首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tongue Creek watershed lies on the south flank of Grand Mesa in western Colorado, USA and is a site with 1.5 km of topographic relief, heat flow of 100 mW/m2, thermal conductivity of 3.3 W m–1 °C–1, hydraulic conductivity of 10-8 m/s, a water table that closely follows surface topography, and groundwater temperatures 3–15°C above mean surface temperatures. These data suggest that convective heat transport by groundwater flow has modified the thermal regime of the site. Steady state three-dimensional numerical simulations of heat flow, groundwater flow, and convective transport were used to model these thermal and hydrological data. The simulations provided estimates for the scale of hydraulic conductivity and bedrock base flow discharge within the watershed. The numerical models show that (1) complex three-dimensional flow systems develop with a range of scales from tens of meters to tens of kilometers; (2) mapped springs are frequently found at locations where contours of hydraulic head indicate strong vertical flow at the water table, and; (3) the distribution of groundwater temperatures in water wells as a function of surface elevation is predicted by the model.  相似文献   

2.
东北某些地区长期存在着一定规模的地下冻土,在地下水源热泵的运行中可视为天然冷源。天然冷源对地下水源热泵的利用产生一定的影响。为了提高地下水源热泵运行效率,运用室内外实验和数值模拟方法探寻冷源对地下水源热泵影响规律。对加格达奇地区的冷源场地进行了室内热物性试验和现场岩土热响应试验。研究表明:该地区砂、砾的热物性参数(比热容、导热系数)随深度增加呈现离散现象,砂岩、花岗岩热物性参数变化不大;岩土体导热系数花岗岩最大,砾、砂最小,砂岩居中;比热容受深度影响波动较大,特别是不同深度的砾、砂层比热容差别较大。依据该场地的地质条件,构建数值模型,开展模拟研究,对多井抽灌系统下热突破现象以及影响范围进行模拟分析,模拟结果显示冷源对该场地地下水源热泵的影响范围在150 m以内,而且在小于75 m的范围内对地下水源热泵的影响最为显著,为未来该地区地下水源热泵的设计、选址提供理论基础和参考依据。  相似文献   

3.
The backfilling materials of borehole heat exchangers (BHE), particularly the grout material, must provide a suitable thermal contact and ensure durability to the induced thermal stresses because of the heat loading. In this paper, the thermal stresses that occurred in BHEs because of heat injection or extraction is investigated with an analytical solution of a hollow cylinder model that is adapted for time‐dependent heat loading, the geometry of a BHE, and the thermo‐mechanical properties of surrounding ground conditions. Firstly, the hollow cylinder model is solved with the considered boundary conditions in 2D plane stress. Secondly, the temperature differences at the inner and outer circles of the cylinder are evaluated with the heat line source models for continuous and discontinuous loading to observe the impact of the heat loading schedule. The developed analytical solution for thermal stress investigation is validated with numerical models. It is demonstrated that the analytical solutions agree well with numerical results for two types of BHE configurations (co‐axial and single U‐shaped pipes). Furthermore, the calculated maximum stresses are compared with the tensile strength of grout materials obtained from Brazilian tests. It is predicted that the thermal contraction of the grout, partially constrained by the surrounding rock, generates tensile stresses that may lead to cracking in the BHE. According to the results, the stiffness of rock has a primary role on the developed tensile stresses, and the relationship between the thermal conductivity of the ground and of the grout induces a proportional impact on the magnitude of thermal stresses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Ground-source geothermal systems are drawing increasing attention and popularity due to their efficiency, sustainability and being implementable worldwide. Consequently, design software and regulatory guidelines have been developed. Interaction with the subsurface significantly affects the thermal performance, sustainability, and impacts of such systems. Reviewing the related guidelines and the design software, room for improvement is evident, especially in regards to interaction with groundwater movement. In order to accurately evaluate the thermal effect of system and hydrogeological properties on a borehole heat exchanger, a fully discretized finite-element model is used. Sensitivity of the loop outlet temperatures and heat exchange rates to hydrogeological, system and meteorological factors (i.e. groundwater flux, thermal conductivity and volumetric heat capacity of solids, porosity, thermal dispersivity, grout thermal conductivity, background and inlet temperatures) are analyzed over 6-month and 25-year operation periods. Furthermore, thermal recovery during 25  years after system decommissioning has been modeled. The thermal plume development, transport and dissipation are also assessed. This study shows the importance of subsurface thermal conductivity, groundwater flow (flux > 10?7 m/s), and background and inlet temperature on system performance and impact. It also shows the importance of groundwater flow (flux > 10?8 m/s) on thermal recovery of the ground over other factors.  相似文献   

5.
Prediction of time‐dependent groundwater inflow into a shield tunnel is a significant task facing engineers. Published literature shows that there is no available method with which to predict time‐dependent groundwater inflow into a tunnel. This paper presents a prediction approach for time‐dependent groundwater inflow into a tunnel in both anisotropic and isotropic confined aquifers. The proposed solution can predict groundwater inrush from the tunnel cutting face. To obtain the time‐dependent groundwater flow quantity, the concept of a horizontal‐well pumping test based on the theory of a point source is adopted. Multiple factors, eg, drawdown, thickness of aquifer, conductivities, and specific storage, are taken into account. Both groundwater inflow to the cross section of a tunnel face in the yz plane and total tunnel inflow are obtained. Based on the proposed approach, the time‐dependent groundwater inflow to a tunnel can be classified as either a uniform or non‐uniform flow. The proposed approach is applied to analyse groundwater inflow of 2 field cases: (1) Metro line No. 7, Guangzhou City and (2) an underground tunnel in Huizhou, Guangdong Province. Results show that the proposed method can predict the measured values, and drawdown‐related curves are also derived. In addition, the calculated results also reveal that the effect of hydraulic conductivity kz on the total groundwater inflow differs from that of hydraulic conductivities kx and ky and the thickness of the aquifer.  相似文献   

6.
This study investigates the hydraulic conductivity field and the groundwater flow pattern as predicted by a calibrated steady state groundwater flow model for the Keta Strip, southeastern Ghana. The hydraulic conductivity field is an important parameter in evaluating aquifer properties in space, and in general basin-wide groundwater resources evaluation and management. This study finds that the general hydraulic conductivity of the unconsolidated unconfined aquifer system of the Keta Strip ranges between 2 m/d and 20 m/d, with an average of 15 m/d. The spatial variation in horizontal hydraulic conductivity appears to take the trend in the variations in the nature of the material in space. Calibrated groundwater recharge suggests that 6.9–34% of annual precipitation recharges the shallow aquifer system. This amount of recharge is significant and suggests high fortunes in terms of groundwater resources development for agriculture and industrial activities in the area. A spatial distribution of groundwater recharge from precipitation is presented in this study. The spatial pattern appears to take the form of the distribution in horizontal hydraulic conductivity, and suggests that the vertical hydraulic conductivity takes the same pattern of spatial variation as the horizontal hydraulic conductivity. This is consistent with observations in other areas. The resulting groundwater flow is dominated by local flow systems as the unconfined system is quite shallow. A general northeast – southwest flow pattern has been observed in the study area.  相似文献   

7.

Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer’s hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant’s groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  相似文献   

8.
The hydraulic conductance of a large fault zone has been estimated by calibrating a regional groundwater flow model. Drops in groundwater elevations of over 80 m have been observed along a 15-km length of the Mission Creek fault, California, USA. The large drops in elevation are attributed to the reduced hydraulic conductivity of the fault materials. A conceptual and numerical model of the two hydrologic subbasins in Desert Hot Springs, separated by the Mission Creek fault, was developed. The model was used to estimate the hydraulic conductance along the fault. The parameter estimation involved calibrating the model with observed groundwater elevations from over 40 locations over a 60-year period. The fault hydraulic conductances were estimated assuming a linear trend in the fault length, yielding variations in the fault hydraulic conductance of about an order of magnitude along the fault length (2?×?10?11–4?×?10?10 1/s). When an average fault thickness of 35 m is assumed, the fault hydraulic conductivity values are estimated to be from three to five orders of magnitude lower than the surrounding materials. A sensitivity analysis indicated that assumptions made in the conceptual model do not significantly affect estimated fault hydraulic conductances.  相似文献   

9.
Structural relief of the pre-Cenozoic basement and groundwater flow have been found to be the two most important factors affecting the heat flow density determinations in the Liaohe Basin. The reason for the significant effect of basement relief upon subsurface temperature and heat flow density patterns is the strong contrast of thermal conductivity between basement rock and the sedimentary cover. Simplified model computations indicate that the heat flow density in the region of basement uplift is 1.35 times greater than that in the region of depressions. Field observations indicate that the temperatures at shallow depths (less than 1200 m) are strongly perturbed by groundwater flow leading to reduced temperatures and geothermal gradients in the Neogene formation. Comparison of observed and calculated gradients reveals that reduced gradients and heat flow density occur in the groundwater recharge area whereas these parameters are enhanced in the discharge area. After taking the perturbing factors into account, a regional heat flow value of 65 ± 9 mW/m2 is obtained.  相似文献   

10.
Fractured-rock aquifers display spatially and temporally variable hydraulic conductivity generally attributed to variable fracture intensity and connectivity. Empirical evidence suggests fracture aperture and hydraulic conductivity are sensitive to in situ stress. This study investigates the sensitivity of fractured-rock hydraulic conductivity, groundwater flow paths, and advection-dominated transport to variable shear and normal fracture stiffness magnitudes for a range of deviatoric stress states. Fracture aperture and hydraulic conductivity are solved for analytically using empirical hydromechanical coupling equations; groundwater flow paths and ages are then solved for numerically using groundwater flow and advection-dispersion equations in a traditional Toth basin. Results suggest hydraulic conductivity alteration is dominated by fracture normal closure, resulting in decreasing hydraulic conductivity and increasing groundwater age with depth, and decreased depth of long flow paths with decreasing normal stiffness. Shear dilation has minimal effect on hydraulic conductivity alteration for stress states investigated here. Results are interpreted to suggest that fracture normal stiffness influences hydraulic conductivity of hydraulically active fractures and, thus, affects flow and transport in shallow (<1 km) fractured-rock aquifers. It is suggested that observed depth-dependent hydraulic conductivity trends in fractured-rock aquifers throughout the world may be partly a manifestation of hydromechanical phenomena.  相似文献   

11.
探针法测定冻土的导水率   总被引:1,自引:0,他引:1  
  相似文献   

12.
地温场是采矿活动的重要地质条件之一。基于332井次钻孔测温数据、地层岩性及其组合特征、构造地质及水文地质条件等,探讨了寺家庄井田地温负异常及其主控因素。结果表明:寺家庄井田现代地温场受地层及热导率、地下水和开放型构造等三大地质因素控制。地层砂岩所占比例较高,其导热性强、热传导快,不易造成局部聚热,是井田地温值整体偏低的主要控制因素,区域地下水的强径流状态是现代地温整体偏低的宏观控制因素;地下水径流状态对围岩温度起到"制冷"和诱发构造通道散失双重控制作用,是研究区地温负异常和地温场分异的重要控制因素,开放型张性较大正断层、陷落柱不但为地温的散失提供了有利通道,亦为邻近含水层间地下水循环、径流对围岩温度的"制冷"提供了有利条件,是井田地温负异常和地温场分异的关键控制因素。   相似文献   

13.
Channel sediment and alluvial aquifer hydraulic properties exert a major control on river–groundwater interactions. Channels and floodplains are often asymmetrical, resulting in differences in sediment hydraulic properties across the river. Floodplain asymmetry is common along Coastal Plain rivers in South Carolina and North Carolina, USA. The Tar River, North Carolina, has an asymmetrical valley. The study objective was to characterize the effects of floodplain asymmetry and geological controls on river–groundwater interactions. Floodplain and river channel sediments adjacent to the river were characterized with split spoon cores and hand auger samples along a 22-km reach. Hydrogeology was characterized with 38 piezometers and water level recorders in and adjacent to the river. Ground penetrating radar was used to define the shallow stratigraphy. Channel sediments were significantly different between the north and south sides of the river. Hydraulic conductivity and groundwater inputs were greater on the side of the river (north) that contained more permeable fluvial deposits. Groundwater chemistry (δ18O, specific conductance) data also suggested greater exchange between surface water and groundwater on the north side of the river channel. A conceptual hydrogeological model illustrates that groundwater movement and contaminant transport to the river differs across the channel due to asymmetrical geology.  相似文献   

14.
Regional scale models of groundwater flow and transport often employ domain discretizations with grid blocks larger than typical scales of field data. For heterogeneous formations, this difference in scales is often handled by using effective (upscaled) parameters. We investigate the problem of upscaling hydraulic conductivity and transmissivity from a small scale of measurement to a larger scale of grid blocks. Transmissivity statistics is expressed in terms of statistics of hydraulic conductivity, and expressions for the effective (upscaled) hydraulic conductivity K eff and transmissivity T eff for steady state flow in confined heterogeneous aquifers are derived by means of stochastic averaging and perturbation analysis. These expressions reveal that the commonly used relation T eff = BK eff, where B is the confined aquifer thickness, is not generally valid.  相似文献   

15.
浅层地温能开发利用方式适宜性分区受地质条件、水文地质条件、岩石的导热性等因素控制。 依据长春市地层岩性特征、含水层分布及富水性和岩石导热性,将长春市区划分为3个地层结构区:贾家洼子-八里铺-兴隆沟基岩裂隙含水带以西区(1区),贾家洼子-八里铺-兴隆沟基岩裂隙含水带及其以东到伊通河西岸阶地陡坎区(2区)和伊通河谷地区(3区)。各区的综合导热系数实测值分别是1.168、1.401和1.612。对影响适宜性分区的相关因素进行分析,建立了地源热泵和地下水源热泵适宜区的评价指标体系,并提出了适宜区、较适宜区和不适宜区的划分标准。采用模糊综合评判法对3个地层结构区进行了适宜性评价。评价结果是1区适宜采用地源热泵开采浅层地热资源,2区和3区均适宜采用地下水源热泵开采浅层地热资源。  相似文献   

16.

Waterlogging (WL) refers to the process by which water flow is resisted in vertical and horizontal directions and thus water stagnates for a short or long span of time; it is induced by a combination of human and natural factors. In the southwestern region of Bangladesh, including Natore District, WL is a significant issue that needs to be addressed if agricultural activity is to be successful. This study aimed to identify surface WL in Natore District and to characterise the WL scenario in the study area in terms of hydrogeology. Waterlogged areas were identified with a geographic information system using satellite images corresponding to the premonsoon and postmonsoon periods. Using groundwater level data (1990–2017), the pre- and postmonsoon scenarios of the waterlogged areas were indicated by seasonal and perennial types of WL. Groundwater recharge scenarios were classified as long and short lag times. Most of the study area was characterised by thick clay or silty clay surficial layers with low water penetration rates, resulting from low porosity and low hydraulic conductivity. The cross-correlation between rainfall and groundwater level revealed the response of groundwater to rainfall, with a lag time of 1–5 months. Long lag time areas exhibited slow groundwater recharge and significant groundwater level fluctuation, with lower hydraulic conductivity values of 49.37–76.24 m/day. In contrast, short lag time areas displayed rapid groundwater recharge and small groundwater fluctuation due to a good proportional relationship with rainfall and higher hydraulic conductivity values of 74.74–117.79 m/day.

  相似文献   

17.
Zhou  Jian  Luo  Ling-Hui  Yu  Liang-Gui  Nangulama  Horris 《Acta Geotechnica》2020,15(12):3357-3370

The hydraulic conductivity k, one of the most important engineering properties of soft clay, plays a great role during the whole life cycle of underwater tunnel. Therefore, it is necessary to systematically study the responses of k to the dynamic load under the background of the great development of geotechnical engineering in the world. In this study, a series of seepage tests after cyclic loading were conducted on reconstituted kaolin clay using a modified hollow cylinder apparatus. The influence of cyclic load on the permeability characteristics of soft clay was illustrated in two aspects. The cumulative axial deformation of clay induced by cyclic loading resulted in the smaller hydraulic conductivity of the specimens, and also, the dynamic load reconstructed the microstructure of clay and made the number of large pores getting decreased and the small pores increased. There was a positive correlation between the deformation of soil and the change of hydraulic conductivity, but the reconstruction effect was irregular with the frequency of dynamic load. The measured k values got affected at the beginning, this phenomenon appropriately explains the positive correlation between the number of cycles of dynamic load and the change of hydraulic conductivity.

  相似文献   

18.
利用层次分析(AHP)法,以MapGIS为平台,考虑了地质条件、地下水动力条件及地层热物性参数等因素,对沈阳市辖9区范围内地埋管地源热泵适宜性进行了评价.建立了评价指标体系,主要对第四系厚度、卵石层厚度、地下水埋深、地下水径流条件、地层热传导系数、比热容等6项指标进行权重计算及综合评分,根据评分将全区划分为适宜区、较适宜区和不适宜区.该评价结果为沈阳市浅层地温开发利用提供技术支持.  相似文献   

19.
铁路碎石道碴层导热系数测试研究   总被引:13,自引:3,他引:13  
张建明  盛煜  赖远明 《冰川冻土》2003,25(6):628-631
采用稳态比较法,对铁路碎石道碴层的导热系数进行了测试.试验在常温条件下,分别对底部加热及顶部加热两种情况进行了研究.结果表明:当碎石道碴层顶、底面之间的温差较小时,顶部加热及底部加热两种试验条件下测得的导热系数基本相同;而当碎石道碴层顶、底面温差较大时,底部加热条件下的导热系数明显地大于顶部加热条件下的导热系数.在底部加热条件下,碎石道碴层的导热系数随温差的增大而逐渐增大.碎石道碴层具有吸热和放热条件下传热的不对称性,合理地利用碎石道碴层的这一传热特性,可望对路基下多年冻土起到积极的保护作用。  相似文献   

20.
主动加热型分布式温度感测技术(AH-DTS)可通过植入土体中的光缆实现不同层位土体导热系数的分布式连续测量,但AH-DTS光缆导热系数测量方法的准确性和敏感性有待进一步研究。通过室内试验,对比了碳纤维加热感测光缆(CFHC)和铜网加热感测光缆(CMHC)的热响应过程,通过数值模拟验证了光缆结构对导热系数测量结果的影响。研究结果表明:(1)CFHC和CMHC的热响应过程可通过微分法分为光缆内部传热、纤-土过渡以及土体稳定传热3个阶段,光缆结构差异导致传热速率不同,使得CFHC导热系数测量初始时刻比CMHC提前100 s;(2)光缆尺寸与比热容差异下CFHC的升温值更高,相同测温精度CFHC的导热系数测量结果较CMHC更加稳定准确;(3)增大加热功率或延长加热时间均会提高CFHC和CMHC测量土体导热系数的准确性。研究成果为该技术的进一步完善和推广提供了重要依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号