首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zusammenfassung Die Phasenbeziehungen im Cu-W-S-System wurden zwischen 900 °C und Zimmertemperatur durch DTA- und Abschreckungsexperimente in Quarzglas-und in unter Druck kollabierenden Goldampullen, sowie durch eine Reihe von Verwitterungsversuchen und Umsetzungen in wässrigen Lösungen untersucht. Die im System auftretenden Verbindungen sind Cu2S (Kupferglanz), Cu1.97S (Djurleit), Cu1.75S (Anilit), Cu1+xS (blaubleibender Covellin), CuS (Covellin) und oberhalb 70°C Cu1.8S (Digenit), sowie WS2 (Tungstenit). Es gibt keine ternären Verbindungen. Von allen genannten Phasen ist nur der Tungstenit über den gesamten untersuchten Temperaturbereich stabil. Das System zeigt bei 900 °C neben Schwefelschmelze (L1) eine Sulfidschmelze (L2). Es handelt sich um das oberhalb 813 °C auftretende Monotektikum im Randsystem Cu-S, welches im ternären System 0.5 Gew.-% WS2löst. Die Phase WS2 koexistiert bei 900 °C mit L1, L2 und mit der bei dieser Temperatur lückenlosen Kupferglanz-Digenit-Mischkristallreihe sowie mit W. Außerdem besteht eine Konode zwischen W und Cu2S. Das gegenseitige Lösungsvermögen der Verbindungen ist selbst bei 900 °C gering. Während Digenit 0.5 Gew.-% WS2 in fester Lösung aufzunehmen vermag, beträgt umgekehrt die Löslichkeit von Kupfersulfid in WS20.2%. Die Phasenbeziehungen unter 900 °C sind charakterisiert durch das Stabilwerden des Covellins bei 507 °C. Kurz unterhalb dieser Temperatur werden WS2 und CuS nebeneinander stabil. Die Mischungsreihe zwischen Digenit und Kupferglanz ist unterhalb 430 °C nicht mehr lückenlos. Das System Cu-W-S zeigt daher bei 400 °C Konoden von WS2 zu Covellin, Digenit und Kupferglanz. Unterhalb 70 °C zerfällt der mit Tungstenit koexistierende Digenit zu Anilit und Djurleit. Bei künstlicher Verwitterung von Kupferglanz oder Digenit mit WS2-Einschlüssen konnten durch teilweise Oxidation mit verdünnter Fe-Sulfat- oder Cu-Sulfatlösung die Kupfersulfide in blaubleibenden Covellin überführt werden, während Tungstenit unter gleichen Bedingungen den Agenzien widerstand, wodurch sich die Koexistenz zwischen Cu1+xS und WS2 nachweisen ließ. Die bei niedrigen Temperaturen mit Tungstenit im Cu-W-S-System koexistierenden Phasen sind: Kupferglanz, Djurleit, Anilit, blaubleibender und normaler Covellin; bei Spuren von im Digenitgitter gelösten Fe tritt Anilit nicht auf, statt dessen ist Digenit mit Tungstenit stabil. Ein neues natürliches Tungstenitvorkommen (Kipushi/Katanga) wird beschrieben, das Mineral ist orientiert in massivem Kupferglanz eingewachsen (Abb. 4 und 5).
The phase relations in the Cu-W-S-system were investigated at various temperatures ranging from almost room temperature up to 900 °C. The experiments were performed in evacuated silica glass tubes with a minimum vapor space. At low temperatures alteration experiments were carried out in water solutions containing copper(II)-sulfate or iron(III)-sulfate. No ternary phase exists in the system. At 900 °C Cu2S and W are coexisting phases. Tie lines connect WS2 with the digenite-chalcocite solid solution and with a sulfuric liquid containing 0.5 wt.-% WS2. Below 813 °C the sulfuric liquid disappears in the Cu-S system (monotectic). On continuous cooling CuS will appear at 507 °C in the Cu-S system and shortly below this temperature covellite coexists with tungstenite. At temperatures below 70 °C tungstenite can coexist with covellite, blaubleibender covellite, anilite, djurleite, and with chalcocite in the pure system. If traces of iron are present anilite will not be formed and digenite remains stable with tungstenite. A new occurrence of tungstenite was observed from the Kipushi mine (Katanga), displaying excellent intergrowth with chalcocite (fig. 4 and 5).
  相似文献   

2.
Phase relations in the Ag-Fe-S system were determined from 700 to 150 °C by quench experiments with the use of evacuated, sealed, silica tubes as reaction vessels; these data were then used to interpret various aspects of natural occurrences of Ag-Fe-S minerals (e.g. argentiferous pyrite). The assemblages Ag2S+Fe1–x S and Ag2S+FeS2 become stable, with decreasing temperature, at 622±2 ° and 607±2 °C, respectively; their establishments involve ternary invariant conditions. The three condensed phases Ag2S+Fe1–x S+FeS2 become stable together at 532±2 °C through a ternary eutectic reaction near Ag2S in composition. An invariant reaction at 248±8 °C results in the formation of the Ag+FeS2 pair from the Ag2S+Fe7S8 assemblage, which is stable at higher temperatures. The associations of native silver and pyrite are found in certain massive sulfide deposits, whereas natural coexistence of argentite and pyrrhotite has not been documented. Experiments demonstrate the feasibility of retrograde reequilibration in ores to produce the silver+pyrite pair from argentite+pyrrhotite. Less than 0.05 and 0.1 at. % Ag are soluble in FeS2 and Fe1–x S, respectively, at 600 °C and less than 0.8 at. % Fe in Ag2S at 500 °C. Silver does not measurably affect the d 10.2 values of Fe1–x S or the cell dimension of FeS2 (a 25 °C=5.4175±0.0001 Å). This study also demonstrates that at low temperatures the binary fugacity data are applicable to ternary assemblages of the Ag-Fe-S system because of these very limited solubilities. The presence of Fe lowers the fcc bcc inversion temperature of Ag2S more than 50 °C; the exact amount of lowering is dependent on the associated Ag-Fe-S phases. The bcc mono. inversion temperature, however, is not measurably affected. No ternary solid phases were encountered above 150 °C. Heating of sternbergite and argentopyrite (both AgFe2S3) mineral samples shows instability at 152 °C (e.g. partial breakdown of sternbergite in 405 days); rate studies show that a 10 °C temperature increase results in approximately a 5-fold increase in breakdown rate.
Zusammenfassung Für die Interpretation von natürlichen Ag-Fe-S-Mineralen (z. B. silberhaltiger Pyrit) werden die Phasenbeziehungen im System Ag-Fe-S durch quenching Experimente bei Temperaturen von 700 ° bis 150 °C untersucht. Evakuierte und zugeschmolzene Quarzglasröhren dienen dabei als Reaktionsgefäße. Die Phasenassoziationen Ag2S+Fe1–x S (Argentit+Magnetkies) und Ag2S+FeS2 (Argentit+Pyrit) werden mit fallender Temperatur bei 622±2 °C und 607±2 °C stabil. Ihre Bildung ist nur unter ternären, invarianten Bedingungen möglich. Bei 532±2 °C bilden sich durch eutektische Reaktion (nahe der Ag2S-Zusammensetzung) als stabile Phasen Ag2S+Fe1–x S+FeS2. Bei 248±8 °C reagieren Ag2S+Fe7S8, die zwischen Temperaturen von 292 °C bis 248 °C stabil sind, zu Ag+FeS2. Paragenesen von gediegen Silber+Pyrit kommen in einigen massiven Sulfidlagerstätten vor; die Paragenese Argentit+Magnetkies ist dagegen noch nicht beobachtet worden. Die bisherigen experimentellen Ergebnisse machen eine retrograde Wiedereinstellung des Gleichgewichtes von gediegen Silber+Pyrit aus Argentit+Magnetkies wahrscheinlich. Bei 600 °C sind <0,05% bzw. 0,1% Ag in FeS2 und Fe1–x S löslich. Bei 500 °C lösen sich <0,8% Fe in Ag2S. Die Zellkonstanten von Magnetkies (gemessen als d 10,2) und von Pyrit (a 25 °C=5,4175±0,0001 Å) werden durch die Aufnahme von Ag nicht meßbar beeinflußt. Die vorliegenden Ergebnisse zeigen, daß die Fugazitäten bei niederen Temperaturen entlang den binären Schnitten Fe-S und Ag-S auch auf das ternäre System Ag-Fe-S angewendet werden können, weil nur sehr beschränkte Mischbarkeiten existieren. Die Gegenwart von Fe erniedrigt die Inversions-temperatur fcc bcc für Ag2S um mehr als 50 °C. Die genaue Inversions-temperatur wird durch die assozierten Ag-Fe-S Phasen festgelegt. Die bcc mono. Inversionstemperatur wird dagegen nicht meßbar beeinflußt. Oberhalb 150 °C werden keine ternären Phasen beobachtet. Sternbergit und Argentopyrit (beides AgFe2S3-Minerale) werden oberhalb 152 °C instabil (z. B. bricht Sternbergit teilweise nach 405 Tagen zusammen). Eine Temperaturerhöhung um ca. 10 °C erhöht die Zerfallsrate um ein Fünffaches.
  相似文献   

3.
Summary The gold-copper deposit at Waschgang (Southern Goldberg mountains, Upper Carinthia) belongs to a type of stratiform, dominantly pyritic deposit, which is hosted by greenschists (Alpine Kieslager;Friedrich, 1936). The ores occur as impregnations (ore type 1) and as massive ores (ore type 2) in prasinitic rocks of the Obere Schieferhülle of the Penninic unit. A N–S trending fault zone cuts the ore deposit to the W (Lettenkluft); the position of the displaced part is unknown.The mineralogical composition of type 1 ores is rather monotonous. Pyrite is the most important ore, minor components are chalcopyrite, bornite, sphalerite and magnetite. No visible native gold has been observed in this type of ore. Type 2 ores are dominated by chalcopyrite and are characterized by large amounts of visible native gold. The majority of these ores occur in the vicinity of the Lettenkluft.Type 2 ores carry a great variety of cogenetic mineral inclusions, of which several have been studied with the electron microprobe and investigated by X-ray methods. These include: tetradymite, Bi2Te1.81Se0.13S; hessite, Ag2Te; matildite, AgBiS2; gladite, Cu1.09Pb1.14Bi5.28S9; krupkaite, CuPbBiS6; pekoite, Cu1.09Pb0.97Bi12.56S18; (?) benjaminite, (Ag2.72Cu0.42)3.14 (Bi6.88Pb0.12)7(S11.08Se0.92)12; pavonite, (Ag0.74Cu0.45)1.19(Bi2.86Pb0.27)3.13 (S4.96Se0.04)5; (?) cupropavonite, (Cu0.73Ag0.4)1.13(Bi2.59Pb0.83)3.42S5; and siegenite, (Ni1.07Co1.76Cu0.19)3.02S4. Other components have been determined by qualitative and quantitative microscopy and include: bornite, idaite, mawsonite, sphalerite, millerite, magnetite, hematite, ilmenite, rutile and a variety of silicates.While the layered ore impregnations (type 1 ores) can be considered as being syngenetic with the associated volcanics of Jurassic age, a syn- to postkinematic (Alpidic) crystallization can be postulated for the type 2 ores. These ores are considered as remobilized and reconcentrated parts of the type 1 ores formed in tectonic stress zones. The crystallization of chalcopyrite and included ore minerals occurred during the cooling history of Alpidic metamorphism, for which in this region a maximum temperature of 500°C and pressures between 4–6 kb have been deduced from the mineral assemblage of the surrounding prasinites, consisting of albite with rims of oligoclase, epidote, chlorite, sphene and amphibole (Höck, 1980). Based onSpringer's limit of 300°C as approximately representing the maximum temperature at which natural members of the bismuthinite-aikinite mineral series have been formed, krupkaite and gladite with the intergrown pavonite type phases might have been deposited directly from solutions at or below 300°C. Unmixing of pekoite from gladite probably occurred at or below the same temperature.
Zur Erzmineralogie der Gold-Kupfer-Lagerstätte Waschgang, Oberkärnten, Österreich
Zusammenfassung Die Gold-Kupfer-Lagerstätte Waschgang (südliche Goldberggruppe, Oberkärnten) ist dem Typus der stratiformen Kiesvererzungen in Grüngesteinen (Alpine Kieslager;Friedrich, 1936) zuzurechnen. Die Erzmineralisationen treten als stoffkonkordante Imprägnationen (Vererzungstypus 1) und als Derberze (Vererzungstypus 2) in Prasiniten der Oberen Schieferhülle des Penninikums auf. Das Erzlager wird im W an einer N–S streichenden Störung abgeschnitten; die Position des verworfenen W-Flügels ist nicht bekannt.Die Imprägnationserze sind in ihrer mineralogischen Zusammensetzung monoton; Pyrit als Haupterz überwiegt bei weitem die sporadischen Begleiter Kupferkies, Bornit, Sphalerit und Magnetit. Dieser Typus führt kein Freigold.Die von Kupferkies dominierten und an Freigold reichen Derberze treten vor allem im Bereich der Lettenkluft auf. Sie sind durch eine Vielfalt zum Teil komplex zusammengesetzter Einschlußminerale gekennzeichnet, von denen einige mittels Mikrosonde und röntgenographischer Methoden untersucht wurden: Tetradymit, Bi2Te1,81Se0,13S; Hessit, Ag2Te; Matildit, AgBiS2; Gladit, Cu1,09Pb1,14Bi5,28S9; Krupkait, CuPbBiS6; Pekoit, Cu1,09Pb0,97Bi12,56S18; (?) Benjaminit (Ag2,72Cu0,42)3,14(Bi6,88Pb0,12)7(S11,08Se0,92)12; Pavonit, (Ag0,74Cu0,45)1,19(Bi2,86Pb0,27)3,13 (S4,96Se0,04)5; (?) Cupropavonit, (Cu0,73Ag0,4)1,13(Bi2,59Pb0,83)3,42S5; Siegenit, (Ni1,07Co1,76 Cu0,19)3,02S4. Andere Mineralphasen wurden mittels qualitativer und quantitativer Mikroskopie bestimmt: Bornit, Idait, Mawsonit, Sphalerit, Millerit, Magnetit, Hämatit, Ilmenit, Rutil und Silikate.Während die stoffkonkordaten Imprägnationserze syngenetisch mit den assoziierten jurassischen Vulkaniten anzusehen sind, wird für die Derberze eine syn- bis postkinematische Kristallisation angenommen. Sie sind als remobilisierte und rekonzentrierte Teile der Imprägnationserze in tektonisch besonders beanspruchten Lagerstättenteilen anzusehen. Die Kristallisation des Kupferkieses und seiner Einschlußminerale erfolgte während der Abkühlungsphase der alpidischen Metamorphose, für die im betrachteten Gebiet eine Maximaltemperatur von ca. 500°C und Drucke zwischen 4–6 kb aufgrund der Petrologie der erzführenden Prasinite angenommen werden können. Die dafür maßgebende Paragenese besteht aus Albit mit Oligoklasrändern, Epidot, Chlorit, Sphen und Amphibol (Höck, 1980). Zieht man die vonSpringer (1971) ermittelte Stabilitätsgrenze von ±300°C für natürliche Mischkristalle der Bismuthinit-Aikinit-Reihe in Betracht, können für Krupkait und Gladit und den damit verwachsenen Pavonit-Phasen Bildungstemperaturen um oder unterhalb 300°C angenommen werden. Die Kristallisation dieser Minerale dürfte dabei direkt aus Lösungen erfolgt sein. Die als Entmischungsstrukturen interpretierten Gladit-Pekoit-Verwachsungen legen den Schluß einer primären Bildung beider Minerale als feste Lösung nahe, deren Zerfall vermutlich unterhalb von 300°C erfolgte.


With 13 Figures

Herrn em. Univ.-Prof. Dr.-Ing. O. M. Friedrich zum 80. Geburtstag in Dankbarkeit gewidmet

This investigation forms part 2 of a major study on Genetic Types of Gold Deposits of the Alps.  相似文献   

4.
Summary The Ulten Zone of the Austroalpine crystalline basement south-west of Meran (Italy) contains metapelitic schists and granoblastic paragneisses, leucocratic orthogneisses, migmatites (in both gneiss-lithologies), metabasites and ultramafic lenses. Metamorphic textures of the metapelitic schists and granoblastic paragneisses indicate two different metamorphic events, characterized by two mineral assemblages, which differ in mineral chemistry: (1) an eclogite facies mineral assemblage (M1) comprising Grt-Ky I-Bt. Ms-Kfs-PI-Qtz-Rt, and (2) an amphibolite facies mineral assemblage (M2) comprising Grt-KyII-Bt-Ms-PI-Qtz-Ilm±St. For the M1 event, pressures of at least 15kbar and temperatures of about 700°±50°C can be estimated. The later amphibolite facies overprint occurred at pressures of 6 to 8kbar and about 600°±50°C. The M1 and M2 assemblages belong to a continuous clockwise metamorphic evolution during the Variscan orogeny. Evidence for Alpine metamorphism can only be detected by sericite rims around kyanite and reset biotite ages. The migmatites, which contribute about 15–30vol.% of all rocks in the investigated area, were formed on the prograde path during the M1 event. Dissolution of H2O in the melted part of the migmatites resulted in a CO2dominated fluid, which was trapped in primary kyanite (M1) fluid inclusions. Secondary H2O-rich fluid inclusions are found in quartz grains and may represent the fluid which enabled a pervasive equilibration during M2.
Übergang von eklogit-zu amphibolitfazieller Matamorphose in der austroalpinen Ultenzone
Zusammenfassung Die Ulten Zone, ein Teil des ostalpinen kristallinen basements, südwestlich von Meran, wird aus Metapeliten and granoblastischen Paragneisen, leukokraten Orthogneisen, Migmatiten (in beiden Lithologien), Metabasiten and ultramafischen Linsen aufgebaut. Metamorphe Texturen der Metapelite und granoblastischen Paragneise lassen auf zwei verschiedene metamorphe Ereignisse schließen, die durch unterschiedliche Mineral-chemismen und Paragenesen charakterisiert sind: (1) eine eklogitfazielle Paragenese (M1), bestehend aus Grt-KyI-Bt-Ms-Kfs-P1-Qtz-Rt und (2) eine amphibolitfazielle Paragenese (M2), bestehend aus Grt-KyII-Bt-Ms-P1-Qtz-Ilm±St. Für M1 konnten Minimaldrucke von 15kbar und Temperaturen von 700°±50°C abgeleitet werden. Die spätere amphibolitfazielle Überprägung fand bei 6 bis 8kbar und 600°±50°C statt. M1 und M2 gehören einer kontinuierlichen Metamorphoseentwicklung während der variszischen Orogenese an.Die Migmatite, ungefähr 15–30vol.% der Gesteine im untersuchten Gebiet, wurden am prograden Pfad während des M1 Ereignisses gebildet. Aufgrund der höheren Löslichkeit von H20 in der Schmelze, blieb ein CO2, reiches Fluid zurück, das im primären Kyanit (M1) eingeschlossen wurde. Wässrige Flüssigkeitseinschlüsse können in Quarzkörnern gefunden werden. Dieses Fluid ist wahrscheinlich für die Reequilibrierung zu amphibolitfaziellen Bedingungen verantwortlich.


With 5 Figures  相似文献   

5.
Summary Pb–Bi–(Cu)-sulfosalts occur as minor minerals widely distributed in rocks of the Penninic unit (gneisses, schists, metavolcanics, etc.), Oberpinzgau, Salzburg. The sulfosalts have been investigated by ore microscopy, X-ray diffraction and electron microprobe analysis. The phases identified are: heyrovskyite, cosalite (Moaralm, Sedl, and Wiesbachrinne in the Habach Valley), lillianite (Moaralm, Sedl; Modereck near the Fuscher Valley), galenobismutite (Bärenbad in the Hollersbach Valley) and Bi-bearing galena. Heyrovskyite (Moaralm) has a composition close to Pb6Bi2S9, with Ag contents between 0.2 (Sedl) and 0.6 (Moaralm) wt.%. Lillianite has the composition Pb2.86–2.91 Bi2.08–2.17Ag0.04–0.08 S6, and cosalite, Pb1.81–2.04 Bi1.92–2.02 Ag0.02–0.06 Cu0.11–0.18S5. The average chemical composition of galenobismutite is Pb1.25Bi1.6Sb0.1Cu0.1Ag0.02Fe0.1S4. Needle-like inclusions of a joseite-type mineral, joseite-A (Bi,Pb)4.01 Te0.9S2.08, and irregular to needle-like grains of native bismuth usually occur along the elongation direction of the lath-like galenobismutite crystals.The occurrences can be divided into two types: 1) stratiform Pb–Bi sulfosalts which occur only in the quartzite intercalations of the Paleozoic Habach unit (Frasl, 1958), and 2) alpidic vein type Pb–Bi sulfosalts which occur in quartz veins intersecting gneisses and are considered to be the remobilization products of the first type. Temperature of formation for heyrovskyite in this region is estimated at between 400±25°C and 500°C. Most probably, the assemblage heyrovskyite-lillianite-galena (Moaralm) was formed at or below 473°C.
Pb–Bi–(Cu)-Sulfosalze in paläozoischen Gesteinen des Oberpinzgau, Salzburg, Österreich
Zusammenfassung Pb–Bi-Sulfosalze verschiedener Vorkommen des Oberpinzgau, Salzburg, wurden mittels Erzmikroskopie, röntgenographischer Methoden und Mikrosonde untersucht. Folgende Phasen wurden identifiziert: Heyrovskyit, Cosalit (Moaralm, Sedl und Wiesbachrinne; alle Habachtal), Lillianit (Moaralm, Sedl; Modereck nahe des Fuschertales), Galenobismutit (Bärenbad, Hollersbachtal) und Bi-hältiger Bleiglanz. Heyrovskyit (Moaralm) ist nahezu Pb6Bi2S9, mit Ag-Gehalten zwischen 0,2 (Sedl) und 0.6 (Moaralm) Gew.%, Lillianit Pb2,86–2,91Bi2,08–2,17Ag0,04–0,08S6, und Cosalit Pb1,81–2,04Bi1,92–2,02Ag0,02–0,06 Cu0,11–0,18S5. Galenobismutit ist Pb1,25Bi1,6Sb0,1Cu0,1Ag0,02Fe0,1S4. Nadelige Einschlüsse von Joseit-A, (Bi, Pb)4,01Te0,9S2,08, und unregelmäßige bis nadelige Körner von ged. Wismut treten entlang der Längsrichtung der Galenobismutit-Kristalle auf. Die Mineralisationen sind an stratiforme, sulfidreiche Quarzlagen (Typus 1, z. B. Bärenbad) oder an diskordante Quarzgänge (Typus 2; alle anderen Vorkommen) gebunden. Typus 1 tritt innerhalb der altpaläzozischen Habachserie (Frasl, 1958), Typus 2 in Randbereichen dieser zu den Gneismassen der Habachzunge (z. T. auch in letzteren) auf. Die dem Typus 2 zugerechneten Vererzungen werden als Remobilisationsprodukte der altpaläozoischen Mineralisationen (Typus 1) angesehen.Die Bildungstemperatur des Heyrovskyit dürfte im betrachteten Bereich zwischen 400±25°C und 500°C gelegen haben; eine Bildungstemperatur von 473°C oder wening darunter wird für die Assoziation Heyrovskyit-Lillianit-Bleiglanz in Anlehnung an experimentelle Untersuchungen vonSalanci undMoh (1969) angenommen.


With 4 Figures

This investigation forms part of a wider study Genetic types of gold deposits in the Alps.  相似文献   

6.
The phase relations in the Cu-Zn-S system were studied at temperatures ranging from 100 ° to 1050 °C with emphasis on the 500 ° and 800 °C isotherms. All experiments were performed in closed, evacuated silica tubes in which vapor always is a phase. Ternary phases did not appear in any of these experiments. At 800 °C tie-lines exist between cubic ZnS (sphalerite) and the digenite-chalcoite solid solution, between ZnS and three CuZn alloys (, , ) and between ZnS and ZnCu liquid containing from zero to about 30 wt % Cu. Only the cubic, sphalerite, form of ZnS was encountered in the present study. At 800 °C the solid solution of ZnS in Cu2S is 7.0 ± 1 wt % and the solid solution of Cu2S in ZnS is less than 1.0 wt %. At lower temperatures ZnS coexists with all other phases once they become stable, i.e., -CuZn (<598 °C), CuS (<507 °C), and blue-remaining covellite (<157 °C). At 500 °C the solid solution of ZnS in Cu2S is 1.5±0.5 wt % and that of Cu2S in ZnS is less than 0.1 wt %. The presence of ZnS depresses the temperature of the hexagonal cubic inversion in Cu2S by about 13 °C, but does not measurably affect the temperature of the monoclinic hexagonal inversion in Cu2S nor that of the cubic cubic inversion in Cu9S5. The coexistence in nature of sphalerite and copper-sulfides is discussed in light of the low temperature phase relations in the Cu-Zn-S system.
Zusammenfassung Die Phasengleichgewichtsredaktionen des Dreistoffsystems Cu-Zn-S wurden über einen weiten Temperaturbereich, nämlich von 100 °C bis zu 1050 °C und dabei besonders nachdrücklich die 500 ° und 800 °C-Isothermen, untersucht. Alle Experimente wurden in abgeschmolzenen und vorher evakuierten Quarzglasampullen durchgeführt, in welchen eine Dampfphase (vapor) stets gegenwärtig war. In keinem der Experimente war das Vorhandensein einer ternären Phase zu verzeichnen. Bei 800 °C verlaufen Konodenscharen vom kubischen ZnS (Zinkblende) zur Digenit-Kupferglanz-Mischkristallreihe, ferner Konoden zwischen ZnS und drei Cu-Zu-Legierungen (, , ) und zwischen ZnS und einer Zn-Cu-Schmelze von 0 bis ca. 30 Gew.-% Cu. In der hier vorliegenden Arbeit trat nur kubisches ZnS (Zinkblende) auf. Cu2S vermag bei 800 °C 7,0±1 Gew.-% ZnS in fester Lösung aufzunehmen, während die Löslichkeit von Cu2S in ZnS weniger als 1,0 Gew.-% beträgt. Mit zunehmender Temperaturerniedrigung koexistiert ZnS mit allen übrigen Phasen des Systems, sobald diese stabil werden, z. B. -CuZn (<598 °C), CuS (<507 °C) und blaubleibender Covellin (<157 °C). Bei 500 °C beträgt die Löslichkeit von ZnS in Cu2S nur noch 1,5±0,5 Gew.-% und die von Cu2S in ZnS weinger als 0,1 Gew.-%. Die Gegenwart von ZnS erniedright die Inversionstemperatur von hexagonalem kubischen Cu2S um etwa 13 °C, hat aber weder einen meßbaren Einfluß auf die Inversionstemperatur des monoklinen hexagonalen Cu2S noch auf die kubisch kubische Inversion des Cu9S5. Angeischts der im Cu-Zn-S-System ermittelten Phasenbeziehungen bei niedrigen Temperaturen werden die Koexistenz natürlicher Zinkblende mit Kupfersulfiden diskutiert.
  相似文献   

7.
The system Ag-Sb-S was studied between 600°C and 200°C in evacuated silica glass tubes. Results from lower temperature runs require shifts in the stable tie-line configuration found by Barstad at 400°C. It is proposed that the configuration changes near 300°C, and that at 200°C the equilibrium assemblages correspond to those usually reported for minerals in ores. Most of the minerals of the system were synthesized. In addition, the synthetic phase Ag7SbS6 (antimony analogue of the arsenic mineral billingsleyite) is characterized, and the ease of its synthesis in the composition area bounded by argentite-pyrargyrite-sulfur suggests the probable existence of a mineral of this composition. The relatively common mineral stephanite (Ag5SbS4) was not formed as a synthetic product in the temperature range of this study. Combined DTA and X-ray data show that at 197±5°C stephanite decomposes in the absence of sulfur to form pyrargyrite plus argentite, whereas with excess sulfur the products are Sb-billingsleyite plus pyrargyrite. Pyrostilpnite (Ag3SbS3), the low temperature dimorph of pyrargyrite, is unstable above 192±5°C.
Das ternäre System Silber-Antimon-Schwefel wurde zwischen 600° und 200°C untersucht und versucht, die Gleichgewichtszustände aller stabilen Phasen zu analogen natürlichen Mineralien in Beziehung zu setzen. Neben den Elementen wurden an binären Phasen Allargentum, Dyskrasit, Antimonit, Argentit bzw. Akanthit gefunden oder bestätigt. Auf dem pseudo-binären Schnitt Ag2S-Sb2S3 liegen Pyrargyrit und Miargyrit, während eine als Mineral unbekannte ternäre Phase Ag7SbS6 (entsprechend dem natürlichen As-Analogon Billingsleyit) nur bei höherem Schwefelangebot beständig ist. Hier nicht synthetisch dargestellte Silber-Antimon-Sulfosalze liegen vermutlich unterhalb der 200°C-Grenze. So ließ sich mittels Differential-Thermo-Analyse und röntgenographischer Bestimmungsmethoden der inkongruente Zerfall von Stephanit in Argentit und Pyrargyrit bei 197±5°C bestimmen. Pyrostilpnit (Ag3SbS3) ist nur unterhalb 192±5°C beständig.
  相似文献   

8.
Summary The experimental determination of phase relations in the pseudoternary system Tl2 S-As2S3-Sb2S3 below 200°C is practically impossible, especially so under dry condensed conditions. As thallium sulfosalts are naturally formed at low temperatures equilibrium phase assemblages at 100 and 200°C were calculated by application of thermochemical approximations for the free enthalpies of formation of the sulfosalts. A comparison of the calculated conode configurations with the results of syntheses under dry condensed conditions at 200°C yielded good agreement between experiment and calculations.
Minerale und Phasenbeziehungen im pseudoternären System Tl2S-As2S3-Sb2S3 bei tiefen Temperaturen
Zusammenfassung Die Ableitung der Phasenbeziehungen im pseudoternären System Tl2S-As2S3-Sb2S3 für Temperaturen unterhalb 200°C, insbesondere unter trockenen Bedingungen, ist auf experimentellem Weg praktisch nicht möglich. Da die Thalliumsulfosalze als tieftemperierte Mineralbildungen anzusehen sind, wurden die stabilen Gleichgewichtsassoziationen bei 100 und 200°C unter Verwendung thermodynamischer Näherungen für die freie Bildungsenthalpie der Sulfosalze berechnet. Ein Vergleich der berechneten Konodenverläufe mit den Ergebnissen von Versuchen unter trocken kondensierten Bedingungen bei 200°C ergab gute Übereinstimmung zwischen Experiment und Berechnung.


With 1 Figure  相似文献   

9.
Summary Three stabilization phenomena, 1: special e.g. hydrothermal conditions, 2: stabilization by replacements of ions, as e.g. Cu and Fe and 3: heterogeneous nucleation as, e.g., by epitaxy are tested for phases in the system Cu2S-CuS2-Bi2S3-FeS-FeS2. Hydrothermal solution and precipitation conditions can metastabilize or stabilize phases, which are not existent under dry conditions as Cu4Bi5S10 or CuS2-FeS2 mixed crystals, but are stable at high pressures. Stabilization by Cu-Fe substitution leads to the assumption that stabilization basically depends on the ionic radii similarity, but necessarily electronic interactions have to be involved. Stabilization by heterogeneous nucleation is tested for Pb-Bi sulfosalts, e.g. for the epitaxial growth of Bi2S3 on NaCl. In contrast to the normal orthorhombic Bi2S3, the epitaxial Bi2S3 shows a pseudotetragonal subcell correlated to NaCl. Satellite reflections indicate a modulation probably caused by a modulation of the metal vacancies.
Stabilisterung von Cu-Fe-Bi-Pb-Sn-Sulfiden
Zusammenfassung Im System Cu2S-CuS2-Bi2S3-FeS-FeS2 werden drei Stabilisierungsphänomene 1: spezielle Stabilisierungsbedingungen z. B. in hydrothermalen Lösungen, 2: Stabilisierungen durch Elemente- bzw. Ionenersatz am Beispiel von Cu und Fe und 3: heterogene Keimbildung anhand von Epitaxieversuchen verifiziert.Hydrothermale Ausscheidungsbedingungen können metastabile oder stabile Phasen bedingen, die z. B. unter trockenen Bedingungen nicht oder nur bei hohen Drucken stabil sind. Dies gilt z. B. für den Cu-Fe-Ersatz in Cu4Bi5S10 bzw. für CUS2-FeS2 Mischkristalle. Die Stabilisierung durch Cu-Fe-Substitution führt zu der Annahme, daß hierfür als notwendige Voraussetzung die Ähnlichkeit der Ionenradien gilt, jedoch als hinreichende Bedingung die elektronische Wechselwirkung zwischen den sich ersetzenden Ionen anzusehen ist.Die Stabilisierung durch heterogene Keimbildung wird für Pb-Bi-Sulfosalze am Beispiel der Epitaxie von Bi2S3 auf NaCI getestet. Im Gegensatz zum normalen orthorhombischen Bi2S3 zeigt die epitaktische Phase eine mit NaCl korrelierte tetragonale Subzelle. Satellitenreflexe deuten auf eine Modulation der Leerstellen der Metallionen hin.


With 10 Figures

Contribution to the Ore Mineralogy Symposium (IMA/COM) at the 14th General Meeting of the International Mineralogical Association, at Stanford, California, in July, 1986.  相似文献   

10.
Summary Experimental investigations on the Cu-Fe-substitution and the formation of a solid solution series in the system CuS2-FeS2 were carried out under hydrothermal conditions up to 350°C and 3 kb and by means of a piston cylinder apparatus at higher temperatures and pressures up to 900°C and 45 kb. Under dry conditions at 440°C and above 17 kb the system was found to be binary with a miscibility gap between an iron-rich phase near the FeS2 end-member and a coexisting copper-rich phase being the solvus composition of a homogeneity region from 75 to 100 mole% CuS2. This solvus of the copper rich phase was found to be almost independent of temperature and pressure up to 45 kb and 700°C. The solubility of CuS2 in FeS2 at 45 kb increases from 0.6 mole% at 700°C to 4.5 mole% at 900°C. Under hydrothermal conditions up to 3 kbars the solvus of metastable (Cu, Fe)S2 is strongly dependent on pressure only in the Cu-rich part of the system.
Zusammenfassung Stabilität der CuS2-FeS2 Mischreihe des Pyrit-Typs Experimentelle Untersuchungen zur Cu-Fe-Substitution und zur Bildung einer festen Lösung im System CuS2-FeS2 wurden mit der Hydrothermalsynthese bis 350°C und 3 kb und mit der Stempelzylindermethode bis 900°C und 45 kb durchgeführt. Unter trockenen Bedingungen bei 440°C und oberhalb 17 kb ist dieses System binär und weist eine Mischungslücke zwischen einer eisenreichen Phase nahe dem FeS2 Endglied und einer koexistierenden kupferreichen Phase mit der Solvuszusammensetzung eines Homogenitätsbereiches zwischen 75 und 100 mol% CuS2 auf. Dieser Solvus der kupferreichen Phase wurde bis 45 kb und 700°C nahezu druck- und temperaturunabhängig gefunden. Demgegenüber nimmt die Löslichkeit von CuS2 in FeS2 bei 45 kb von 0.6 mol% bei 700°C auf 4.5 mol% bei 900°C zu. Der Solvus der metastabilen (Cu, Fe)S2-Phasen, die bislang nur unter hydrothermalen Bedingungen synthetisiert werden können, zeigte bis 3 kbar nur im kupferreichen Teil des Systems eine starke Druckabhängigkeit.


With 4 Figures  相似文献   

11.
Zusammenfassung Die Alunitisierung von natürlichem Leucit, Nephelin, Sodalith, Kalifeldspat, Oligoklas, Sericit sowie Basaltglas, Trachyandesit, Nephelinbasanit und Nephelinit wurde experimentell im Temperaturbereich zwischen 90° C und 180° C bei verschiedenen H2SO4-Konzentrationen untersucht. Je nach Ausgangssubstanz wurden Alunit, Natroalunit, Jarosit oder Mischkristalle zwischen diesen Endgliedern der Alunitreihe gebildet. Das bei diesen Reaktionen freiwerdende SiO2 bildet ein röntgenamorphes Gel, alle anderen nicht in den Alunitmineralien gebundenen Komponenten gehen in Sulfate über.Die Alunitisierung erfolgt nur in einem bestimmten Konzentrationsbereich, dessen unterste Grenze unabhängig von der Temperatur ist und für alle Ausgangssubstanzen bei einer Normalität der zugegebenen H2SO4-Lösung 0,1–0,2 liegt. Die obere Grenzkonzentration ist temperaturabhängig und liegt für die Alunitbildung bei einer Normalität 0,7 bei 90° C und 1,3 bei 180° C, für die Natroalunitbildung bei etwas (ca. 0,2) tieferen Werten. Oberhalb dieses Konzentrationsbereiches reagieren die Mineralien und Gesteine zu einer röntgenamorphen gelartigen Masse, unterhalb des Bereiches bleibt die Ausgangssubstanz unverändert.In den Versuchen mit Gesteinen als Ausgangssubstanz wird bei tieferen Temperaturen bevorzugt Jarosit und bei höheren Temperaturen bevorzugt Alunit gebildet. Im mittleren Temperaturbereich tritt Jarosit bei höheren und Alunit bei tieferen Säurekonzentrationen auf.Im Temperaturbereich von 90° C bis 180° C findet innerhalb von einigen Wochen bei den meisten Ausgangssubstanzen ein vollständiger Reaktionsumsatz statt. Dennoch ist die Reaktionsgeschwindigkeit bei gleichem Körnungsgrad unterschiedlich: Am schnellsten reagiert der Sodalith, während die Feldspäte besonders reaktionsträge sind. Für die untersuchten Mineralien gilt folgende Reihenfolge: Sodalith — Leucit — Nephelin — Sericit — Oligoklas — Kalifeldspat.Vergleiche der experimentellen Ergebnisse mit der natürlichen Alunitisierung ergaben gute Übereinstimmung.
The formation of alunite from natural leucite, nepheline, sodalite, potassium-feldspar, oligoclase and sericite as well as from basaltic-glass, trachyandesite, nephelinebasanite and nephelinite was experimentally investigated at different H2SO4-concentrations in the temperature range from 90° to 180° C. Depending on the starting material, alunite, natroalunite, jarosite or mixed crystals of the alunite solid solution series were formed. The SiO2 set free in these reactions, forms a gel amorphous to X-rays, while all other components which do not enter into the alunite minerals, yield sulfates.The formation of alunite occurs only within a distinct range of H2SO4-concentrations, the lower limit being independent of the temperature and of the starting material; this limit corresponds to a normality of the H2SO4-solution of 0,1–0,2. The upper limit of the H2SO4-concentration is depending on the temperature; at 90° C this limiting concentration lies at 0,7, at 180° C it is 1,3; for the formation of natroalunite, the upper limit lies at somewhat lower concentrations (0,2). If the concentration of H2SO4 exceeds the upper limit, the minerals and rocks react to X-ray amorphous, gel-like products, at concentrations below the lower limit, the starting material remains unchanged. In the experiments with rocks as starting material, jarosite is generally formed at lower temperatures, at higher temperatures alunite is predomin ant. At intermediate temperatures higher acid concentrations yield jarosite and lower concentrations alunite. In the temperature range of 90° to 180° C, the reactions of most starting materials are completed in a few weeks. Nevertheless, the reaction rate at equal grain size is dependent on the starting material: sodalite showed the highest reaction rate, while sluggish reactions were observed for the feldspars. The rate of reaction decreases from sodalite, leucite, nepheline, sericite, oligoelase to potassium feldspar. The experimental data agree closely to results obtained for the natural formation of alunite.


Herrn Professor Dr. H. Heritsch danke ich für sein dauerndes Interesse an dieser Arbeit, für Ratschläge und kritische Bemerkungen sowie dafür, daß die Experimente am Institut für Mineralogie und Petrographie der Universität Graz durchgeführt werden konnten. Herrn Professor Dr. C. W. Coerens danke ich für wertvolle Diskussionen sowie für die Möglichkeit, die experimentelle Technik kennenzulernen. Mein Dank gilt ferner Techn. Oberkontroll. J. Macher für technische Hilfen bei der Ausführung der Experimente.  相似文献   

12.
Als Ausgangsgestein des Villacher Granitgneises ist ein spätdifferenzierter, saurer Granit anzusehen, wofür folgende Argumente sprechen:
1.  Hohe Rb-Konzentration, kleines K/Rb-Verhältnis von 110, Rb/Sr-Verhältnis von 12.
2.  Hohe F-Konzentration (1680–2700 ppm) und Ausbildung von Flußspat.
3.  Auftreten von Beryll.
Die Bildungsbedingungen sind wie folgt anzusetzen: die Kristallisation der ursprünglichen granitischen Schmelze erfolge bei einemp H 2 O zwischen 2 und 3 kb (Mindesttiefe der Granitgenese 7 bis 10,5 km). Unter Berücksichtigung des HF-Anteiles der Gasphase ist die Schmelztemperatur mit 620°C anzunehmen. Die Triklinitäten der Alkalifeldspäte (0,61–0,71) sind gering. Der Gesteinskomplex führt ursprünglichen Granat. Die Vergneisung des Granites führt zur Ausbildung von Phengiten, zur Umkristallisation der Plagioklase, zur Bildung von Fleckenperthit und Schachbrettalbit, zum Austausch des Rb zwischen den Alkalifeldspäten und den neu gesproßten Glimmem sowie zur Mobilisierung von F während der Metamorphose. Das Rb–Sr Gesamtgesteinsalter von 409±32 ma sowie das Glimmeralter von 84±3 ma (beide WerteE. Jäger, pers. Mitteilung) legen die Granitgenese als kaledonisch fest bzw. lassen die Metamorphose einer frühen Phase der alpinen Orogenese zuordnen. Die Vergneisung des Granites führte zu diaphthoritischen Erscheinungen in den umgebenden Granatglimmerschiefern. Die frühalpine Metamorphose läßt sich mit einer Temperatur von knapp über 400°C und einem Mindestdruck größer 4 kb abschätzen.  相似文献   

13.
Summary Bastnaesites of Ce and La and their OH-analogs were synthesized and their stability relations were determined atPf = 1 kbar andT = 400 to 900°C in a part of the system (Ce,La)-F-H-C-0. The initial fluid compositions were such that and HF/(HF + H2O) ratios were 0 to 0.172. XRD and IR studies indicate that bastnaesites equilibrated in initial fluids low in HF are all F-enriched. The hydroxylbastnaesite-(La) is stable up to 810°C and the fluorbastnaesite-(La) is stable up to 860°C. Their condensed breakdown products are La2O2CO3 and LaOF, respectively. The stability of Ce bastnaesites is slightly dependent. The hydroxylbastnaesite-(Ce) is stable up to 660°C at the defined by the IQF buffer and up to 640°C by the MH buffer. The fluorbastnaesite-(Ce) is stable up to 800°C at the defined by the IQF and up to 760°C by the MH buffer. The condensed breakdown product for the hydroxyl end-member is simply CeO2 but for the fluorine one is a combination of CeO2, CeF3, and CeOF. Factors, such as OH vs F, , and bulk composition, that affect the stability of individual species are discussed. Petrogenic implications resulting from the present study include that bastnaesites can be stable from hydrothermal to magmatic conditions, that F-enriched species can form in an environment relatively low in F content, and that OH-species are rare and occur only in low-temperature environments essentially devoid of F.
Synthese und Stabilität von Bastndsil in einem Teil des Systems (Ce,La)-F-H-C-O
Zusammenfassung Ce- und La-Bastnäsite, sowie deren OH-Analoga wurden synthetisiert und ihre Stabilitätsbeziehunger beiP f = 1 kbar undT = 400 bis 900°C wurden im System (Ce,La)F-H-C-O bestimmt. Die anfänglichen Flüssigkeitszusammensetzungen waren so, daß und die HF/(HF + H2O)-Verhältnisse 0–0.172 waren. Röntgenpulver- und Ultrarot-Untersuchungen zeigten, daß Bastnäsite, die mit anfänglich HF-armen Flüssigkeiten equilibriert wurden, alle an F angereichert sind. Hydroxilbastndsit-(La) ist bis 810°C und Fluorbastnäsit-(La) bis 860°C stabil. Ihre festen Zersetzungsprodukte sind La2O2O3, bzw. LaOF. Die Stabilität der Ce-Bastnäsite hängt etwas von ab. Hydroxilbastnäsit-(Ce) ist bei des Eisen-Quarz-Fayalit-Puffers bis 660°C stabil und mit Magnetit-Hämatit-Puffer bis 640°C. Das feste Zerfallsprodukt ist für das Hydroxil-Glied nur CeO2, für das Fluor-Glied eine Mischung aus CeO2, CeF3 und CeOF. Faktoren, welche die Stabilität der einzelnen Spezies beeinflussen, werden diskutiert, wie das Verhältnis OH zu F, und die Gesamtzusammensetzung. Petrogenetische Folgerungen aus der vorliegenden Studie schließen ein, daß Bastnäsite von hydrothermalen bis zu magmatischen Bedingungen stabil sein können, daß sich an F angereicherte Glieder in relativ F-armer Umgebung bilden können, und daß OH-Glieder selten sind und nur unter Bildungsbedingungen niedriger Temperatur und weitgehender Abwesenheit von F auftreten.


With 8 Figures  相似文献   

14.
Summary Polymetallic ore deposits of low temperature origin often contain thallium as a minor element. By means of modern analytical methods numerous new T1 minerals are described, but their coexistence and equilibria are not investigated yet.The equilibria at 200°C of the quasi-quaternary system Ag2S-Tl2S-Sb2-Sb2S3-Bi2S3 and the corresponding subsystems were studied. The system Ag2S-Tl2S-Sb2S3-Bi2S3 contains only one quasiquaternary phase, AgTlSbBiS4, which is connected by tie-lines with all quasiternary phases in the system (Ag4Sb3BiS8 and Ag3Tl3Sb2S6) and with most quasibinary phases: SbBiS3, weissbergite (TlSbS2), (TlBiS2, pyrargyrite (Ag3SbS3), miargyrite (AgSbS2) and matildite (AgBiS2). This phase diagram makes it possible to investigate all important naturally occurring parageneses of Ag and Tl sulphosalts containing Sb and Bi.
Die experimentelle Untersuchung des Ag-TI-Sb-Bi-S Systems
Zusammenfassung In polymetallischen Sulfiderzen niedriger Bildungstemperaturen sind Spuren von Thallium fast immer nachweisbar. In jüngster Zeit wurde mittels moderner Analysentechniken eine Reihe neuer Thalliumminerale entdeckt, charakteristische Paragenesen sind bisher und Phasengleichgewichte jedoch unerforscht.In einer experimentellen Studie wurde das quasi-quaternäre System Argentit (Ag2S)-Carlinit (Tl2S)-Antimonglanz (Sb2S3)-Wismutglanz (Bi2S3) bei 200 °C untersucht. Es enthält nur eine quasi-quaternäre Phase AgTlSbBiS4, welche durch Konoden mit den quasi-ternären Phasen Ag4Sb3BiS8 und Ag3Tl3Sb2S6, sowie mit den quasi-binären Phasen Pyrargyrit (Ag3SbS3), Miargyrit (AgSbS2), Schapbachit (Matildit, AgBiS2), Weissbergit (TlSbS2), TlBiS2 und SbBiS3 verknüpft ist. Das vorliegende Phasendiagramm ermöglichtes die Phasenbeziehungen natürlich vorkommender Ag- und Tl-Sulfosalze, die Sb und Bi enthallen, darzustellen.


With 5 Figures

Deceased  相似文献   

15.
Silica-tube quenching experiments and gold-tube pressure experiments were used to study phase relations in the PbS-rich portion of the system Pb-As-S. Emphasis was placed on determining the P-T-X stability relations of jordanite, the most Pb-rich of the synthetic Pb-As-S compounds. Jordanite, Pb9As4S15, is stable below 549 ± 3° C, at which temperature it melts to galena, liquid, and a sulfur-rich vapor phase. Confining pressures of up to 2 Kb do not measurably change this reaction temperature. Density measurements on synthetic material show that the jordanite cell contains 3 (Pb9As4S15); space group P21/m requires that the cell content be expressed as either Pb28–xAs12S46–x or Pb26+xAs12S44+x, with the former much more probable from a structural point of view. In both cases 0.8 < x < 1.4 and the situation is thus quite different from the usual case of defect structures, such as pyrrhotite, Fe1–xS, which shows considerable range of solid solution. Heating experiments on natural gratonite (Pb9As4S15) show that this mineral is most probably a low-temperature dimorph of jordanite, the inversion occurring below 250° C. Experiments have also confirmed the extensive substitution of Sb for As in jordanite, as suspected from chemical analyses of the isostructural mineral geocronite (Pb28–x(As,Sb)12S46–x).
Zusammenfassung Durch Abschreckversuche mit Hilfe von Quarz- und Gold-Druckampullen wurden die Phasenbeziehungen im PbS-reichen Teil des Pb-As-S-Systems studiert. Besonderer Wert wurde auf die Feststellung der P-T-X-Stabilitätsverhältnisse des Jordanits, des Pb-reichsten Phase der synthetischen Pb-As-S-Reihe, gelegt. Jordanit (Pb9As4S15) ist unterhalb 549 ± 3° C stabil, wo er sich semikongruent zu PbS, einer Schmelze und einer schwefelreichen Dampfphase zersetzt. Drucke bis zu 2 kb ergaben keine meßbaren Änderungen dieser Reaktionstemperatur. Dichtemessungen am synthetischen Material weisen darauf hin, daß die Jordanitzelle 3 × (Pb9As4S15) enthält. Die Raumgruppe P21/m fordert entweder die Formel Pb28–xAs12S46–x oder Pb26+xAs12S44+x, wobei die erstere Form strukturell wahrscheinlicher zu sein scheint. In beiden Fällen ist 0.8 < x < 1.4 und weicht vom gebräuchlichen Begriff der Defektstrukturen, wie z.B. beim Pyrrhotin (Fe1–xS) ab, wie das bemerkenswerte Mischkristallfeld zeigt. Erhitzen von natürlichem Gratonit (Pb9As4S15) zeigt, daß dieses Mineral sehr wahrscheinlich eine dimorphe Tieftemperaturphase des Jordanits ist. Die Umwandlung erfolgt unterhalb 250° C. Außerdem wurde eine umfangreichere Substitution von As durch Sb im Jordanit festgestellt, was nach den chemischen Analysen des isostrukturellen Geochronits Pb28–x(As,Sb)12S46–x) zu erwarten war.
  相似文献   

16.
The subsolidus region of the Fe-W-S system was studied by experiments performed in evacuated silica tubes. Ternary phases were not encountered. Tungsten disulphide WS2 is stable with the iron sulphides but not with metallic iron. The major tie-line pyrrhotite-tungsten differentiates this system from the analogous Fe-Mo-S system. Experiments on the Fe-W-O-S system demonstrate that WS2 (tungstenite) is not stable in the presence of iron oxides. Molybdenum and tungsten show different affinities to sulphur which is manifested in nature in abundant molybdenite as contrasted with rare tungstenite. Sulphur fugacity data in the literature differ on WS2. There data are compared with the present experimental results.
Zusammenfassung Das ternäre System Fe-W-S wird durch Abschreckungsexperimente in evakuierten Quarzglasampullen sowie durch Differential-Thermoanalyse untersucht, die Phasengleichgewichtsbeziehungen sind in einem isothermen Digramm T<743 °C veranschaulicht. Unterhalb 743±2 °C liegt der Stabilitätsbereich des Pyrits, FeS2, welcher mit Tungstenit, WS2, koexistiert. Konodenscharen erstrecken sich ferner von WS2 zu Pyrrhotin und zwar über einen weiten Bereich der Fe1-xS-Mischkristallreihe. Von FeS, oder annähernd stöchiometrischem FeS verlaufen Konoden zum metallischen Wolfram und zu den intermetallischen Phasen Fe2W und Fe3W2. Eine ternäre Phase wurde nicht gefunden. Experimente im ternären sowie im quaternären System Fe-W-O-S demonstrieren, daß WS2 weder mit metallischem Eisen noch mit Eisenoxiden stabil ist. Molybdän und Wolfram zeichnen sich durch unterschiedliche Affinität zu Schwefel aus, und daraus resultierende Schlußfolgerungen werden in bezug auf natürliche Mineralvergesellschaftungen diskutiert. Die in der einschlägigen Literatur gemachten Angaben über die Schwefelfugazität von Fe, Mo und W werden kritisch untersucht. Dominierende Unterschiede hinsichtlich der Phasengleichgewichtsbeziehungen des Fe-W-S-Diagrammes zu anderen Fe-beinhaltenden Sulfidsystemen, wie Fe-Mo-S, Fe-Sn-S und Fe-Bi-S, werden aufgezeigt.
  相似文献   

17.
Zusammenfassung Zur experimentellen Erfassung der natürlichen Bildungsbedingungen von Chloritoid und Staurolith wurde zunächst das Auftreten dieser beiden Minerale in der Natur untersucht. An Hand von chemischen Analysen aus Literaturangaben wurde der Zusammensetzungsbereich chloritoidführender und staurolithf ührender Gesteine ermittelt. Diese weisen im Vergleich zu tonigen und sandigen Sedimenten bzw. deren metamorphen Äquivalenten häufig folgende Unterschiede auf: geringere Alkaligehalte, geringere Ca-Gehalte, geringere Werte für das Verhältnis MgFe, höhere Al-Gehalte. Die Unterschiede sind bei chloritoidführenden Gesteinen größer als bei staurolithführenden Gesteinen. Eine Folge davon ist, daß Staurolith bei der progressiven Metamorphose nicht nur aus chloritoidführenden Paragenesen hervorgeht, sondern auch aus der Paragenese Quarz + Muskovit + Biotit + Chlorit. Die Bildung von Staurolith aus dieser Paragenese, welche in natürlichen Gesteinen der Grünschieferfazies verbreitet vorkommt, bedingt offenbar auch das häufigere Auftreten von Staurolith, verglichen mit Chloritoid.Aus den Naturbeobachtungen ergibt sich, daß chloritoidführende Gesteine überwiegend folgende Paragenese aufweisen: Chloritoid + Quarz + Muskovit + Chlorit±Akzessorien. Almandin und Disthen bzw. Andalusit treten manchmal zusätzlich auf. Einige Minerale, welche häufig bei der Metamorphose toniger und sandiger Sedimente gebildet werden, treten in chloritoidführenden Gesteinen nicht auf. Es sind dies: Stilpnomelan, Kalifeldspat und Albit. Biotit tritt im größten Teil des Stabilitätsbereiches von Chloritoid ebenfalls nicht mit diesem zusammen auf. Das Auftreten dieser Minerale in Gesteinen der Grünschieferfazies kann als Hinweis gewertet werden, daß ein für die Bildung von Chloritoid ungeeigneter Chemismus vorliegt.Staurolithführende Gesteine weisen meist folgende Paragenese auf: Staurolith + Quarz + Muskovit + Biotit + Almandin + Plagioklas±Akzessorien. Disthen, Sillimanit oder Andalusit können zusätzlich auftreten. Dagegen kann das Auftreten von Kalifeldspat und von Cordierit in muskovitführenden Gesteinen der unteren Amphibolitfazies als Hinweis gewertet werden, daß Staurolith infolge eines ungeeigneten Chemismus nicht gebildet wurde.Der Druckbereich, innerhalb dessen Chloritoid nach bisherigen Naturbeobachtungen gebildet wird, reicht von niedrigen Drucken, entsprechend der Kontaktmetamorphose, bis zu hohen Drucken, entsprechend der glaukophanitischen Grünschieferfazies der Regionalmetamorphose. Für Staurolith ist auf Grund von Naturbeobachtungen ein ähnlich großer Druckbereich anzunehmen, welcher von den entsprechenden Drucken der Kontaktmetamorphose bis zu den hohen Drucken der Regionalmetamorphose vom Barrow-Typ reicht. Der Temperaturbereich, innerhalb dessen Chloritoid in den häufigen natürlichen Paragenesen stabil ist, erstreckt sich zumindest über den Bereich der gesamten Grünschieferfazies; Staurolith ist in den häufigen natürlichen Paragenesen zumindest über den unteren Teil der Amphibolitfazies stabil. In natürlichen Gesteinen können viele Mineralreaktionen unter Beteiligung von Chloritoid oder Staurolith ablaufen, häufig dagegen dürften nur wenige von ihnen sein, und zwar: Chlorit + Kaolinit = Chloritoid + Quarz + Wasser Chloritoid + Chlorit + Quarz = Staurolith + Almandin + Wasser Chloritoid + Muskovit = Staurolith + Biotit + Almandin + Wasser Chlorit + Muskovit = Staurolith + Biotit + Quarz + Wasser Staurolith + Muskovit + Quarz = Al- Silikat + Biotit + Wasser Experimentell konnten diese oben angeführten Reaktionen noch nicht vollständig beobachtet werden; weitere Versuche dazu sind im Gange. Dagegen konnte der Ablauf einer Reaktion Chloritoid + Al-Silikat = Staurolith + Quarz + Wasser im Bereich von 4000–8000 Bar bei 545±20° C reversibel nachgewiesen werden. Diese Reaktion wird zwar infolge des Mineralbestands chloritoidführender Gesteine in der Natur relativ selten stattfinden; jedoch ist mit ihrer experimentellen Durchführung erstmalig eine Reaktion unter Beteiligung von Chloritoid und Staurolith nachgewiesen worden, welche in dem von Winkler (1965) angegebenen p, T-Bereich für die Grenze Grünschieferfazies/Amphibolitfazies abläuft. Die Phasengrenze der in der Natur häufiger ablaufenden Reaktion, wobei Staurolith + Biotit gebildet und Chlorit + Muskovit abgebaut werden, dürte nach bisherigen Ergebnissen von zur Zeit laufenden Versuchen ebenfalls in diesem p, T-Bereich liegen. Die Lage der Phasengrenzen dieser Reaktionen stimmt daher gut mit petrographischen Beobachtungen an Gesteinen des Grenzbereiches Grünschieferfazies/Amphibolitfazies überein. Eine weitere Bestätigung der experimentellen Ergebnisse lieferten Untersuchungen von Althaus (1966a, b, c) über die Stabilitätsbereiche von Andalusit, Sillimanit, Disthen und Pyrophyllit. Danach kann Chloritoid stabil zusammen mit Disthen, Andalusit oder Pyrophyllit auftreten, dagegen nicht mit Sillimanit. Diese Schlußfolgerung wird durch die natürlichen Paragenesen bestätigt.Die für die obere Stabilitätsgrenze von Staurolith angegebene Reaktion Staurolith + Quarz = Almandin + Al-Silikat + Wasser (Turner u. Verhoogen, 1960; Winkler, 1965), konnte in der eigenen Untersuchung nicht nachgewiesen werden. Nach Versuchen von Newton (schrift. Mitt., 1966) liegt diese Phasengrenze im Bereich 10000–20000 Bar um 700° C, d.h. in einem Temperaturbereich, welcher bei den eigenen Experimenten nur wenig untersucht wurde. Auf Grund von petrographischen Beobachtungen dürfte jedoch der Abbau von Staurolith in natürlichen Gesteinen meist nach einer anderen Reaktion, nämlich nach der Gleichung Staurolith + Muskovit + Quarz = Al-Silikat + Biotit + Wasser vor sich gehen. Über die Lage der Phasengrenze dieser Reaktion ist noch nichts bekannt.Aus der Untersuchung ergab sich ferner, daß entgegen der Annahme von Winkler (1965) Chloritoid kein geeigneter Indikator für die Druckbedingungen einer Metamorphose ist, da dieses Mineral nur in Gesteinen mit einem speziellen Chemismus auftritt und nach bisherigen Naturbeobachtungen über einen weiten Druckbereich hinweg gebildet werden kann. Aus den gleichen Gründen kann auch Staurolith nicht als geeigneter Druckindikator angesehen werden. Es muß vermutet werden, daß die Bereiche chemischer Gesteinszusammensetzungen innerhalb derer Chloritoid bzw. Staurolith gebildet werden können eine Abhängigkeit von Druck und Temperatur zeigen, und zwar in ähnlicher Weise wie dies nach Chinner (1962) für die Bildung von Almandin zutreffen soll. Diese Bereiche geeigneter Gesteinszusammensetzungen dürften bei relativ niedrigen Drucken beschränkter sein als bei hohen Drucken, und zwar als Folge einer stetigen Änderung des Chemismus koexistierender Minerale mit wechselnden p, T-Bedingungen.
Compared with the bulk chemical composition of the shales, sandstones and their metamorphic equivalents, chloritoid- and staurolite-bearing rocks have a restricted chemical composition; they are poorer in alkalies and CaO, have comparatively lower MgFe ratio and higher Al2O3-content than most of the metamorphic rocks devoid of these two minerals. Further, the bulk composition of the chloritoid bearing-rocks is more restricted than that of the staurolithe-bearing ones. Consequently, in course of a progressive metamorphism, staurolite is produced not only at the cost of the assemblage chloritoid+quartz+muskovite + chlorite but also at the cost of the assemblage quartz+muskovite+biotite+chlorite. This explains why staurolite is more frequent than chloritoid. From empirical petrographical observation it is known that chloritoid and staurolite are found both in contact as well as in regional metamorphic areas. This fact as well as the special bulk composition necessary for their formation make them unsuitable as indicators of pressure acting during the metamorphism.The lower stability limit of chloritoid could not be worked out by hydrothermal experimentation. However the phase transition chloritoid+Al-silicate=staurolite+quartz+water was observed around 545±20° C at pressures between 4000–8000 bars. The reversal of the reaction was also successful. The p, T conditions of this reaction, therefore, compare favourably with the greenschist/amphibolite facies boundary given by Winkler (1965). Tentative results show that another reaction, namely the formation of staurolite in the assemblage chlorite+muskovite+quartz also takes place at the same p, T conditions of that facies boundary. The upper stability limit of staurolite could not yet been established experimentally in our laboratory. Petrographic observations show that in natural assemblages, staurolite breaks down more probably through reactions with muskovite + quartz rather than through the more simple reaction staurolite + quartz to Al-silicate + almandine.
  相似文献   

18.
Summary The stability of pargasitic amphibole in the upper mantle is a function of water content and bulk rock composition, and under water-undersaturated conditions, the stability of amphibole controls the solidus position. Experiments in the system Tinaquillo peridotite +0.2% H2O, a refractory peridotite under water-undersaturated conditions, show that amphibole is stable to 1030°C and 26 kb. In contrast, pargasitic amphibole is stable to 1150°C and 30 kb in Hawaiian pyrolite, a more fertile peridotite composition. This indicates that under water-undersaturated conditions, the most fertile part of a crystallizing mantle diapir with an inhomogeneous composition will solidify first while a more refractory component will contain an alkali-rich melt which will have the ability to metasomatize adjacent regions. The relative stabilities of amphibole in refractory and fertile bulk compositions may result in increasing rather than diminishing chemical contrasts in high temperature lherzolite, i.e. a process of metamorphic differentiation. Ti, Fe, Al and Na metasomatism can therefore be considered a normal occurrence associated with the upward migration and solidification of an H2O-bearing mantle diapir.
Der Einfluß der Gesamtgesteins-Zusammensetzung auf die Stabilität von Amphibol im oberen Mantel: Bedeutung für Solidus-Positionen und Mantel-Metasomatose
Zusammenfassung Die Stabilität pargasitischer Amphibole im oberen Mantel ist eine Funktion von Wassergehalt und Gesamtgesteins-Zusammensetzung. Unter wasser-untersättigten Bedingungen, kontrolliert die Stabilität von Amphibol die Solidus-Position. Experimente in dem System Tinaquillo Peridotit +0,2% H2O, einem refraktären Peridotit unter wasser-untersättigten Bedingungen, zeigen daß Amphibol bis 1030°C und 26 Kb stabil ist. Im Gegensatz dazu ist pargasitische Hornblende in einem Hawaii-Pyrolit, von mehr fertiler Peridotit-Zuammensetzung, bis 1150°C und 30 Kb stabil. Das zeigt, daß bei wasser-untersättigten Bedingungen der am meisten produktive Teil eines kristallisierenden Mantel-Diapirs mit inhomogener Zusammensetzung sich zuerst verfestigen wird, während eine mehr refraktäre Komponente eine alkali-reiche Schmelze enthalten wird, die wiederum die Fähigkeit hat, umliegende Bereiche metasomatisch zu beeinflussen. Die relativen Stabilitäten von Amphibol in refraktären und fertilen Gesamtzusammensetzungen können dazu führen, daß die chemischen Gegensätze in Hochtemperaturlherzoliten eher zunehmen als abnehmen, d. h. ein Prozeß metamorpher Differentiation. Ti, Fe, Al und Na Metasomatose können deshalb als ein verbreiteter Vorgang, der mit der Aufwärtsbewegung und Verfestigung eines H2O-führenden Mantel-Diapirs assoziiert ist, betrachtet werden.


With 4 Figures  相似文献   

19.
Summary Fluid inclusions were investigated in quartz, beryl, apatite and triplite from the border and intermediate zones and core of pegmatites within the Proterozoic Olary Block, South Australia. Three compositionally distinct types of inclusions were recognized including pure CO2 inclusions, mixed H2O-CO2 inclusions, and aqueous inclusions with some of them containing a solid phase. Three fluid events occurred during pegmatite formation and subsolidus alteration. Initial fluids are characterised by a low to intermediate salinity (4.1 to 23.4wt% NaCl equivalent), and a composition of about 10 mole% CO2, 4.2 mole% NaCl equivalent, and 85.6 mole% H2O. Fluids were trapped as homogeneous H2O-CO2 phases. The second pulse of fluids was of intermediate to high salinity at 11 to 33 wt% NaCl equivalent. These fluids were most likely trapped as separated CO2 and H2O phases. Finally, intermediate to high salinity fluids of post-pegmatite origin with approximately 15 to 30 wt % NaCl equivalent were introduced. The P-T regime for the three fluid events has been estimated at 520° to > 650 °C and 2 to 5 kbars, 400° to 650 °C and 1.8 to 3.3 kbars, and 380° to 480°C and 2.0 to 2.6 kbars, respectively. These conditions indicate a declining pressure path implying a tectonic uplift of the Olary Block during successive fluid emplacements.
Petrogenese von Seltenelementpegmatiten im Olary Block, Südaustralien, Teil 2. Untersuchung der Flüssigkeitseinschlüsse
Zusammenfassung Flüssigkeitseinschlüsse wurden in Quarz, Beryll, Apatit und Triplit von Rand-, Zwischen- und Kernzonen in Pegmatiten des proterozoischen Olary Blocks, Südaustralien, untersucht. Drei Typen von Flüssigkeitseinschlüssen mit verschiedenen Zusammensetzungen wurden erkannt: reine CO2 Einschlüsse, gemischte H2O-CO2 Einschlüsse und wässerige Einschlüsse, wobei einige von diesen feste Einschlüsse aufweisen. Drei Fluid Ereignisse sind den Stadien der Pegmatitbildung und Subsolidus-Alteration zuzuordnen. Die erste Fluidgeneration ist durch geringe bis intermediäre Salinität(4.1 bis 23.4 Gewichts% NaCI Äquivalent) und eine Zusammensetzung von ungefähr 10 Mol % CO2, 4.2 Mol% NaCl Äquivalent und 85.6 Mol% H2O charakterisiert. Diese Fluide wurden als homogene H2O-CO2 Phasen eingeschlossen. Der zweite Puls von Fluiden war von intermediärer bis hoher Salinität (11 bis 33 Gewichts.% NaCI Äquivalent). Diese Fluide wurden wahrscheinlich als entmischte H2O und CO2 Phasen eingeschlossen. Zum Schluß wurden Fluide postpegmatitischen Ursprungs mit intermediärer bis hoher Salinität zugeführt (15 bis 30 Gewichts% NaCI Äquivalent). Der P-T Bereich für die drei Fluid-Ereignisse ist mit 520° bis > 650 °C und 2 bis 5 kbar, 400° bis 650 °C und 1.8 bis 3.3 kbar, und 380° bis 480°C und 2.0 bis 2.6 kbar abgeschätzt worden. Dies weist auf abnehmenden Druck hin und deutet damit eine tektonische Hebung des Olary Blocks während sukkzessiver Fluid-Platznahmen an.
  相似文献   

20.
Summary Hydrothermally altered granitic rocks occur along the northern and northwestern edge of what is classically termed the Witwatersrand Basin. Pyrite, chalcopyrite, sphalerite, molybdenite, galena, wurtzite and other sulphides were deposited during this hydrothermal alteration, as were uranium and REE-rich nodules of carbonaceous matter and free gold. Heating and freezing data from secondary fluid inclusions in igneous quartz as well as primary fluid inclusions in vein quartz and carbonate indicate that two main groups of aqueous fluid inclusions exist. The first group has a range of final melting temperatures from 0 °C to –9 °C, corresponding to salinities between 0 and 13 equivalent wt.% NaCl. Homogenization occurred at temperatures between 130 °C and 230 °C. The second group of inclusions generally have final melting temperatures between –14 °C and –26 °C, with salinities ranging between 12 and 30 equivalent wt.% NaCl. Homogenization temperatures range from 120 °C to about 170 °C. The low initial melting temperatures of -60°C to –35°C and SEM-EDX analyses of encrustations formed after evaporation of fluid in opened inclusions indicate as additional components Ca, Cl and S. Rare clathrate melting in both types of fluids indicate the presence of CO2, CH4 or some other clathrate compound. The low salinity fluids are interpreted to be of a meteoric, seawater or metamorphic origin, whereas the highly saline fluids are thought to be connate brines or highly evolved formation waters.Zusammenfassung Hydrothermal veränderte granitische Gesteine kommen am nördlichen und nordwest-lichen Rand von dem vor, was man klassisch als Witwatersrand-Becken bezeichnet. Während dieser hydrothermalen Umwandlung wurden Pyrit, Kupferkies, Zinkblende, Molybdänglanz, Bleiglanz, Wurtzit und andere Sulfide abgesetzt, ebenso Uran- und SEE-reiche Knollen aus kohliger Substanz und Freigold. Erhitzungs- und Ausfrierdaten von sekundären Fluideinschlüssen in Gesteinsquarz, ebenso wie von primären Fluideinschlüssen in Gangquarz und Karbonat weisen darauf hin, daß zwei Hauptgruppen von wäßrigen Fluideinschlüssen existieren. Der Bereich der finalen Schmelztemperaturen der ersten Gruppe liegt zwischen 0 °C und –9 °C, was einer Salinität zwischen 0 und 13 äquiv. Gew.-% NaCl entspricht. Homogenisierung erfolgte bei Temperaturen zwischen 130 °C und 230 °C. Die zweite Gruppe von Einschlüssen hat im allgemeinen finale Schmelztemperaturen zwischen –14 °C und –26 °C, mit Salinitäten, die sich zwischen 12 und 30 äquiv. Gew.-% NaCl bewegen. Die Homogenisierungstemperaturen variieren von 120 °C bis ungefähr 170 °C. Die niedrigen initialen Schmelztemperaturen von –60 °C bis –35 °C und SEM-EDX-Analysen von Inkrustationen, die sich nach der Verdunstung der Flüssigkeit in geöffneten Einschlüssen bilden, weisen auf Ca, Cl und S als weitere Bestandteile. Gelegentliches Clathratschmelzen in beiden Typen von Fluiden zeigt die Anwesenheit von CO2, CH, und einigen anderen Clathratbildnern. Die niedrigsalinaren Fluide werden als von meteorischem, Seewasser oder metamorphem Ursprung gedeutet, während die hochsalinaren Fluide als con.nate brines oder sehr gereifte Formationswässer angesehen werden.
Studien an Fluideinschlüssen hydrothermal veranderter archaischer Granite um das Witwatersrand-Becken

With 8 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号