首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
本文主要归纳了基于Morison方程求解小尺度桩柱的水动力系数方面的研究成果。分别从单桩柱和群桩两个方面对水动力系数的研究成果,包括纯波、波流混合、横向力、直立桩柱、倾斜桩柱、复杂结构桩柱、粗糙度等进行了阐述,给出了在波流条件下水动力系数的变化规律;归纳了当前水动力系数的求解方法;介绍了在水动力系数的物模实验、数值仿真以及实验数据处理方法上的研究进展,并提出了相关研究的建议。  相似文献   

2.
一种新型三维水流数值模型   总被引:1,自引:0,他引:1  
黄筱云  李绍武  夏波 《海洋学报》2010,32(6):167-173
以不可压缩流体的N-S方程为基本控制方程,用快速粒子level set方法(FPLS)追踪自由表面,提出了一种新的三维水流数值模型。在自由表面处应用虚拟压力法来封闭压力泊松方程,同时用速度等值外插的方法构造自由表面外侧的虚拟速度分布。通过模拟水波振荡、水柱崩塌、水滴滴落和空箱注水过程证明了模型的有效性。  相似文献   

3.
摆动尾鳍水动力性能的试验和数值研究   总被引:1,自引:0,他引:1  
苏玉民  张曦  杨亮 《海洋工程》2012,30(3):150-158
鱼类能够在水下高速度、低噪音、高效率地游动。鱼类出色的推进性能通过其摆动尾鳍实现。这种摆动尾鳍推进方式已经用在了水下无人航行器上。因此研究摆动尾鳍的水动力性能是非常有意义的。对摆动尾鳍的推进水动力性能进行了详尽的研究。设计、装配了一套仿尾鳍推进系统,并对其进行了相应的水动力试验。在试验中研究了运动参数对摆动尾鳍水动力性能的影响。与此同时,采用基于雷诺平均N-S方程的数值方法对摆动尾鳍的水动力性能进行了研究。在数值计算中采用了k-ωSST湍流模型和有限体积法。数值计算结果和水动力试验结果进行了比较。对尾鳍表面的压力分布和流场中的尾涡结构进行了分析。水动力试验和数值计算都表明摆动尾鳍可以产生推进力和较高的推进效率。  相似文献   

4.
不规则波浪数值水槽的造波和阻尼消波   总被引:12,自引:1,他引:12  
高学平  曾广冬  张亚 《海洋学报》2002,24(2):127-132
利用MAC(marker and cell)法直接数值求解连续方程和N-S方程.为模拟不规则波长时段连续造波及消除波浪遇结构物后形成的二次反射,采用了源造波法.对开敞边界,采用了海绵阻尼消波和Sommerfeld条件相结合的处理方式.  相似文献   

5.
胶州湾三维变动边界的潮流数值模拟   总被引:35,自引:3,他引:35  
基于Blumberg等(1986)的河口、陆架和海洋模式,引入变边界处理技术,建立了胶州湾三维变动边界的潮流模型,模型以σ-正交曲线坐标下三维非线性潮波方程为基本方程,引入2.5阶瑞封闭方程组,采用分裂算子法数值求解方程组,利用湍封闭方程求解垂直紊动粘滞系数,采用干湿网格方法模拟潮流漫滩过程,三维变动边界潮流模型计算结果与实测值吻合良好。  相似文献   

6.
针对潜艇水动力系数求解及流场预测问题,本文通过求解瞬态雷诺时均方程,结合SUBOFF潜艇模型的具体参数和重叠网格法,提出了一种计算潜艇平面运动机构试验(PMM)的仿真方法,实现了PMM的虚拟仿真。将仿真试验的计算结果运用傅里叶变换获得了潜艇的加速度、角加速度的水动力系数,同时计算出频率为0.4 Hz时的潜艇的流场变化。结果显示:PMM数值试验所求得的水动力系数与试验值吻合良好,其中,惯性类系数求解精度较高,大部分系数的误差在17%以内,而黏性类水动力系数的求解精度远不如直线拖曳试验或回转试验计算精度高,个别计算系数超过了50%。从数值试验的整体效果上看,PMM数值试验方法可以用于潜艇惯性类系数的初步求解和预报,而黏性类系数的精度有待进一步研究。  相似文献   

7.
对于现代舰船而言噪声是其关键性能之一,目前水下航行体的流激噪声预测方法已经较为成熟,但是水面舰船的水动力噪声研究起步较晚,还没有形成系统的预报方法和控制手段。使用开源CFD工具包OpenFOAM求解器,流场通过大涡模拟方法求解,自由液面则依靠VOF方法捕捉,通过Curle方程预测远场噪声,基于镜像法考虑自由面的反射作用,数值模拟近自由面圆柱周围的声场分布。开展了Re=3 900下距离自由液面不同高度的圆柱辐射噪声求解,主要结合流场分析自由面对声场的扰动作用和不同深度对水下几何体流噪声的影响。初步考虑了自由液面波形对辐射噪声的反射作用,为后续预测水面舰船的水动力噪声特性提供依据,自由面对辐射噪声的阻抗等作用还需进一步研究。  相似文献   

8.
浮式防波堤与振荡浮子式波浪能转换装置集成是一种较为合理的波浪能开发利用方式,基于方箱式浮式防波堤—波浪能转换集成系统和幕帘式防波堤的研究成果,提出了一种新型方箱—垂直挡浪板式浮式防波堤—波浪能转换集成系统,建立数学模型对该集成系统的水动力特性和能量输出特性进行研究。模型基于N-S方程,采用紧致插值曲线(CIP)方法结合浸没边界法(IBM)求解。运用数值模型探究在一定波浪条件下,动力输出系统(PTO)阻尼力的大小以及挡浪板对集成系统的水动力特性和能量转换特性的影响,得到如下结论:集成系统的俘获宽度比随PTO阻尼力的增大呈现先增大后减小的趋势,在阻尼力F_(PTO)=150 N时达到最大;相对于方箱型集成系统,增设0.1 m挡浪板后可使其最大俘获宽度比η_e提高33%左右;此外,集成系统的俘获宽度比随挡浪板长度增加而增大,增长趋势逐渐变缓,在挡浪板长度S_p=0.5 m时达到最大,此时俘获宽度比η_e=0.563 1。  相似文献   

9.
四叉树网格下的椭圆型缓坡方程数值模型研究   总被引:1,自引:1,他引:0  
唐军  李巧生  沈永明 《海洋学报》2013,35(5):162-168
波浪是近岸海域关键的水动力因素之一。考虑到近岸地形复杂、波浪演化显著的特点,建立了四叉树网格体系下的椭圆型缓坡方程数值模型,采用有限体积法对模型进行数值离散,应用GPBiCG(m, n)算法求解离散后的控制方程。模型中根据波浪波长布局计算网格,生成多层次四叉树网格,对复杂计算域有较好的适应性,并且在离散和方程求解中无需引入形函数、不产生复杂的交叉项,节约了存储空间和计算时间。将模型成功应用于物理模型实验及Acapulco海湾的波浪场数值模拟,结果表明该模型能够准确、高效地模拟近岸波浪场,可为近岸波浪场的模拟提供一定的理论和技术支持。  相似文献   

10.
近壁圆柱绕流水动力特性数值模拟与实验研究   总被引:3,自引:0,他引:3  
通过数值模拟和物理模型实验,对距壁面一定高度的圆柱绕流水动力特性进行了研究。数值模拟采用有限体积法对标准k-ε模式方程进行离散,采用SIMPLE算法进行求解,模拟绕流流场。在物理模型实验中,将PVC圆管制作的实验模型安放在水槽内,在圆管的跨中沿表面周向均匀布置水下压力传感器,用于测量绕流圆柱体表面动水压力分布。通过改变Re数和间隙比来分析它们对近壁圆柱绕流水动力特性的影响。基于数值流动显示技术,给出了近壁绕流流场的尾流流态分析。通过数值结果与实验结果的对比,对近壁绕流圆柱体的升力系数及其表面动水压力分布进行了研究,对比结果显示了较好的一致性。  相似文献   

11.
-Wave refraction-diffraction due to a large ocean structure and topography in the presence of a 'current are studied numerically. The mathematical model is the mild-slope equation developed by Kirby (1984). This equation is solved using a finite and boundary element method. The physical domain is devid-ed into two regions: a slowly varying topography region and a constant water depth region. For waves propagating in the constant water depth region, without current interfering, the mild- slope equation is then reduced to the Helmholtz equation which is solved by boundary element method. In varying topography region, this equation will be solved by finite element method. Conservation of mass and energy flux of the fluid between these two regions is required for composition of these two numerical methods. The numerical scheme proposed here is capable of dealing with water wave problems of different water depths with the main characters of these two methods.  相似文献   

12.
The closing of tidal basins generally serves a combination of various purposes, such as land reclamation, protection against floods, creation of fresh-water reservoirs, etc. Closure works in tidal areas will change the tidal conditions on the sea side of the closure, while desalination will be the main problem in the enclosed area. A comparison between some closure methods is given. A distinction is made between sudden and gradual closure methods, the latter being subdivided into vertical, horizontal and combined methods.Some attention is paid also to the seabed protection, which is needed in order to reduce the risk of instability of the closure dam during construction. As an illustration of a large-scale closure operation, a case study has been worked out briefly. From a comparison between a vertical and a combined horizontal and vertical closure method, the latter appears to be less appropriate in the case of large-scale closure works.  相似文献   

13.
低雷诺数下圆柱涡激振动的二维有限元数值模拟   总被引:2,自引:0,他引:2  
采用有限元方法求解原始变量的二维不可压粘性流体的N-S方程,计算了雷诺数从90到150范围内圆柱绕流引起的涡激振动,完整地再现了流固耦合系统从不共振到频率锁定,再到脱离锁定的过程,成功地预测到了涡激振动的“拍”和“锁定”现象,并与A nagnostopou los和B earam an的试验结果进行了比较。计算涡激振动时用ALE方法分析圆柱和流体的耦合作用,圆柱振动被简化为质量-弹簧-阻尼系统。  相似文献   

14.
Three-dimensional liquid sloshing in a tank with baffles   总被引:1,自引:0,他引:1  
A numerical model has been developed to study three-dimensional (3D) liquid sloshing in a tank with baffles. The numerical model solves the spatially averaged Navier-Stokes equations, which are constructed on a non-inertial reference frame having six degree-of-freedom (DOF) of motions. The large-eddy-simulation (LES) approach is employed to model turbulence by using the Smagorinsky sub-grid scale (SGS) closure model. The two-step projection method is employed in the numerical solutions, aided by the Bi-CGSTAB technique to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate volume-of-fluid (VOF) method is used to track the distorted and broken free surface. The baffles in the tank are modeled by the concept of virtual boundary force (VBF) method. The numerical model is first validated against the available analytical solution and experimental data for two-dimensional (2D) liquid sloshing in a tank without baffles. The 2D liquid sloshing in tanks with baffles is then investigated. The numerical results are compared with other results from available literatures. Good agreement is obtained. Finally, the model is used to study 3D liquid sloshing in a tank with vertical baffles. The effect of the baffle is investigated and discussed.  相似文献   

15.
《Coastal Engineering》2001,42(2):163-172
Applying the Green's theorem and a moving oscillating source as the Green's function, an integral equation method is developed for predicting wave height over a shoal in a weak current. The integral equation is discretized by a higher order element method and a numerical code is implemented. To validate the numerical code, comparison is made on wave run-up around a vertical cylinder with McCamy and Fuchs' analytic solution in the still water and the results in currents from numerical wave tanks. Computation has also been carried out for the wave diffraction over a parabolic shoal in a current, and numerical results are given at many sections. The numerical results from the calculation can be used for benchmark test for other methods on wave diffraction in current.  相似文献   

16.
A vertical two-dimensional numerical model has been applied to solving the Reynolds Averaged Navier- Stokes (RANS} equations in the simulation of current and wave propagation through vegetated and non- vegetated waters. The k-e model is used for turbulence closure of RANS equations. The effect of vegeta- tion is simulated by adding the drag force of vegetation in the flow momentum equations and turbulence model. To solve the modified N-S equations, the finite difference method is used with the staggered grid system to solver equations. The Youngs' fractional volume of fluid (VOF) is applied tracking the free sur- face with second-order accuracy. The model has been tested by simulating dam break wave, pure current with vegetation, solitary wave runup on vegetated and non-vegetated channel, regular and random waves over a vegetated field. The model reasonably well reproduces these experimental observations, the model- ing approach presented herein should be useful in simulating nearshore processes in coastal domains with vegetation effects.  相似文献   

17.
考虑了波浪在水流中的变形,计算了波流共存场中海上风力发电机三柱基础的受力.应用离散涡法,求解了不可压缩粘性流体的水平二维涡量-流函数Navier-Stokes方程,模拟了不同桩位布置对波流场的影响.以及各桩受力和三桩基础总力的随布置方式不同的变化.  相似文献   

18.
In this paper, a numerical model is established. A modified N-S equation is used as a control equation for the wave field and porous flow area. The control equations are discreted and solved by the finite difference method. The free surface is tracked by the VOF method. The pressure field and velocity field of the whole flow area are solved by the reiterative iteration method. Finally, compared with the physical model test results of wave flume, the numerical model established in the present study is validated.  相似文献   

19.
Simulation of Fully Nonlinear 3-D Numerical Wave Tank   总被引:6,自引:0,他引:6  
A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order bouodary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号