首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion emission line intensities between 1170 and 1700 Å allow one to determine the differential emission measure (DEM) and electron pressure of the plasma in the solar transition region (TR). These line intensities together with their Doppler shifts and line widths are measured simultaneously for the first time above a sunsport from data obtained with the NRL High Resolution Telescope and Spectrograph with 0.06 Å spectral and 1 spatial resolution.The Doppler shifts show both subsonic and supersonic flow in the same line of sight over the umbra. The temperature structure for 40 resolution elements in the sunspot umbra and penumbra is derived from the DEM and the observed electron pressures.Extrapolation of the emission measure curves supports the previous EUV and X-ray observations that coronal plasma above sunspots with T e>106 K is reduced while emission from TR plasma between 2×105 and 106 K is greatly enhanced relative to quiet or active regions. This enhancement shifts the minimum of the DEM to lower temperatures and increases the slope at 2×105 K by a factor of two.New pressure diagnostics using the emission line intensity ratios of C iv to N iv are presented, and applied to the data.The energy balance in the TR for the sunspot umbra is dominated by radiative losses from the large amount of TR plasma.An estimate of the energy budget shows that an energy input is required to balance the radiative energy losses above the umbra. The observed divergence of the enthalpy flux for the umbral downflows can balance these radiative losses for T e between 30000 and 200 000 K.A typical umbral model of T e versus reduced mass column density is compared with one for chromospheric temperatures determined from the Ca H and K lines.Institute of Theoretical Astrophysics, University of Oslo, Norway.  相似文献   

2.
The relative populations of metastable levels within the configuration 3s 23p 53d of the ion Fe ix have been calculated as a function of electron density N e . The results are used to derive emissivities of the most intense lines originating from these levels. Comparison with observations confirms the proposed identifications. The density dependence of some line ratios may be used to determine N e .  相似文献   

3.
R. Fisher  T. Pope 《Solar physics》1971,20(2):389-399
Nine coronal emission lines representing five stages of Fe ionization and one stage of Ni were observed in an enhanced coronal region. The data from these observations are presented along with a density model of the enhanced region obtained from the FeXIII and NiXV emission line ratios as a function of position angle. The electron densities obtained from FeXIII lines range from N e = 108 to 109 cm–3, and are slightly lower for NiXV line data. Estimates of the variation of temperature over the enhanced region are inferred from the observed line intensities.  相似文献   

4.
Using several density diagnostic Oiv theoretical line ratios and corresponding observed values for the same source by Sandlin et al. (1984) and Sandlin, Brueckner, and Tousey (1977), we find that an emitting region has a multidensity structure. We discuss several other line ratios for density measurement in sunspots, active regions, and flares.  相似文献   

5.
Continued spectroscopic observations of Nova Del 67 during 1971 and 1972 show a general decrease of the nebular and coronal emission with respect to the local continuum. The continuous spectrum exhibits a strong Balmer emission (figure 1). Equivalent widths of Hi, Hei, Heii, Oi, [Oi], Oii, [Oii], Oiii, [Oiii], Niii, [Sii], [Aiii], [Neiii], [Nev], [Fevi], [Fevii], [Fex], [Fexi], [Fexiv], [Nixvi], [Nixv] are listed in tables 1 and 2.Figures 5 to 10 show several line profiles, which can be interpreted in terms of a model proposed by Hutchings (1972). Kinematical properties of the nova envelope do not seem to have changed in the 1968–1972 time interval. However, a study of the [Oiii] (4959 Å) line indicates that the physical conditions in the polar blobs in 1972 (T e=10 660 K,N e=5,5×105 cm–3) are different from those prevailing in equatorial rings (T e=9×100 K,N e=7×105 cm–3).

Le matérial d'observation utilisé pour cette étude a été obtenu à l'aide de téléscopes de 120 cm, 152 cm et 193 cm de l'Observatoire de Haute-Provence (CNRS).  相似文献   

6.
F. P. Keenan 《Solar physics》1990,126(2):311-317
Theoretical Niv emission line ratios, which incorporate several improvements over previous estimates, are presented for R 1 = I(923.2 Å)/I(765.1 Å) and R 2 = I(1718.6 Å)/I(1486.5 Å), which are electron density and temperature sensitive, respectively. A comparison of R 1 with observational data for several solar features obtained with the Harvard S-055 spectrometer on board Skylab reveals generally good agreement between theory and observation, except for the quiet Sun, which is probably due to the 923.2 Å line being blended with an Feiii transition in this instance. The observed value of R 2, determined from a quiet-Sun spectrum obtained by the S082-B spectrograph on board Skylab, implies an electron temperature in excellent agreement with that of maximum Niv fractional abundance in ionisation equilibrium, which provides observational support for the accuracy of the diagnostic calculations.  相似文献   

7.
Spectrographic observations of the flash spectrum were made by the Kwasan Observatory at the total solar eclipse on 7 March, 1970. The integrated intensities of Fexiv 5303, Fex 6374, and the continuum were measured on the spectrograms as a function of height above the Sun's limb. It was found that a large amount of emission in the coronal lines originates in the interspicular regions of the chromosphere. Analysis of the data yielded that the interspicular regions consist of coronal material of T e = 1.6 × 106–1.2 × 106 and log N e = 8.5–9.5, and that a decrease in T e and an increase in N e occur with decreasing height.  相似文献   

8.
Extreme ultraviolet spectra of several active regions are presented and analyzed. Spectral intensities of 3 active regions observed with the NRL Skylab XUV spectroheliograph (170–630 Å) are derived. From this data density sensitive line ratios of Mg viii, Si x, S xii, Fe ix, Fe x, Fe xi, Fe xii, Fe xiii, Fe xiv, and Fe xv are examined and typically yield, to within a factor of 2, electron pressures of 1 dyne cm–2 (n e T = 6 × 1015 cm–3 K). The differential emission measure of the brightest 35 × 35 portion of an active region is obtained between 1.4 × 104 K and 5 × 106 K from HCO OSO-VI XUV (280–1370 Å) spectra published by Dupree et al. (1973). Stigmatic EUV spectra (1170–1710 Å) obtained by the NRL High Resolution Telescope and Spectrograph (HRTS) are also presented. Doppler velocities as a function of position along the slit are derived in an active region plage and sunspot. The velocities are based on an absolute wavelength scale derived from neutral chromospheric lines and are accurate to ±2 km s–1. Downflows at 105 K are found throughout the plage with typical velocities of 10 km s–1. In the sunspot, downflows are typically 5 to 20 km s–1 over the umbra and zero over the penumbra. In addition localized 90 and 150 km s–1 downflows are found in the umbra in the same 1 × 1 resolution elements which contain the lower velocity downflows. Spectral intensities and velocities in a typical plage 1 resolution element are derived. The velocities are greatest ( 10 km s–1) at 105 K with lower velocities at higher and lower temperatures. The differential emission measure between 1.3 × 104 K and 2 × 106 K is derived and is found to be comparable to that derived from the OSO-VI data. An electron pressure of 1.4 dynes cm–2 (n e T = 1.0 × 1016 cm–3 K) is determined from pressure sensitive line ratios of Si iii, O iv, and N iv. From the data presented it is shown that convection plays a major role in determining the structure and dynamics of the active region transition zone and corona.  相似文献   

9.
A direct method for determining electron densities from emission line intensities of ions in the beryllium isoelectronic sequence is described and then applied to the analysis of extreme ultraviolet Ciii and Ov spectra from both quiet and active areas in the solar transition region. The results are consistent with a value of N e T e = 6 × 1014 cm-3K for the quiet Sun at temperatures of 5 × 104 to 3 × 105K. Electron densities are approximately five times greater in active regions than in the quiet Sun.  相似文献   

10.
Morozhenko  N. N. 《Solar physics》1974,34(2):313-322
Observations of the lines He i 3888 and H8 in 80 quiescent prominences by the author, and in other prominences by Kubota et al. (1972) and Morozhenko (1971), have been used to derive the dependences of I(3888)/I(H8) on I(H8), N 2 3 s on 0 (H), and N + n e on 0(H) (Figures 1, 2, 3 and 4). The equations of ionization equilibrium and triplet system steady state for a helium atom (27 levels and continuum were considered) were solved together with the radiation transfer equation in the helium Lyman continuum. As given n e () distribution with depth and T e =7500 K were assumed. The 23 S level population N2 3 s, helium emission measure N + n e and the intensity ratios of the He i 3888 and H8 lines were calculated and compared with observation (Figures 2, 3 and 4, solid lines). The figures show that in bright prominences the observed values of N 2 3 s and N + n e are systematically higher than the calculated ones. These deviations cannot be eliminated by decreasing n e . One can make the calculations and observations agree for bright prominences by increasing the UV radiation which penetrates into the prominence.  相似文献   

11.
Observations with the UVSP instrument on the SMM spacecraft were made at the polar limb and disk center for the accurate determination of Doppler shifts of the Civ 1548 Å emission line formed at 105 K in the transition region of the quiet Sun. Individual data points representing 3 arc sec square pixels yield both redshifts and blueshifts, but the mean values from four different days of observations are toward the red. The mean redshifts are in the range 4–8 km s-1 and are produced by nearly vertically directed flows; the uncertainty associated with the mean values correspond to ±0.5 km s-1. The redshift increases with brightness of the Civ line.  相似文献   

12.
The emission of the Ca ii K line from a spinning cylindrical spicule model is considered. In order to reproduce the observed spicule K line profiles, the model must have both radial and axial gradients in N e and T e. The rotating spicule model is optically thin at all heights and is hotter and more dense than a stationary model computed in a previous paper. It is proposed that the so-called Type I and Type II spicules may be structurally the same features, with different rotational velocities.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

13.
Calculations of electron temperature (T e) and density (N e) sensitive line ratios in Sixi involving transitions in the 358–604 wavelength range are presented. These are shown in the form of ratio-ratio diagrams, which should in principle allow bothN e andT e to be deduced for the Sixi line-emitting region of a plasma. However a comparison of these with observational data for two solar flares, obtained with the Naval Research Laboratory's S082A spectrograph on boardSkylab, reveals that the experimental ratios are much larger than expected from theory, which is probably due to the Sixi lines in the S082A spectra being blended with transitions from species including Nev, Fexi, and Fexii. Possible future applications of the Sixi results to spectral data from the Coronal Diagnostic Spectrometer on the Solar and Heliospheric Observatory are briefly discussed.  相似文献   

14.
Lites  Bruce W. 《Solar physics》1981,71(2):329-336
The rapid dissipation of flare energy has been observed in the transition-zone line of C iv at 1548.2 Å using the University of Colorado spectrometer aboard OSO-8. Impulsive brightenings have been resolved with characteristic risetimes as low as 3.5 s. One event is analyzed in detail, in which it is inferred that the electron density is greater than 2 × 1011 cm–3 at T = 60 000 K, and that the flare energy is deposited at a rate of 2 ergs cm–3 s–1 or greater. The temporal behavior of the intensity at the center of the C iv line is consistent with a non-equilibrium ionization of C iii through C v. If this event is a result of the multiple tearing mode instability as the primary energy release mechanism, then the observations indicate a pre-flare magnetic field of about 175 G.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
We present NeV/MgV and SiVII/MgVII theoretical line intensity ratios as a function of electron densityN e and temperatureT e . These are shown in the form of ratio-ratio diagrams, which should in principle allow bothN e andT e to be deduced for the emitting region of the solar plasma. We apply these diagnostics in the solar atmosphere, and discuss the available observations made from space. In most cases, however, we deduceN e andT e from the computed absolute line intensities in a spherically symmetric model atmosphere of the Sun. Possible future applications of this investigation to spectral data from the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory (SOHO) are briefly discussed.  相似文献   

16.
Studies of the flare-produced line feature at 1.9 Å due to highly ionized iron show that it is emitted in conditions closely approximating steady-state ionization equilibrium. Calculations of the line flux per unit emission measure from time-dependent and steady-state ionization equilibria are compared with observed values during four flares in particular. Only for electron densities N e 1010 cm-3 do the time-dependent equilibrium values give as good an approximation to the observed values as the steady-state equilibrium. This lower limit is compared with values of N e derived from analyses of the temperature decline in each of these events, and with estimates of N e given by other workers.NAS/NRC Research Associate.  相似文献   

17.
An analysis of the spectral distribution of intensity of the Hei recombination continuum is probably the only direct method for determination of the electron temperature of helium emission regions on the Sun. On the basis of data on the Hei Lyman continuum, obtained by Dupree and Reeves from OSO-4, the electron temperature of undisturbed helium regions is determined: T e = = 12500 K. Such a low T e value is a serious argument in favour of the predominant role of UV coronal radiation in the helium ionization on the Sun. Comparison of the Hei Lyman continuum data with results of observations of the 10830 line showed that the visible helium lines and Hei Lyman continuum are produced within the same regions of the undisturbed solar atmosphere at T e = 12500 K.  相似文献   

18.
New electron excitation rates for O vii calculated by Tayal and Kingston using the R-matrix method are used to determine theoretical emission line strengths. Values of the electron density sensitive ratio R (forbidden line to intercombination line) are found to be very similar to those deduced by other authors. However the temperature sensitive ratios G (intercombination plus forbidden lines to resonance line) are approximately 20% lower than the best previous estimates. The observed value of G for solar active regions (G = 1.0 ± 0.1) predicts an electron temperature in the range 1.1 × 106 K < T e < 1.8 × 106 K, which overlaps that of maximum O vii emissivity, T M = 1.8 × 106 K. In addition, the theoretical G versus T e curve is in excellent agreement with that observed for a Tokamak plasma.  相似文献   

19.
The parameter G, which is determined from the general number of sunspots groups N g according to the daily observations G=∑(1/N g )2, is offered. This parameter is calculated for the days when there is at least one sunspots group. It characterizes the minimum epoch solar activity. Parameter G mounts to the maximum during the epoch close to the minimal activity of sunspots. According to the data of the sequence of sunspots group in Greenwich–USAF/NOAA observatory format, observation data of Kislovodsk solar station and also daily Wolf number, the changes of parameter G during 100 years were reconstructed. It is demonstrated in the paper that parameter G’s amplitude in minimal solar activity n is linked with the sunspot cycle’s amplitude W n+1 or one and half cycles. The 24th activity cycle prediction is calculated, which makes W 24=135(±12).  相似文献   

20.
We have qualitatively analyzed, in the H and K lines spectral region, 31 flares covering part of umbrae or penumbrae of sunspots. A strong narrowing of the emission lines has been observed over the umbrae, and the lines are, in general, much weaker than in common flares suggesting that the optical thickness is quite low in these parts. We have calculated the Stark broadening of the H line from the general theory, and it has been applied to obtain the electron density in 9 flare spectra. In all cases it has been found that n e > 1013 cm–3. Goldberg's method has been applied to find the kinetic temperature from the H and K lines of Ca ii, and from the ratio between the central intensities of the lines we have calculated the optical thickness in the K line. Much evidence supports the assumption that the flare emission is highly diluted in the cases considered, and we propose a two-component model for the calcium emission lines.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号