首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mapping Buried Bedrock Topography with Gravity   总被引:3,自引:0,他引:3  
  相似文献   

2.
Water levels and water quality of open borehole wells in fractured bedrock are flow-weighted averages that are a function of the hydraulic heads and transmissivities of water contributing fractures, properties that are rarely known. Without such knowledge using water levels and water quality data from fractured bedrock wells to assess groundwater flow and contaminant conditions can be highly misleading. This study demonstrates a cost-effective single packer method to determine the hydraulic heads and transmissivities of water contributing fracture zones in crystalline bedrock wells. The method entails inflating a pipe plug to isolate sections of an open borehole at different depths and monitoring changes in the water level with time. At each depth, the change in water level with time was used to determine the sum of fracture transmissivities above the packer and then to solve for individual fracture transmissivity. Steady-state wellbore heads along with the transmissivities were used to determine individual fracture heads using the weighted average head equation. The method was tested in five wells in crystalline bedrock located at the University of Connecticut in Storrs. The single packer head and transmissivity results were found to agree closely with those determined using conventional logging methods and the dissolved oxygen alteration method. The method appears to be a simple and cost-effective alternative in obtaining important information on flow conditions in fractured crystalline bedrock wells.  相似文献   

3.
Evaluating contaminants impacting wells in fractured crystalline rock requires knowledge of the individual fractures contributing water. This typically involves using a sequence of tools including downhole geophysics, flow meters, and straddle packers. In conjunction with each other these methods are expensive, time consuming, and can be logistically difficult to implement. This study demonstrates an unsteady state tracer method as a cost‐effective alternative for gathering fracture information in wells. The method entails introducing tracer dye throughout the well, inducing fracture flow into the well by conducting a slug test and then profiling the tracer concentration in the well to locate water contributing fractures where the dye has been diluted. By monitoring the development of the dilution zones within the wellbore with time, the transmissivity and the hydraulic head of the water contributing fractures can be determined. Ambient flow conditions and the contaminant concentration within the fractures can also be determined from the tracer dilution. This method was tested on a large physical model well and a bedrock well. The model well was used to test the theory underlying the method and to refine method logistics. The approach located the fracture and generated transmissivity values that were in excellent agreement with those calculated by slug testing. For the bedrock well tested, two major active fractures were located. Fracture location and ambient well conditions matched results from conventional methods. Estimates of transmissivity values by the tracer method were within an order of magnitude of those calculated using heat‐pulse flow meter data.  相似文献   

4.
5.
由于对第四纪地层的严重依赖,传统古地震探槽研究方法在基岩区难以发挥作用,导致无法获取基岩区断层的强震活动历史。本研究以山西地堑系的交城断裂为目标断裂,以断裂北段2处基岩断层面为研究对象,通过三维激光扫描技术获取基岩断层面高精度形貌,基于变差函数法结合滑动窗口操作量化断层表面形貌特征,开展在基岩区提取断裂古地震信息的实例研究。结果显示,2处基岩断层面的形貌在高度上具有明显的分段特征,指示了断层面在地震事件作用下的分段出露过程。这种断层面形貌分段特征可以用来识别古地震事件和同震位移量。在思西村基岩断层面上,识别出由老到新的3次古地震事件,同震倾滑位移量依次为2.0 m、1.9 m和2.3 m,在上兰镇基岩断层面上,识别出由老到新的3次古地震事件,同震倾滑位移量依次为1.4 m、2.5 m和2.0 m,指示了交城断裂北、中段具有产生同震位移量大于2 m、震级大于7.5级的破裂型地震的能力。上述研究成果表明,基于三维激光扫描和形貌量化分析方法开展基岩断层面古地震研究,可以准确而高效地识别古地震事件次数和同震位移量,扩展古地震的研究对象,拓宽古地震的研究空间。在未来的研究中,可以适时地开展宇宙成因核素测年以测定断层面的暴露年龄,获得发震年代,给予地震序列年龄框架。  相似文献   

6.
7.
利用核磁共振方法探查基岩裂隙水   总被引:10,自引:0,他引:10  
基岩裂隙水是我国分布最为广泛的地下水类型之一。本文阐述了基岩裂隙水的特点:含水层产状不规则、其赋存空间介质不均匀、同一含水层埋深不同、地下水运动状态复杂等。这些特殊的地质、地球物理特征,给常用的物探找水方法带来许多困难。本文通过对直接找水的新方法一核磁共振(NuclearMagnetic Resonance,缩写为NMR)测深与间接找水的电阻率测深的对比分析,论述了NMR测深直接找水的实质。并以实例说明了NMR测深在探查基岩裂隙水中的应用效果。  相似文献   

8.
运用数学语言对四种映射原则进行阐述,得到四种映射原则对应的数学映射关系;为方便地震动衰减关系转换数值计算设计了计算流程;并以美国西部为参考区,导出了云南地区的基岩水平向地震峰值加速度衰减关系。结果表明本文给出的四种数学映射关系和设计的数值计算流程在转换过程中是可行的,最小扭曲映射原则、最小扭曲可逆映射原则得出的结果在某种程度上要优于IR映射原则、IM映射原则得出的结果。  相似文献   

9.
A single-hole multilevel sampling piezometer system (MLSPS) has been designed by the Geological Survey of Canada (GSC) to be installed using drilling systems that continuously core (e.g., Rotosonic) or continuously sample (e.g., hollow-stem auger, Becker hammer) overburden and that have the flexibility of allowing additional coring (diamond drilling) or sampling (hammer drilling) of bedrock. The GSC-MLSPS (under license to Solinst Canada Ltd.) uses a patented GSC dry injection system for accurate emplacement of filter packs and seals. This system permits (a) the use of variable screen lengths; (b) the complete evacuation of piezometers before introduction of new ground water (no bailing); (c) the use of a number of types of hydraulic tests (e.g., slug, withdrawal/recovery, vacuum, pressure-pulse); (d) ground water sampling under a nitrogen atmosphere; (e) dissolved gas sampling; (f) a great deal of flexibility in the use of design materials; and (g) the elimination of bridging and collapse of filter packs and seals.  相似文献   

10.
Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low‐cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%.  相似文献   

11.
12.
汶川地震中工业民用建筑、堤坝、交通运输等土木工程结构破坏严重,除地震作用影响外,土木工程结构的安全性和耐久性更受施工质量、环境腐蚀、服役期限及其他自然或人为灾害等诸多复杂因素影响,运用恰当的方法及时了解结构的当前性态,特别是及时发现危及结构安全的损伤,对避免工程结构的灾难性破坏及灾后结构修缮、重建具有重要意义.  相似文献   

13.
A theoretical method is proposed to estimate post‐fracturing fracture size and transmissivity, and as a test of the methodology, data collected from two wells were used for verification. This method can be employed before hydrofracturing in order to obtain estimates of the potential hydraulic benefits of hydraulic fracturing. Five different pumping test analysis methods were used to evaluate the well hydraulic data. The most effective methods were the Papadopulos‐Cooper model (1967), which includes wellbore storage effects, and the Gringarten‐Ramey model (1974), known as the single horizontal fracture model. The hydraulic parameters resulting from fitting these models to the field data revealed that as a result of hydraulic fracturing, the transmissivity increased more than 46 times in one well and increased 285 times in the other well. The model developed by dos Santos (2008) , which considers horizontal radial fracture propagation from the hydraulically fractured well, was used to estimate potential fracture geometry after hydrofracturing. For the two studied wells, their fractures could have propagated to distances of almost 175 m or more and developed maximum apertures of about 2.20 mm and hydraulic apertures close to 0.30 mm. Fracturing at this site appears to have expanded and propagated existing fractures and not created new fractures. Hydraulic apertures calculated from pumping test analyses closely matched the results obtained from the hydraulic fracturing model. As a result of this model, post‐fracturing geometry and resulting post‐fracturing well yield can be estimated before the actual hydrofracturing.  相似文献   

14.
An endeavor is made to compute peak ground horizontal accelerations at bedrock level in the Delhi region due to the seismogenic sources present around Delhi. The entire area is divided into six seismogenic sources for which seismic hazard analysis is carried out using the complete and extreme part of the seismicity data. Maximum likelihood estimates of hazard parameters viz., seismic activity rate , b value and maximum probable earthquake M max are made for each zone. The return periods and the probabilities of occurrence of various magnitudes for return periods of 50, 100 and 1000 years are also computed for each zone. The peak ground acceleration (PGA) values for 20% exceedance in 50 years are then computed for the Delhi region from each zone. The maximum PGA value considering all the zones is 0.34 g, which is due to the Mathura fault zone. The seismogenic zones V and VI, i.e., Mathura fault zone and the Sohna fault zone are observed to be contributing maximum PGA values in the Delhi region governing the isoacceleration contours computed for the region. The seismic zonation map for the PGA values at the bedrock level is obtained for the Delhi region. This can be used directly as input for the microzonation of ground motion at the surface by incorporating the local site conditions.  相似文献   

15.
为研究浅基岩场地条件下地下结构抗震分析简化方法计算精度,采用反应加速度法和反应谱法计算2层3跨和2层2跨矩形地铁车站结构在均质场地和浅基岩场地条件下的地震响应,将动力时程分析法结果作为参考解,对比分析反应加速度法和反应谱法在不同场地条件下的计算精度。研究结果表明,在均质场地条件下,反应加速度法最大误差约18%,反应谱法最大误差约9%;在浅基岩场地条件下,反应加速度法最大误差约33%,反应谱法最大误差约16%;反应谱法和反应加速度法在浅基岩场地条件下的计算精度均小于均质场地条件,且反应谱法计算精度受场地条件的影响较小。  相似文献   

16.
17.
In this paper an attempt has been made to evaluate the spatial variability of the depth of weathered and engineering bedrock in Bangalore, south India using Multichannel Analysis of Surface Wave (MASW) survey. One-dimensional MASW survey has been carried out at 58 locations and shear-wave velocities are measured. Using velocity profiles, the depth of weathered rock and engineering rock surface levels has been determined. Based on the literature, shear-wave velocity of 330 ± 30 m/s for weathered rock or soft rock and 760 ± 60 m/s for engineering rock or hard rock has been considered. Depths corresponding to these velocity ranges are evaluated with respect to ground contour levels and top surface levels have been mapped with an interpolation technique using natural neighborhood. The depth of weathered rock varies from 1 m to about 21 m. In 58 testing locations, only 42 locations reached the depths which have a shear-wave velocity of more than 760 ± 60 m/s. The depth of engineering rock is evaluated from these data and it varies from 1 m to about 50 m. Further, these rock depths have been compared with a subsurface profile obtained from a two-dimensional (2-D) MASW survey at 20 locations and a few selected available bore logs from the deep geotechnical boreholes.  相似文献   

18.
The performance of refraction inversion methods that employ the principle of refraction migration, whereby traveltimes are laterally migrated by the offset distance (which is the horizontal separation between the point of refraction and the point of detection on the surface), can be adversely affected by very near‐surface inhomogeneities. Even inhomogeneities at single receivers can limit the lateral resolution of detailed seismic velocities in the refractor. The generalized reciprocal method ‘statics’ smoothing method (GRM SSM) is a smoothing rather than a deterministic method for correcting very near‐surface inhomogeneities of limited lateral extent. It is based on the observation that there are only relatively minor differences in the time‐depths to the target refractor computed for a range of XY distances, which is the separation between the reverse and forward traveltimes used to compute the time‐depth. However, any traveltime anomalies, which originate in the near‐surface, migrate laterally with increasing XY distance. Therefore, an average of the time‐depths over a range of XY values preserves the architecture of the refractor, but significantly minimizes the traveltime anomalies originating in the near‐surface. The GRM statics smoothing corrections are obtained by subtracting the average time‐depth values from those computed with a zero XY value. In turn, the corrections are subtracted from the traveltimes, and the GRM algorithms are then re‐applied to the corrected data. Although a single application is generally adequate for most sets of field data, model studies have indicated that several applications of the GRM SSM can be required with severe topographic features, such as escarpments. In addition, very near‐surface inhomogeneities produce anomalous head‐wave amplitudes. An analogous process, using geometric means, can largely correct amplitude anomalies. Furthermore, the coincidence of traveltime and amplitude anomalies indicates that variations in the near‐surface geology, rather than variations in the coupling of the receivers, are a more likely source of the anomalies. The application of the GRM SSM, together with the averaging of the refractor velocity analysis function over a range of XY values, significantly minimizes the generation of artefacts, and facilitates the computation of detailed seismic velocities in the refractor at each receiver. These detailed seismic velocities, together with the GRM SSM‐corrected amplitude products, can facilitate the computation of the ratio of the density in the bedrock to that in the weathered layer. The accuracy of the computed density ratio improves where lateral variations in the seismic velocities in the weathered layer are known.  相似文献   

19.
基于搜集的唐山地区的强震记录数据,采用考虑地震动峰值加速度、近距离和震级的三种衰减模型,然后利用数理统计回归的方法对这些模型的结果进行了对比和分析,获得了唐山地区基岩场地峰值加速度衰减关系.并用2012年5月28日的唐山4.8级地震对此衰减关系进行了验证.  相似文献   

20.
Higher order ionospheric effects are increasingly relevant as precision requirements on GPS data and products increase. The refractive index of the ionosphere is affected by its electron content and the magnetic field of the Earth, so the carrier phase of the GPS L1 and L2 signals is advanced and the modulated code delayed. Due to system design the polarisation is unaffected. Most of the effect is removed by expanding the refractive index as a series and eliminating the first term with a linear combination of the two signals. However, the higher order terms remain. Furthermore, transiting gradients in refractive index at a non-perpendicular angle causes signal bending. In addition to the initial geometric bending term, another term allows for the difference that the curvature makes in electron content along each signal. Varying approximations have been made for practical implementation, mainly to avoid the need for a vertical profile of electron density. The magnetic field may be modelled as a tilted co-centric dipole, or using more realistic models such as the International Geomagnetic Reference Field. The largest effect is from the second term in the expansion of the refractive index. Up to several cm on L2, it particularly affects z-translation, and satellite orbits and clocks in a global network of GPS stations. The third term is at the level of the errors in modelling the second order term, while the bending terms appear to be absorbed by tropospheric parameters. Modelling improvements are possible, and three frequency transmissions will allow new possibilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号