首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Constitutive laws for rock joints should be able to reproduce the fundamental mechanical behaviour of real joints, such as dilation under shear and strain softening due to surface asperity degradation. In this work, we extend the model of Plesha to include hydraulic behaviour. During shearing, the joint can experience dilation, leading to an initial increase in its permeability. Experiments have shown that the rate of increase of the permeability slows down as shearing proceeds, and, at later stages, the permeability could decrease again. The above behaviour is attributed to gouge production. The stress–strain relationship of the joint is formulated by appeal to classical theories of interface plasticity. It is shown that the parameters of the model can be estimated from the Barton–Bandis empirical coefficients; the Joint Roughness Coefficient (JRC) and the Joint Compresive strength (JSC). We further assume that gouge production is also related to the plastic work of the shear stresses, which enables the derivation of a relationship between the permeability of the joint and its mechanical aperture. The model is implemented in a finite element code (FRACON) developed by the authors for the simulation of the coupled thermal–hydraulic–mechanical behaviour of jointed rock masses. Typical laboratory experiments are simulated with the FRACON code in order to illustrate the trends predicted in the proposed model. © 1998 by John Wiley & Sons. Ltd.  相似文献   

2.
A data set was derived for the Åknes rock slope, Norway, with the main focus on deriving input parameters for the Barton–Bandis shear strength criterion. Back-calculations of a 100,000 m3 rock slide were performed for evaluation of the data set. The limit equilibrium analysis showed that the joint roughness coefficient (JRC) has the greatest effect on the calculated safety factor of the slide. Probabilistic computations showed that the JRC stands out as the most important contributor to the total uncertainty over the whole set of variables and that the computed failure probability of the 1960 slide was very high, which may be interpreted that the input variables and the Barton–Bandis shear strength criterion are reasonable for the slide. JRC was measured on 0.25 m scale and on 1 m scale. The results from the two scales were different.  相似文献   

3.
Shear behaviour of regular sawtooth rock joints produced from casting plaster are investigated under constant normal stiffness (CNS) conditions. Test results obtained in this investigation are also compared with the constant normal load (CNL) tests. It is observed that the peak shear stress obtained under CNL conditions always underestimates the peak shear stress corresponding to the CNS condition. Plots of shear stress against normal stress show that a nonlinear (curved) strength envelope is acceptable for soft rock joints subjected to a CNS condition, in comparison with the linear or bilinear envelopes often proposed for a CNL condition. Models proposed by Patton (1966) and Barton (1973) have also been considered for the predictions of peak shear stress of soft joints under CNS conditions. Although Patton's model is appropriate for low asperity angles, it overestimates the shear strength in the low to medium normal stress range at higher asperity angles. In contrast, while Barton's model is realistic for the CNL condition, it seems to be inappropriate for modelling the shear behaviour of soft joints under CNS conditions. The effect of infill material on the shear behaviour of the model joints is also investigated, and it is found that a small thickness of bentonite infill reduces the peak stress significantly. The peak shear stress almost approached that of the shear strength of infill when the infill thickness to asperity height ratio (t/a) reached 1.40. This paper also introduces an original, empirical shear strength envelope to account for the change in normal stress and surface degradation during CNS shearing. © Rapid Science Ltd. 1998  相似文献   

4.
An infilled rock joint is likely to be the weakest plane in a rock mass. The presence of infill material within the joint significantly reduces the friction of the discontinuity boundaries (i.e. rock to rock contact of the joint walls). The thicker the infill, the smaller the shear strength of the rock joint. Once the infill reaches a critical thickness, the infill material governs the overall shear strength, and the joint walls (rock) play no significant role. Several models have been proposed to predict the peak shear strength of soil-infilled joints under both constant normal load (CNL) and constant normal stiffness (CNS) boundary conditions, taking into account the ratio of infill thickness (t) to the height of the joint wall asperity (a). CNS models provide a more realistic picture of the soil-infilled joint behaviour in the field. This paper presents a critical review on the existing mathematical models for predicting the shear strength of soil-infilled rock joint and verifies the normalised peak shear stress model with further laboratory investigations carried out on idealised saw-tooth rock joints at the University of Wollongong. Based on the prediction of the experimental data, the normalised peak shear stress model is slightly modified by the authors. A simplified approach for using this model in practice is presented and a new expression for prediction of dilatation at peak shear stress is suggested.  相似文献   

5.
Determining anisotropic deformation surrounding underground excavations for tunnels is an intuitional task that involves many difficulties due to the inherent anisotropies in the strength and deformability of natural rocks. This study investigates joint-induced anisotropic deformation surrounding a tunnel via a numerical simulation that accounts for the mechanical behavior of intact rock, the orientations of joint sets, and the mechanical behavior of joint planes; this numerical simulation can model the complete stress–strain relationship with anisotropic rock mass characteristics. Simulation results demonstrate that the well-known excavation-induced stress variation–decrease in the radial component and increase in the tangential component–decrease shear strength and increase shear stress for the joint plane tangential to the tunnel wall, resulting in joint sliding failure and considerable shear deformation. This joint sliding failure and significant shear deformation account for the joint-induced anisotropic deformation surrounding a tunnel. When a rock mass has two joint sets with unfavorable joint orientations, the area with joint sliding failure can deteriorate mutually, resulting in large anisotropic deformation. Additionally, for a rock mass containing three joint sets with well-distributed orientations, joint sliding in various joint sets and associated stress variations can counter balance each other, resulting in less anisotropic deformation than those of rock masses containing one or two joint sets.  相似文献   

6.
唐志成  黄润秋  张建明  王晓川 《岩土力学》2015,36(12):3433-3438
节理的剪切强度涉及到岩体工程的安全。通过CSS–342岩体剪切试验机对3组具有不同形貌特征的节理进行直剪试验,研究形貌对剪切强度的影响。试验结果表明:峰值剪切强度随法向应力和粗糙程度的增加而增加;但就相同的形貌而言,剪切应力与法向应力的比值减小,即由形貌产生的剪胀角随法向应力的增加而减小。通过分析剪胀角存在的边界条件,提出双曲线形式的剪胀角演化模型,并采用抗拉强度体现岩石的性质对节理剪切强度的影响。采用坡度均方根表征节理的三维形貌特征并提出相应的峰值剪切强度公式,与经典的Barton公式进行了比较,总体上新公式的计算值更为接近试验值。  相似文献   

7.
One of the aims of rock mechanics analysis is to predict fallouts in underground excavations. The objective of this paper was to study the relative importance of different strength parameters and their significance on the simulation of brittle failure and fallouts. This work was conducted as a parametric study, using numerical modelling and a number of approaches. The results were compared with observed fallouts. More obvious and distinct shear bands could be observed with decreased element sizes close to, and at, the boundary. The maximum shear strain was the most reliable indicator for fallout prediction. The results of the (instantaneous) cohesion softening friction softening models were sensitive to changes of the peak strength parameters and less sensitive to variations in residual parameters. The result from the cohesion-softening friction-hardening (CSFH) model, when using a peak cohesion equal to the intact rock strength, best captured the observed rock behaviour.  相似文献   

8.
张莹 《地质与勘探》2018,54(2):381-388
在广西壮族自治区桂林市天门村进行了硅质岩结构面强度的原位试验,结合现场调查,基于Barton模型,估算了硅质岩结构面抗剪强度。结果表明,硅质岩结构面的剪应力-位移曲线呈现出塑性变形的特征,剪切过程具有爬坡、空化、剪胀的特点。剪切曲线分为剪胀、剪断凸台和完全接触三个过程。结构面受剪力初期,剪应力上升较快,剪切位移随剪应力的增大而几乎呈线性增大,处于弹性状态;随着剪应力的不断增大,在剪切面处发生爬坡作用和啃断作用这两种力学效果;当将结构面上的凸台被啃断后,剪应力上升的梯度变小,直至峰值强度,处于完全接触状态。原位试验得到的抗剪强度参数与Barton模型计算的结果具有较好的一致性,但Barton模型参数的确定带有很强的主观性而造成的误差较大,导致其计算结果偏小,因此在没有经验值和相关工程参考的地区进行现场大剪试验是十分必要的,既保证了工程的可靠性,又避免过于保守,本次实验的结果为类似工程的取值提供了参考。  相似文献   

9.
长江三峡库区广泛发育着两侧岩性不同的不连续面(称为异性不连续面),研究其峰值剪切强度可为相关岩体的稳定性分析和评价提供理论依据。采用高强石膏浇注3组不同形貌且上、下壁面强度不同的不连续面试件,并在不同常法向应力下进行剪切试验。引入不连续面壁组合系数λ来综合量化不连续面壁的抗压强度和基本摩擦角对异性不连续面峰值剪切强度的影响,λ越小,上、下不连续面壁强度差异越大。异性不连续面的峰值剪切强度随λ的增加呈非线性增加,且在高法向应力下更为显著。在Barton公式的基础上,通过多元回归分析建立了估算异性不连续面峰值剪切强度的经验公式。采用天然和人工锯齿形异性不连续面的直剪试验结果对新公式做了进一步验证,试验剪切强度与新公式预测值吻合较好。简要分析了新公式在软硬互层岩质边坡稳定性评价中的应用。最后,讨论了Wu公式的适用性以及新公式的优点和不足。  相似文献   

10.
A plane strain model for a fault is presented that takes into account the inelastic deformation involved in fault growth. The model requires that the stresses at the tip of the fault never exceed the shear strength of the surrounding rock. This is achieved by taking into account a zone, around the perimeter of the fault surface, where the fault is not well developed, and in which sliding involves frictional work in excess of that required for sliding on the fully developed fault. The displacement profiles predicted by the fault model taper out gradually towards the tip of the fault and compare well with observed displacement profiles on faults. Using this model it is found that both (1) the shape of the displacement profile, and (2) the ratio of maximum displacement to fault length are a function of the shear strength of the rock in which the fault forms. For the case of a fault loaded by a constant remote stress, the displacement is linearly related to the length of the fault and the constant of proportionality depends on the shear strength of the surrounding rock normalized by its shear modulus. Using data from faults in different tectonic regions and rock types, the in situ strength of intact rock surrounding a fault is calculated to be on the order of 100 MPa (or a few kilobars). These estimates exceed, by perhaps a factor of 10, the strength of a well developed fault and thus provide an upper bound for the shear strength of the crust. It is also shown that the work required to propagate a fault scales with fault length. This result can explain the observation that the fracture energy calculated for earthquake ruptures and natural faults are several orders of magnitude greater than that for fractures in laboratory experiments.  相似文献   

11.
Review of a new shear-strength criterion for rock joints   总被引:44,自引:0,他引:44  
Barton, N., 1973. Review of a new shear-strength criterion for rock joints. Eng. Geol., 7: 287–332.

The surface roughness of rock joints depends on their mode of origin, and on the mineralogy of the rock. Amongst the roughest joints will be those that formed in intrusive rocks in a tensile brittle manner, and amongst the smoothest the planar cleavage surface in slates. The range of friction angles exhibited by this spectrum will vary from about 75° or 80° down to 20° or 25°, the maximum values being very dependent on the normal stress, due to the strongly curved nature of the peak strength envelopes for rough unfilled joints.

Direct shear tests performed on model tension fractures have provided a very realistic picture of the behaviour of unfilled joints at the roughest end of the joint spectrum. The peak shear strength of rough—undulating joints such as tension surfaces can now be predicted with acceptable accuracy from a knowledge of only one parameter, namely the effective joint wall compressive strength or JCS value. For an unweathered joint this will be simply the unconfined compression strength of the unweathered rock. However in most cases joint walls will be weathered to some degree. Methods of estimating the strength of the weathered rock are discussed. The predicted values of shear strength compare favourably with experimental results reported in the literature, both for weathered and unweathered rough joints.

The shear strength of unfilled joints of intermediate roughness presents a problem since at present there is insufficient detailed reporting of test results. In an effort to remedy this situation, a simple roughness classification method has been devised which has a sliding scale of roughness. The curvature of the proposed strength envelopes reduces as the roughness coefficient reduces, and also varies with the strength of the weathered joint wall or unweathered rock, whichever is relevant. Values of the Coulomb parameters c and Φ fitted to the curves between the commonly used normal stress range of 5–20 kg/cm2 appear to agree quite closely with experimental results.

The presence of water is found in practice to reduce the shear strength of rough unfilled joints but hardly to affect the strength of planar surfaces. This surprising experimental result is also predicted by the proposed criterion for peak strength. The shear strength depends on the compressive strength which is itself reduced by the presence of water. The sliding scale of roughness incorporates a reduced contribution from the compressive strength as the joint roughness reduces. Based on the same model, it is possible to draw an interesting analogy between the effects of weathering, saturation, time to failure, and scale, on the shear strength of non-planar joints. Increasing these parameters causes a reduction in the compressive strength of the rock, and hence a reduction in the peak shear strength. Rough—undulating joints are most affected and smooth—nearly planar joints least of all.  相似文献   


12.
A new constitutive model for intact rock is presented recognising that rock strength, stiffness and stress–strain behaviour are affected by the size of the rock being subjected to loading. The model is formulated using bounding surface plasticity theory. It is validated against a new and extensive set of unconfined compression and triaxial compression test results for Gosford sandstone. The samples tested had diameters ranging from 19 to 145 mm and length-to-diameter ratios of 2. The model captures the continuous nonlinear stress–strain behaviour from initial loading, through peak strength to large shear strains, including transition from brittle to ductile behaviour. The size dependency was accounted for through a unified size effect law applied to the unconfined compressive strength—a key model input parameter. The unconfined compressive strength increases with sample size before peaking and then decreasing with further increasing sample size. Inside the constitutive model two hardening laws act simultaneously, each driven by plastic shear strains. The elasticity is stress level dependent. Simple linear loading and bounding surfaces are adopted, defined using the Mohr–Coulomb criterion, along with a non-associated flow rule. The model simulates well the stress–strain behaviour of Gosford sandstone at confining pressures ranging from 0 to 30 MPa for the variety of sample sizes considered.  相似文献   

13.
天然岩体中广泛发育两侧岩性不同的异性结构面,开展异性结构面变形和强度特性研究旨在为岩体稳定性评价和利用提供依据。选取三峡库区侏罗系典型的砂岩-泥岩异性岩层,首先运用分形几何理论,定量计算了平直和4种不同不规则起伏形态结构面的粗糙度系数JRC值,然后基于PFC2D颗粒流程序,分别开展了以上5种形态异性结构面的数值剪切试验,获得了各形态结构面在不同正应力下的剪切应力-位移曲线。根据数值试验结果,采用巴顿的JRC-JCS模型分析了异性结构面强度特性,并与同性结构面强度性质进行对比研究。最后,在考虑异性结构面剪切破坏机制的基础上,引入强度因子的概念,提出了新的适用于异性结构面强度评价的两类改进巴顿准则。研究结果表明:异性岩体结构面抗剪强度介于相同粗糙度的两种同性结构面强度之间,在较低正应力下接近软岩同性结构面强度,符合Ⅰ型改进巴顿准则;在较高正应力下偏向硬岩同性结构面强度,符合Ⅱ型改进巴顿准则。实际工程中可利用改进准则并根据异性结构面应力状态对岩体稳定性进行评价,弥补了以往研究的不足。  相似文献   

14.
Study of rock joints under cyclic loading conditions   总被引:11,自引:3,他引:11  
Summary A conceptual model for the behaviour of rock joints during cyclic shear and under constant normal stresses was proposed according to results from shear tests with 50 concrete replicas of rock joints. The shear strength and deformability of joint samples were found to be both anisotropic and stress dependent. Based on these experimental results, a two-dimensional constitutive model was developed for rock joints undergoing monotonic or cyclic loading sequences. The joint model was formulated in the framework of non-associated plasticity, coupled with empirical relations representing the surface roughness degradation, appearance of peak and residual shear stresses, different rates of dilatancy and contraction, variable normal stiffness with normal deformation, and dependence of shear strength and deformability on the normal stress. The second law of thermodynamics was represented by an inequality and used to restrict the values of some of the material parameters in the joint model. The new joint model was implemented into a two-dimensional Distinct Element Method Code, UDEC, and its predictions agreed well with some well-known test results.  相似文献   

15.
16.
The rock mass around an excavation is generally traversed by different geological discontinuities such as faults, folds, slips, joints, etc. Fault is one of the major geological discontinuities which creates lot of difficulties during underground winning of coal. Entire stress regime and ground conditions in the formation are altered in and around the faults. Faults also impose detrimental effects by introducing impurities, including clay and various forms of mineral matter into the coal seams; opening of pathways for the influx of water and gas into the underground workings; displacing the coal seams upward/downwards making the coal seams difficult or sometimes impractical to mine. Appropriate evaluation of the effect of the fault on the stability of the underground workings is a requisite for safe design of the underground mining structures. In this paper, a study has been carried out to assess the effect of the fault on the stability of underground coal mines by numerical simulation with distinct element method (DEM). On the calibrated DEM model, parametric study has been performed by varying the selected parameters, the dip and the friction angles of the fault. The analysis of variance (ANOVA) shows that both the factors have statistically significant effect on the strength of the coal pillar. Similarly, the displacement of the immediate roof and the height of the disturbed strata are evaluated by the DEM modelling and statistical analysis when the fault passes through the middle of the gallery. The results of ANOVA for both cases indicate that the both factors have significant effect on the displacement of the immediate roof and the height of the disturbed strata. It is obtained from the study that the low angle fault causes high instability in the immediate roof. The paper has been supplemented with the field observations where instability in underground roadways of a coal mine in India is caused by the fault. It was observed in VK-7 incline mine of Singareni Collieries Company Limited, India that there was sudden failure of immediate roof of a roadway where a low angle fault crosses the middle of the roadway. The findings of the paper help to understand the behaviour of the coal pillar and the surrounding rock mass in the presence of the fault. The study would also help to take appropriate decisions about the unstable regions of the working safeguarding safety in underground coal mines.  相似文献   

17.
为研究不同边界条件下剪切速率对岩石节理剪切力学特性的影响,采用RDS-200型岩石节理剪切试验系统对人工浇筑的具有相同节理形貌的不规则水泥节理试样进行了常法向应力和常法向刚度2种边界条件下5种剪切速率的直剪试验。结果表明:(1)常法向应力边界条件下,随剪切速率增大,相同法向应力下的类岩石节理峰前剪切刚度减速增大,峰值剪切强度和残余剪切强度呈对数降低;随剪切速率增大,类岩石节理黏聚力减速增大,内摩擦角呈对数降低。(2)常法向刚度边界条件下,随剪切速率增大,相同法向应力的类岩石节理峰前剪切刚度减速增大,峰值剪切强度呈对数降低,较高法向应力下的残余剪切强度先增大后减小;随剪切速率增大,类岩石节理黏聚力呈对数降低,内摩擦角减速增大。(3)与常法向应力边界条件相比,常法向刚度条件下,节理黏聚力平均增加了115.85%,内摩擦角平均降低了8.44%;相同初始法向应力和剪切速率下,峰前剪切刚度、峰值剪切强度和残余剪切强度分别平均增加了11.96%、19.47%和32.32%,峰值法向位移平均降低了40.12%。该研究结论可为不同剪切速率下地表和地下工程岩体节理的剪切失稳评价提供一定参考。  相似文献   

18.
Stress wave attenuation across fractured rock masses is a great concern of underground structure safety. When the wave amplitude is large, fractures experience nonlinear deformation during the wave propagation. This paper presents a study on normal transmission of P‐wave across parallel fractures with nonlinear deformational behaviour (static Barton–Bandis model). The results show that the magnitude of transmission coefficient is a function of incident wave amplitude, nondimensional fracture spacing and number of fractures. Two important indices of nondimensional fracture spacing are identified, and they divide the area of nondimensional fracture spacing into three parts (individual fracture area, transition area and small spacing area). In the different areas, the magnitude of transmission coefficient has different trends with nondimensional fracture spacing and number of fractures. In addition, the study reveals that under some circumstances, the magnitude of transmission coefficient increases with increasing number of fractures, and is larger than 1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
朱泽奇  盛谦  梅松华  张占荣 《岩土力学》2009,30(10):3115-3121
基于显式有限差分程序FLAC3D,针对层状岩体建立了可以考虑其横观各向同性变形特性的遍布节理模型。通过FLAC3D程序的预留接口导入程序,将该改进的遍布节理模型中植入FLAC3D动态链接库。在此基础上进行了层状岩体变形与强度各向异性特性的研究,最后将该模型应用于龙滩水电站巨型地下硐室群的层状岩体围岩变形及破裂特征分析。研究表明,围岩变形主要表现为岩层同性面内的变形,其左右边墙变形不对称性主要受断层切割控制;围岩破坏型式以剪切破坏为主,其中岩体整体破坏受断层控制,表现为中低应力条件下的拉剪或压剪破坏;而开挖引起的岩层破坏受制于陡倾角层状岩体结构,表现为层间错动引起的剪切破坏。  相似文献   

20.
微震、工程爆破等低应力循环剪切荷载作用对节理岩体工程失稳破坏具有重要影响。为研究峰前循环剪切加卸载作用下岩石节理剪切力学特性,采用RDS-200型岩石节理剪切试验系统对人工劈裂黄砂岩节理进行了峰前循环剪切下的直剪试验。通过与未进行峰前循环剪切加卸载时岩石节理力学参数预测值对比,得到峰前循环剪切加卸载作用对峰前剪切刚度、峰值剪切强度、峰值剪切位移与残余剪切强度的影响。结果表明:(1)峰前循环剪切加卸载后,当法向应力为2 MPa时,岩石节理峰前剪切刚度增大,当法向应力为4~10 MPa时,岩石节理峰前剪切刚度在循环剪切应力幅值范围内增大,在超出循环剪切应力幅值时减小;(2)峰前循环剪切加卸载后,峰值剪切强度降低了10%~20%,降低百分比随法向应力增大整体呈对数函数增大;峰值剪切位移增加了2%~40%,增加百分比随法向应力增大整体呈对数函数减小;(3)峰前循环剪切加卸载后,岩石节理残余剪切强度无明显变化,峰值剪切强度与残余剪切强度差值减小,峰后剪切应力做功损失百分比降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号