the inferred acceleration of convergence, shortening and exhumation during Late Cretaceous times.  相似文献   

11.
Estimating palaeorelief from detrital mineral age ranges   总被引:1,自引:0,他引:1  
We propose a method that uses the increase in mineral age with elevation in some bedrock landscapes to quantify palaeotopographic relief from the age range of detrital minerals in coeval sediment. We use the rate at which mineral age changes with elevation (its age-gradient, d t /d z ) and its age range (Δ t ) in the sediment to invert for relief: Δ z =Δ t /(d t /d z ). Relief inversion requires a single-grain dating precision high enough that detrital grains originate from resolvably different elevations (e.g. laser microprobe 40Ar/39Ar fusion). The technique assumes that there is no change in mineral age during erosion and transport, that sediment is mixed well enough and (or) sampled sufficiently to capture the extrema of mineral ages, and that isochrons were horizontal during erosion. Subject to these constraints, inversion of the age range of individual grains in synorogenic sedimentary sequences allows quantitative estimation of relief development for eroded mountain ranges. This method provides the only direct quantitative measure of palaeorelief, a poorly constrained, but important aspect of many geological, geomorphological and geodynamic models.  相似文献   

12.
We present the first fission‐track (FT) thermochronology results for the NW Zagros Belt (SW Iran) in order to identify denudation episodes that occurred during the protracted Zagros orogeny. Samples were collected from the two main detrital successions of the NW Zagros foreland basin: the Palaeocene–early Eocene Amiran–Kashkan succession and the Miocene Agha Jari and Bakhtyari Formations. In situ bedrock samples were furthermore collected in the Sanandaj‐Sirjan Zone. Only apatite fission‐track (AFT) data have been successfully obtained, including 26 ages and 11 track‐length distributions. Five families of AFT ages have been documented from analyses of in situ bedrock and detrital samples: pre‐middle Jurassic at ~171 and ~225 Ma, early–late Cretaceous at ~91 Ma, Maastrichtian at ~66 Ma, middle–late Eocene at ~38 Ma and Oligocene–early Miocene at ~22 Ma. The most widespread middle–late Eocene cooling phase, around ~38 Ma, is documented by a predominant grain‐age population in Agha Jari sediments and by cooling ages of a granitic boulder sample. AFT ages document at least three cooling/denudation periods linked to major geodynamic events related to the Zagros orogeny, during the late Cretaceous oceanic obduction event, during the middle and late Eocene and during the early Miocene. Both late Cretaceous and early Miocene orogenic processes produced bending of the Arabian plate and concomitant foreland deposition. Between the two major flexural foreland episodes, the middle–late Eocene phase mostly produced a long‐lasting slow‐ or nondepositional episode in the inner part of the foreland basin, whereas deposition and tectonics migrated to the NE along the Sanandaj‐Sirjan domain and its Gaveh Rud fore‐arc basin. As evidenced in this study, the Zagros orogeny was long‐lived and multi‐episodic, implying that the timing of accretion of the different tectonic domains that form the Zagros Mountains requires cautious interpretation.  相似文献   

13.
The Holocene sediments of two catchments in the southern Upper Rhine valley have been quantified as part of the German LUCIFS Programme (RheinLUCIFS), which aims to quantify sediment fluxes in the Rhine catchment since the onset of agriculture in the Neolithic about 7500 years ago.The spatial distribution of the alluvial and colluvial sediments was derived using geological maps, with information on the thickness of these sediments from various sources including auger profiles and data from excavations. The sediments were subdivided into characteristic sedimentary storage types according to the different types of landscapes. For each of the sedimentary storage types an average thickness was assessed so that an integral sediment balance for the Holocene could be derived.For the different types of landscapes in the study area, 32 Holocene sedimentary storage types were determined, 21 in the Elz catchment (1500 km2) and 11 in the Möhlin catchment (230 km2). By adding up the sediment volumes of all single sedimentary storage types the total Holocene sediment volumes for the two catchments were calculated. Erosion depths were determined by dividing the sediment volumes through the potential erosion areas (slope > 2%) and by assuming a sediment delivery ratio (SDR) between 0 and 0.4. The total erosion for the potential erosion areas during the Holocene was calculated as 31–61 cm in the Elz catchment and 44–79 cm in the Möhlin catchment.  相似文献   

14.
We present mineralogic, isotopic and thermochronologic analyses on psammopelitic and tuffaceous levels from the Bermejo and Vinchina basins – both foreland depocentres of the Central Andes of Argentina – that define a low‐temperature regime for the crust akin to a slab shallowing and flattening process. The contents of illite in illite/smectite interstratified (I/S) show a progressive illitization into the deeper parts of both basins. The distribution of I/S is compatible with theoretical simulations and predicted heat flow values of ca. 26 mW m?2 in the 8–3.4 Ma interval for the Vinchina Basin and ca. 42 mW m?2 since 9 Ma for the Bermejo Basin. The latter shows heat flow values that are comparable to those reported by magnetotelluric analysis (36–40 mW m?2) in agreement with previously published heat flow calculations along the modern Andean foreland. The Rb–Sr isochrones in psammopelites (<2 μm fractions) show ages between 125 and 165 Ma, whereas the K–Ar ages decrease as the grain size is smaller (136–224 Ma for 1–2 μm, 112–159 Ma for 0.2–1 μm, 76–116 Ma for <0.2 μ and 39.3–42 Ma for <0.1 μm). These ages are significantly older than the sedimentation in the basins (ca. 16 Ma for the Vinchina Basin; U–Pb age), and can be explained by the presence of a significant amount of detrital components, mainly illite, even in the finer fractions. The preservation of detrital ages is consistent with the shallow diagenesis related to a low‐temperature regime, proposed here for the basins. Younger K–Ar ages (21.3–12 Ma) were obtained for a basal tuffaceous level. Clay mineralogy and R0 ordering in the deepest part of the Vinchina Basin, together with the evolution model of I/S with depth, suggest that the burial temperatures would have not exceeded ca. 100°C in agreement with (U–Th)/He analyses performed on apatite extracted from two tuffaceous units. Thermal indicators from both studied basins confirm the existence of a low‐temperature regime during flat subduction.  相似文献   

15.
We measured in situ 10Be, 26Al and36Cl on glacial deposits as old as 1.1 Myr in the southernmost part of Patagonia and on northern Tierra del Fuego to understand boulder and moraine and, by inference, landscape changes. Nuclide concentrations indicate that surface boulders have been exposed for far less time than the ages of moraines they sit upon. The moraine ages are themselves constrained by previously obtained 40Ar/39Ar ages on interbedded lava flows or U-series and amino acid measurements on related (non-glacial) marine deposits. We suggest that a combination of boulder erosion and their exhumation from the moraine matrix could cause the erratics to have a large age variance and often short exposure histories, despite the fact that some moraine landforms are demonstrably 1 Myr old. We hypothesize that fast or episodic rates of landscape change occurred during glacial times or near the sea during interglacials. Comparison with boulder erosion rates and exhumation histories derived for the middle latitudes of semi-arid Patagonia imply different geomorphic processes operating in southernmost South America. We infer a faster rate of landscape degradation towards the higher latitudes where conditions have been colder and wetter.  相似文献   

16.
The Song Gianh is a small‐sized (~3500 km2), monsoon‐dominated river in northern central Vietnam that can be used to understand how topography and climate control continental erosion. We present major element concentrations, together with Sr and Nd isotopic compositions, of siliciclastic bulk sediments to define sediment provenance and chemical weathering intensity. These data indicate preferential sediment generation in the steep, wetter upper reaches of the Song Gianh. In contrast, detrital zircon U‐Pb ages argue for significant flux from the drier, northern Rao Tro tributary. We propose that this mismatch represents disequilibrium in basin erosion patterns driven by changing monsoon strength and the onset of agriculture across the region. Detrital apatite fission track and 10Be data from modern sediment support slowing of regional bedrock exhumation rates through the Cenozoic. If the Song Gianh is representative of coastal Vietnam then the coastal mountains may have produced around 132 000–158 000 km3 of the sediment now preserved in the Song Hong‐Yinggehai Basin (17–21% of the total), the primary depocenter of the Red River. This flux does not negate the need for drainage capture in the Red River to explain the large Cenozoic sediment volumes in that basin but does partly account for the discrepancy between preserved and eroded sediment volumes. OSL ages from terraces cluster in the Early Holocene (7.4–8.5 ka), Pre‐Industrial (550–320 year BP) and in the recent past (ca. 150 year BP). The older terraces reflect high sediment production driven by a strong monsoon, whereas the younger are the product of anthropogenic impact on the landscape caused by farming. Modern river sediment is consistently more weathered than terrace sediment consistent with reworking of old weathered soils by agricultural disruption.  相似文献   

17.
Environmental magnetic studies were conducted on a 9.42-m-long sediment core from Gonghai Lake, North China. Radiocarbon dating indicates that the record spans the last 15,000 cal year BP. The principal magnetic mineral in the sediments is pseudo-single domain magnetite of detrital origin with minimal post-depositional alteration. Although the variations in the concentration of detrital magnetic minerals and their grain size throughout the core reflect inputs from both soil erosion and eolian dust, it is shown that their climatic and environmental significance changes with time. In the lowermost part of the core, ~15,000–11,500 cal year BP, the magnetic minerals were supplied mainly by bedrock erosion, soil erosion and dust input when climate ameliorated after the cold and dusty last glacial maximum. The increasing magnetic susceptibility (χ) in this interval may indicate a combination of changes in the lake environment together with catchment-surface stabilization and a decreasing proportion of dust input. In the central part of the core, ~11,500–1,000 cal year BP, the detrital magnetic minerals mainly originated from dust inputs from outside the catchment when the lake catchment was covered by forest, and catchment-derived sediment supply (and thus the lake sediment accumulation rate) were minimal. The generally low concentration of magnetic minerals in this part of the core reflects the highest degree of soil stability and the strongest summer monsoon during the Holocene. In the uppermost part of the core, the last ~1,000 years, detrital magnetic minerals mainly originated from erosion of catchment soils when the vegetation cover was sparse and the sediment accumulation rates were high. Within this part of the core the high magnetic susceptibility reflects strong pedogenesis in the lake catchment, and thus a strong summer monsoon. This scenario is similar to that recorded in loess profiles. Overall, the results document three main stages of summer monsoon history with abrupt shifts from one stage to another: an increasing and variable summer monsoon during the last deglacial, a generally strong summer monsoon in the early and middle Holocene and a weak summer monsoon in the late Holocene. The results also suggest that different interpretational models may need to be applied to lake sediment magnetic mineral assemblages corresponding to different stages of environmental evolution.  相似文献   

18.
At the geological time scale, the way in which the erosion of drainage catchments responds to tectonic uplift and climate changes depends on boundary conditions. In particular, sediment accumulation and erosion occurring at the edge of mountain ranges should influence the base level of mountain catchments, as well as sediment and water discharges. In this paper, we use a landform evolution model (LEM) to investigate how the presence of alluvial sedimentation at range fronts affects catchment responses to climatic or tectonic changes. This approach is applied to a 25 km × 50 km domain, in which the central part is uplifted progressively to simulate the growth of a small mountain range. The LEM includes different slope and river processes that can compete with each other. This competition leads to ‘transport‐limited’, ‘detachment‐limited’ or ‘mixed’ transport conditions in mountains at dynamic equilibrium. In addition, two end‐member algorithms (the channellized‐flow and the sheet‐flow regimes) have been included for the alluvial fan‐flow regime. The three transport conditions and the two flow algorithms represent six different models for which the responses to increase of rock uplift rate and/or cyclic variation of the precipitation rate are investigated. Our results indicate that addition of an alluvial apron increases the long‐term mountain denudation. In response to uplift, mountain rivers adapt their profile in two successive stages; first by propagation of an erosion wave and then by slowly increasing their channel gradients. During the second stage, the erosion rate is almost uniform across the catchment area at any one time, which suggests that dynamic equilibrium has been reached, although the balance between erosion and rock uplift rates has not yet been achieved. This second stage is initiated by the uplift of the mountain river outlets because of sedimentation aggradation at the mountain front. The response time depends on the type of water flow imposed on the alluvial fans domains (× by 1.5 for channelized flow regime and by 10 for the sheet flow one). Cyclic variations of precipitation rate generate cyclic incisions in the alluvial apron. These incision pulses create knick‐points in the river profile in the case of ‘detachment‐limited’ and ‘mixed’ river conditions, which could be mistaken for tectonically induced knick‐points. ‘Transport‐limited’ conditions do not create such knick‐points, but nevertheless trigger erosion in catchments. The feedbacks linked to sedimentation and erosion at range front can therefore control catchment incision or aggradation. In addition, random river captures in the range front trigger auto‐cyclic erosion pulses in the catchment, capable of generating incision–aggradation cycles.  相似文献   

19.
贵州麦岗水库沉积物的矿物磁性特征及其土壤侵蚀意义   总被引:2,自引:0,他引:2  
李春梅  汪美华  王红亚 《地理研究》2010,29(11):1971-1980
对取自贵州西南部紫云县麦岗水库的沉积物柱芯MG1-1进行了包括SIRM、ARM、χlf、χfd、IRM-20mT和IRM-100mT等磁性参数的矿物磁性测量,并计算了ARM/SIRM、HIRM和IRM-100mT/SIRM。根据沉积物的这些矿物磁性特征,并结合137Cs、粒度、TOC、C/N分析结果,推测了麦岗水库流域在1960~2007年(47年)间的土壤侵蚀变化情况。研究表明:麦岗水库流域的土壤侵蚀强度变化虽然存在一些波动,但整体上呈现由强到弱到强再到弱的变化过程。结合降水资料和土地利用/土地覆被变化情况,探讨了影响土壤侵蚀变化的主要原因。结果表明,降水量对流域土壤侵蚀变化的影响不大,而人类活动,特别是土地利用的变化可能是引起流域土壤侵蚀变化的主要原因。  相似文献   

20.
As the highest part of the central Andean fold‐thrust belt, the Eastern Cordillera defines an orographic barrier dividing the Altiplano hinterland from the South American foreland. Although the Eastern Cordillera influences the climatic and geomorphic evolution of the central Andes, the interplay among tectonics, climate and erosion remains unclear. We investigate these relationships through analyses of the depositional systems, sediment provenance and 40Ar/39Ar geochronology of the upper Miocene Cangalli Formation exposed in the Tipuani‐Mapiri basin (15–16°S) along the boundary of the Eastern Cordillera and Interandean Zone in Bolivia. Results indicate that coarse‐grained nonmarine sediments accumulated in a wedge‐top basin upon a palaeotopographic surface deeply incised into deformed Palaeozoic rocks. Seven lithofacies and three lithofacies associations reflect deposition by high‐energy braided river systems, with stratigraphic relationships revealing significant (~500 m) palaeorelief. Palaeocurrents and compositional provenance data link sediment accumulation to pronounced late Miocene erosion of the deepest levels of the Eastern Cordillera. 40Ar/39Ar ages of interbedded tuffs suggest that sedimentation along the Eastern Cordillera–Interandean Zone boundary was ongoing by 9.2 Ma and continued until at least ~7.4 Ma. Limited deformation of subhorizontal basin fill, in comparison with folded and faulted rocks of the unconformably underlying Palaeozoic section, implies that the thrust front had advanced into the Subandean Zone by the 11–9 Ma onset of basin filling. Documented rapid exhumation of the Eastern Cordillera from ~11 Ma onward was decoupled from upper‐crustal shortening and coeval with sedimentation in the Tipuani‐Mapiri basin, suggesting climate change (enhanced precipitation) or lower crustal and mantle processes (stacking of basement thrust sheets or removal of mantle lithosphere) as possible controls on late Cenozoic erosion and wedge‐top accumulation. Regardless of the precise trigger, we propose that an abruptly increased supply of wedge‐top sediment produced an additional sedimentary load that helped promote late Miocene advance of the central Andean thrust front in the Subandean Zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号