首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Space-time distributions of the epicenters of earthquakes with ML 3 from 1966 to 1976 and of historic earthquakes with M 6 have been studied. It is suggested that they mainly occur in seismic belts running N45°E and N47°W, which form a rectangular grid, and the largest earthquakes occurred in the nodal regions of this grid. A theoretical analysis is presented to support these findings.Various types of precursors such as land deformations, changes in gravity, anomalies in the magnetic field and electrical resistivity and waterlevels in deep wells have been studied in correlation with epicenter distribution. The possibility of magma intrusion and its consequences are studied. The first author concludes that stresses must have accumulated, obviously in the regions of intersection. Two different mechanisms of stress accumulation are suggested. He presents a preliminary evaluation of the precursory data with relation to the Russian IPE (Institute of Physics of the Earth) model and the DD (Dilatancy Diffusion model) and propose a physico-rheological model for the Tangshan earthquake. In this new model an attempt is made to take account of such factors as the rheological behaviour of the crust and seismic belts, the mechanisms of stress accumulation, the local stress field, the long-term weakening of the crust, the time-dependent volume dilatancy and the possibility of magma intrusion.  相似文献   

2.
许朝阳  周健  完绍金 《岩土力学》2013,34(Z1):501-507
现有的土拱效应计算方法中,由于采用的计算模型不同,计算结果差异很大。文中克服传统连续介质力学模型的宏观连续性假设,采用二维颗粒流程序(PFC)建立基于模型试验的细观数值分析模型,对桩承式路堤中土体接触力、应力分布、主应力方向、竖向位移进行分析,并比较计算和实测结果,研究土拱效应的荷载传递机制。同时,对不同桩帽、桩间距、填土高度、颗粒大小、摩擦角的情况进行PFC方法的参数敏感性分析。研究结果表明,桩承式路堤桩顶处局部范围可按弹性核考虑;土拱的分布型式受桩帽型式、桩净距、格栅的影响;实际土拱作用的影响范围主要集中在路堤底面以上约1倍桩净距的区域;土拱内部的竖向应力和水平应力均随深度非线性改变,桩土应力比随着荷载水平、土体内摩擦角、颗粒大小的增大而增加。  相似文献   

3.
Localized shear zones along low-angle normal faults have been identified in regions of extension at the brittle-ductile transition of the continental crust. The possibility of the strain localizing at a depth of 10 km is interpreted here as a consequence of an increase in the equivalent shear stress applied to the flow of the lower crust. This enhancement of the flow stress is seen as a prerequisite for the triggering of brittle deformation mechanisms leading to strain localization. The lower crust rheology used to examine this stress increase is strain-rate, temperature and grain-size dependent, due to the coupling of dislocation and diffusion creep. The model structure proposed consists of a top layer, the upper crust, gliding rigidly above a bottom layer, the lower crust, which deforms in simple shear. During a short time interval (1400 years), the equivalent shear stress is found to increase by a factor of up to 3 (67 MPa for anorthite and 17 MPa for quartz). For anorthite, this stress could explain the activation of a Mohr-Coulomb failure with a friction coefficient of 0.2, which is reasonable at the depth of 10 km. Dislocation creep is activated during a rapid change in the prescribed velocity, whereas diffusion creep dominates if the velocity is held constant, highlighting the importance of grain-size sensitivity for lower crustal rheology.  相似文献   

4.
New in situ data based on hydraulic fracturing and overcoring have been compiled for eastern Australia, increasing from 23 to 110 the number of in situ stress analyses available for the area between and including the Bowen and Sydney Basins. The Bowen Basin displays a consistent north‐northeast maximum horizontal stress (σH) orientation over some 500 km. Stress orientations in the Sydney Basin are more variable than in the Bowen Basin, with areas of the Sydney Basin exhibiting north‐northeast, northeast, east‐west and bimodal σH orientations. Most new data indicate that the overburden stress (σV) is the minimum principal stress in both the Bowen and Sydney Basins. The Sydney Basin is relatively seismically active, whereas the Bowen Basin is relatively aseismic. Despite the fact that in situ stress measurements sample the stress field at shallower depth than the seismogenic zone, there is a correlation between the stress measurements and seismicity in the two areas. Mohr‐Coulomb analysis of the propensity for failure in the Sydney Basin suggests 41% of the new in situ stress data are indicative of failure, as opposed to 13% in the Bowen Basin. The multiple pre‐existing structural grains in the Sydney Basin further emphasise the difference between propensity for failure in the two areas. Previous modelling of intraplate stresses due to plate boundary forces has been less successful at predicting stress orientations in eastern than in western and central Australia. Nonetheless, stress orientation in the Bowen Basin is consistent with that predicted by modelling of stresses due to plate boundary forces. Variable stress orientations in the Sydney Basin suggest that more local sources of stress, such as those associated with the continental margin and with local structure, significantly influence stress orientation. The effect of local sources of stress may be relatively pronounced because stresses due to plate boundary forces result in low horizontal stress anisotropy in the Sydney Basin.  相似文献   

5.
For discrete materials like sands, the continuum field variables, stress and strain, are defined in terms of micro-level quantities by considering the deformation mechanism of granular soils from a microscopic point of view. Under the application of load, soil is considered to deform due to the movement relative to each other of clusters of particles. Based on this deformation mechanism, the kinematics of soils are developed and a strain tensor for granular soils, in terms of local displacements and geometric measures, is introduced. A local constitutive law relating local displacements and local tractions is defined. Using the local constitutive law, the relationships between stress and strain for the media are developed. The developed model incorporates the influence of strain hardening and material anisotropy on the deformation behaviour of the media. Comparisons of the model predictions and experimental results from tests conducted in cubical and hollow cylinder devices are presented.  相似文献   

6.
In recent years, a number of constitutive models have been proposed to describe mathematically the mechanical response of natural clays. Some of these models are characterized by complex formulations, often leading to non‐trivial problems in their numerical integration in finite elements codes. The paper describes a fully implicit stress‐point algorithm for the numerical integration of a single‐surface mixed isotropic–kinematic hardening plasticity model for structured clays. The formulation of the model stems from a compromise between its capability of reproducing the larger number of features characterizing the behaviour of structured clays and the possibility of developing a robust integration algorithm for its implementation in a finite elements code. The model is characterized by an ellipsoid‐shaped yield function, inside which a stress‐dependent reversible stiffness is accounted for by a non‐linear hyperelastic formulation. The isotropic part of the hardening law extends the standard Cam‐Clay one to include plastic strain‐driven softening due to bond degradation, while the kinematic hardening part controls the evolution of the position of the yield surface in the stress space. The proposed algorithm allows the consistent linearization of the constitutive equations guaranteeing the quadratic rate of asymptotic convergence in the global‐level Newton–Raphson iterative procedure. The accuracy and the convergence properties of the proposed algorithm are evaluated with reference to the numerical simulations of single element tests and the analysis of a typical geotechnical boundary value problem. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Progressive failure in long natural clay slopes with an underlying weak shear zone is studied. The clay slope is assumed to be elastic–perfectly plastic, whereas the shear zone may have an elastic–plastic strain softening behaviour. The failure will occur due to the development of large shear deformations in the weak zone. The general behaviour, including the possibility of progressive failure, can be studied by the use of a one-dimensional finite element model. Other interesting matters which can be studied are critical load, critical disturbance and critical length of the slope. Numerical examples show the overall behaviour due to different residual shear strengths of the weak layer, end disturbance or change of pore pressure in the weak layer. Although simple, the proposed finite element model provides a practically applicable tool for the prediction of whether progressive failure will occur and in which manner the local failure will propagate.  相似文献   

8.
苏文辉  许大鹏 《地质论评》2012,58(2):224-236
本文分析评论了嵇少丞等(2010)发表的"石英—柯石英相变研究中若干问题讨论"一文。指出他们对柯石英非俯冲折返新机制的一些误解,对某些热力学、物理学概念,及其在地学问题中的解释理解的不同。分析了机械球磨的作用机制;论证了机械球磨作用本质与构造挤压剪切作用本质的同一性。分析了岩石糜棱岩化过程的两个阶段;讨论了地震波形成柯石英机制的可能性。围绕比较标准问题,论证了高能机械球磨(预处理)能大大降低α-石英转变成柯石英的压力、温度和合成时间,促进柯石英的形成。用小尺度不均匀局域高压微区模型解释了人工合成柯石英的规律性、南极洲天然矿物的行为,柯石英的寄生矿物、岩石——锆石、榴辉岩包裹体、非包裹体的形成。列举事例澄清了"球磨引进的Fe杂质提高柯石英形成压力迟缓合成"的说法;讨论了第二相存在对石英—柯石英转变的影响和"应变禁区"边界区的应力梯度相变驱动力可以形成柯石英问题。指出了机械球磨石英原料预处理和静高压合成柯石英后处理两步法,是一种实验室研究柯石英形成规律的有效物理方法;小尺度不均匀局域高压微区模型和无需板块深俯冲快折返的柯石英形成机制,是一种有希望的柯石英形成新机制。  相似文献   

9.
Hydrodynamic flow modeling is carried out using a coupled 1D and 2D hydrodynamic flow model in northern India where an industrial plant is proposed. Two flooding scenarios, one considering the flooding source at regional/catchment level and another considering all flooding sources at local level have been simulated. For simulating flooding scenario due to flooding of the upstream catchment, the probable maximum flood (PMF) in the main river is routed and its flooding impact at the plant site is studied, while at the local level flooding, in addition to PMF in the main river, the probable maximum precipitation at the plant site and breaches in the canals near the plant site have been considered. The flood extent, depth, level, duration and maximum flow velocity have been computed. Three parameters namely the flood depth, cross product of flood depth and velocity and flood duration have been used for assessing the flood hazard, and a flood hazard classification scheme has been proposed. Flood hazard assessment for flooding due to upstream catchment and study on local scale facilitates determination of plinth level for the plant site and helps in identifying the flood protection measures.  相似文献   

10.
We have computed static stress changes associated to several earthquakes occurred in the Apennine chain, in Italy. Stress associated with fault slip has been computed by the Okada (1992) formulation. Static Coulomb stress changes associated to three subevents forming the Irpinia, 1980, Ms=6.9 main shock indicate that such subevents have been consecutively triggered, each one by stress changes produced by previous ones. Furthermore, aftershocks of this complex faulting event are well correlated with zones of maximum increase of Coulomb stress. The interplay of regional stress and of local stress changes due to the mainshock produces an aftershock distribution considerably wide and a large variability of focal mechanisms. Variability of focal mechanism is consistent with a low level of background regional stress (less than 2 Mpa). The analysis of two further seismic sequence in the central Apennine, occurred on 1979 close to Norcia town (ML=5.9) and on 1984 in National Park of Abruzzo (ML=5.5), also show a clear correlation of aftershock occurrence with positive Coulomb stress changes generated by mainshocks. The static stress change due to the mainshock of 1984, in Abruzzo region, is likely to have triggered, 4 days after, a further mainshock (ML=5.1) on the northern edge prolongation of the main fault, where the Coulomb stress change is maximum.Such evidences indicate a strong correlation among earthquakes in the Apennine chain, trough static stress changes, at several time and space scales. Modelling of such effects is useful both for improving our knowledge of the earthquake dynamics and for a better evaluation of seismic hazard in Italy.  相似文献   

11.
Consistent arrangement of en-echelon gashes occurring within kink zones was observed and measured at several localities in the Lubec—Belleisle structural zone of southwestern New Brunswick.The special geometric relationship of both kinks and en-echelon fracture systems allow an interpretation of the regional and local stress orientations necessary to produce such combined features.Mohr-circle stress analysis of a modified direct shear model is used to postulate a mechanism whereby varying orientations of en-echelon tension gashes and boundary shears within kink zones can be explained. Using this analysis, the observed gash orientations can be generated by reduction in the local normal stress acting on original kink-zone boundaries, coupled with a corresponding increase in the normal stress acting transverse to such boundaries. These stress adjustments could be due to deflection of regional stress trajectories around local zones of yielding (by kinking) rock.  相似文献   

12.
The small strain stiffness of soils has a significant role in geotechnical design and analysis. In laboratory, the small strain behavior is examined by different techniques including the bender element method for measuring the maximum shear modulus and local displacement transducer (LDT) for measuring Young’s modulus at small strains. However, most commonly used LDTs are based on electrical components and have limitations, such as electromagnetic interference and possibility of short circuit in the presence of water. To overcome these limitations, in the present study, a conventional triaxial apparatus has been modified to measure and study the stress–strain behavior of soils at small strains. The major modifications include addition of piezoceramic sensors (bender elements) for measuring the maximum shear modulus and fiber Bragg grating (FBG) sensor-based local displacement transducers (FBG–LDTs) for measuring the stress–strain behavior at small strains. The modified triaxial apparatus has been used to conduct several tests on a completely decomposed granite soil from a site in Hong Kong. The stress–strain behaviors measured by the newly developed FBG–LDTs and an external displacement transducer are compared and discussed. In particular, the shear modulus values obtained using the bender elements, FBG–LTDs, and the external displacement transducer are also compared, discussed, and evaluated. The comparison and assessment show that the FBG–LTDs are more suitable for measuring the small strain behavior of soils.  相似文献   

13.
Along with the increase of mining depth, the dynamic disasters related to the instability and destruction of coal-rock are becoming more and more serious. In this paper, the uniaxial compression model of coal-rock was established by means of the micro particle flow PFC2D software firstly, and then the variation of stress field and damage field of coal-rock were analysed. Finally, the time–space constitutive model of coal-rock was discussed and modified. The research results show that: the compression stress field of coal-rock has obvious time–space effect, and along with the change of compressive stress, the stress field was transferred to the inner coal-rock body; the coal-rock damage evolution process has a similar temporal and spatial relations with the stress field evolution, the number of damage cracks were increasing with the constant change of compressive stress, and transferred to the inner coal-rock body with “string wave” feature; the time–space damage constitutive model of coal-rock established on the basis of local crack and the stress concentration factor of coal-rock was reasonable and effective, the damage degree of the whole coal-rock could be predicted by the variation of local coal-rock stress and cracks. In overall, the successful verification of the time–space relationship of coal-rock damage and stress transfer indicated that the possibility of using the constitutive model developed in this study to investigate coal-rock stability in coal mine.  相似文献   

14.
The term boudinage is used to describe a wide variety of extensional structures in deformed rocks. This paper is mainly concerned with boudinage resulting from through-layer extension fractures followed by separation of the layer segments, thus forming boudins with more or less rectangular cross-sections. In principle, this process is similar to the break up of fibres in fibre-reinforced composite materials extended parallel to the fibre direction. Both processes are controlled by the transfer of stress from the matrix to the fibre (or layer) and a mathematical model for fibre-matrix stress transfer (the ‘fibre-loading’ model) is well established. We have used this as a basis for developing a stress transfer model for boudinage. The only difference in the basic mathematical formulation results from geometric differences between the two systems; the geometric expressions in the fibre-loading model have, therefore, been rederived for the layer-matrix case.Stress-transfer theory predicts that the tensile stress in a layer segment rises from a minimum at the end of a segment to a maximum at the centre. This behaviour, which is clearly shown by finite-element models of boudinage structure, suggests that extension fracture boudinage develops by successive ‘mid-point’ fracturing. According to stress-transfer theory, the process will continue until a layer is reduced to segments (boudins) all of which are shorter than some critical length (for which the tensile fracture strength of the layer is equal to the tensile stress at the mid-point). In practice, successive fracturing will be influenced by two other factors: (1) in nature the controlling material properties (tensile fracture strength, elastic moduli) will not be single-valued but will have a distribution reflecting local variations in lithology and microstructure and (2) major pre-deformation flaws may be present in a layer which will control the ‘starting length’ of layer segments. These factors are incorporated with the stress-transfer theory into a statistical (Monte Carlo) model for extension fracture boudinage which results in a prediction of boudin aspect ratios. The predicted distribution compares very closely with the observed distribution of 91 quartzite boudins within Lower Carboniferous slates at Tintagel, Cornwall.The stress-transfer model implies that boudin-defining fractures occur sequentially so that inter-boudin gap lengths will be unequal. Strain estimates based on boudinage structure will vary according to which part and how much of a layer is sampled. A much improved strain estimate is possible based on sequentially closing the inter-boudin gaps. The stress-transfer theory also leads to the possibility of estimating palaeostress from boudinage structure and is the only model available which predicts an aspect ratio distribution of boudins formed by extension fracture. Other than our own, we know of no published data on boudin aspect ratio distributions. Hence, further elaboration of the model is not possible until more field data is available. We hope that our work will encourage the systematic measurement of boudinage as well as the development of alternative models.  相似文献   

15.
The physical properties of bentonite-based buffer materials for nuclear waste repositories have been investigated by a number of different laboratory tests. These tests have yielded a material model that is valid for conditions close to water saturation and is useful for describing: (a) the stress, strain and volume change behaviour; (b) the pore pressure and flow of water; and (c) the thermal and thermomechanical response.

The material model is based on the Drucker-Prager Plasticity model and a Porous Elastic Model. The effective stress concept and Darcy's law are applied and the swelling/consolidation and thermomechanical processes are coupled according to the separate mechanical properties of the pore water, the solids and the clay skeleton. The model can be used by the finite-element program ABAQUS.

The model has been tested in several laboratory and field verification tests. Comparison between measured and calculated behaviour shows that the general behaviour is described properly and several calculations of different scenarios have been made for the Swedish KBS 3 concept. However, certain processes, like the hysteresis effect at consolidation/swelling, the curved stress-strain relation at shearing, and the curved failure envelope, are not modelled in a perfectly accurate way and an improved material model is proposed here. It combines the behaviour of the Cam-clay model on the wet side with the more relevant plastic behaviour of a modified Drucker-Prager model with a curved failure envelope and the possibility to introduce strain softening after failure.

The paper presents some laboratory results that are the basis of the first model. It also shows the application of the model to finite-element calculations of some laboratory tests. Comparisons between the calculations and measured results expose some disadvantages of the model and a concept for an improved model is suggested.  相似文献   


16.
The Bhuj region, Kutch, India, is included in the highly seismic zonation map of India. The Kutch is a rift basin and so far has experienced three major earthquakes that are due to reverse fault mechanism, which in turn have been ascribed to compressive stresses. Origin of these stresses is considered to be due to north–south convergence of the Indian Plate with the Tibetan plate, and this has placed the entire Indian Plate under the compressive stress regime. Analysis of the stress pattern in the Bhuj region, therefore, has been carried out by extracting lineaments with the help of remote sensing data for the pre- and post-earthquake periods of 26 January 2001 earthquake. For this purpose, the area has been segmented into four sectors. The lineament frequency and the percent frequency from each sector and also for the whole area have been worked out. Resolution of stress on the principle of triaxial ellipsoid has been worked out for each sector and also for the whole area. There results a temporal change in the stress pattern in each sector and also for the whole area. However, the direction of horizontal maximum compressive stress for the whole area appears to be in N 10°E in the pre-earthquake period that has changed to N 10°W in the post-earthquake period. Thus, temporal change in the horizontal maximum compressive stress direction as N 23°E, inferred by Gowd et al. (J Geophy Res 97:11879–11888, 1992) to N 10°E prior to and N 10°W in the post-earthquake period, as inferred from lineament analysis and near parallelism of the lineament maxima with that of the North Kathiawar Fault and the Chambal Jamnagar Lineament along with the longer axis of the isoseismals of the Bhuj 2001 earthquake indicates a modification in the structural fabric of the region as well as a possibility of development of a major plane of weakness.  相似文献   

17.
The estimation of physical properties for non-porous rocks has frequently been limited to considering the modal composition and orientation of the constituent grains. Studies of porous rocks indicate that the heterogeneity of microstructure can strongly influence the physical properties. Recently the increase in digital microstructural information has motivated the development of a local cluster model, which is sufficiently simple to be computationally fast and robust. The objective of this model is to be able to capture the microstructural sensitivity of physical properties. The stress distribution around an inclusion suggests that a first order elastic model needs only consider adjacent neighbours of a given point in the microstructure, this greatly simplifies the model.A preliminary set of model calculations were made on two rock types; a simulated water saturated porous sandstone composed of randomly oriented quartz grains and a polyphase non-porous gabbro with a strong crystal preferred orientation. The simulated isotropic sandstone provided a test case as analytical expressions for Voigt, Reuss and Hashin-Shtrikman bounds are known. The local cluster bounds for three microstructural models (random, layered and corner sharing) are within the Voigt, Reuss and Hashin-Shtrikman bounds. Further the local cluster bounds for the layered and corner sharing microstructural models are respectively 76% and 90% tighter than the Voigt-Reuss bounds, and 67% and 86% tighter than the Hashin-Shtrikman bounds. The local cluster lower bound was numerically unstable for a random microstructure due to the small values associated with the compliance of the pore fluid. The cluster model for the gabbro with experimentally measured grain orientation and spatial arrangement produced bounds that are 80% tighter than the Voigt-Reuss bounds, suggesting that microstructure in non-porous materials may be as important as in porous materials.  相似文献   

18.
Saksala  Timo 《Acta Geotechnica》2022,17(6):2079-2099

Inherent microcrack populations have a significant effect on the fracture behaviour of natural rocks. The present study addresses this topic in numerical simulations of uniaxial tension and three-point bending tests. For this end, a rock fracture model based on multiple intersecting embedded discontinuity finite elements is developed. The inherent (pre-existing) microcrack populations are represented by pre-embedded randomly oriented discontinuity populations. Crack shielding (through spurious locking) is prevented by allowing a new crack to be introduced, upon violation of the Rankine criterion, in an element with an initial crack unfavourably oriented to the loading direction. Rock heterogeneity is accounted for by random clusters of triangular finite elements representing different minerals of granitic numerical rock. Numerical simulations demonstrate the strength lowering effect of initial microcrack populations. This effect is substantially stronger under uniaxial tension, due to the uniform stress state, than in semicircular three-point bending having a non-uniform stress state with a clear local maximum of tensile stress.

  相似文献   

19.
为探索涝渍连续抑制天数指标作为水稻排水标准, 通过测坑模拟水稻抽穗开花期涝渍连续动态试验,构建了水稻涝渍连续抑制天数指标(Continuous Stress-Day Index of Water Logging,CSDI)的模型,提出了CSDI和涝害权重系数的求解方法,通过对实测数据的分析,建立了水稻相对产量与CSDI的关系模型。研究结果表明:单纯受渍和涝渍连续灾害均会造成水稻不同程度的减产,但涝渍连续灾害减产程度比单纯受渍高;涝害权重系数是一个随涝渍状态变化而变化的状态变量;在涝渍连续情况下,水稻的相对产量与CSDI具有良好的线性关系,涝渍连续抑制天数指标可作为水稻排水设计标准。利用文中CSDI的模型,可制定水稻控制排水策略。  相似文献   

20.
To better understand the role the Zipingpu Reservoir may have played in triggering the 2008 Ms8 (Mw7.9) Wenchuan earthquake in China, this study evaluates changes of Coulomb failure stress (ΔCFS) and assesses their role in local seismicity and their potential impact on the Wenchuan earthquake. In addition, key aspects associated with reservoir-triggered earthquake (RTS), including mechanisms of stress triggering and permeability of fault zones, is briefly reviewed. ΔCFS was calculated at the faults involved in the Wenchuan earthquake due to the combined effects of gravitational loading and pore-pressure diffusion from the impoundment history of the reservoir. ΔCFS on the major source fault is larger than 0.1 MPa in the upper 10 km below the reservoir and reached a few tens of kPa at the focal depth. Such levels of ΔCFS are large enough to modulate the secular stress buildup of a few kPa/yr in the Longmen-shan thrust zone. Based on detailed analysis of numerical results and local seismicity, the author suggests that it is not proper to rule out the possibility of the Wenchuan earthquake being a RTS only based on very limited knowledge from a few cases of historical RTS so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号