首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of transport processes of heat and moisture in soils of arid zones is vital to understanding the environmental and economic impacts of many activities: agriculture, waste disposal, geoenvironmental practices and earth sciences. Through extensive review and study on the different aspects of coupled transfer processes in swelling porous media, a general mathematical model for coupled heat, moisture, air flow and deformation problems in clayey soils is proposed in a consistent and unified manner. The model is characterized by the presence of a deformable solid matrix filled with two fluid phases (liquid water and air). In the proposed model, both pore water and air transfers are assumed to be governed by the generalized Darcy’s law. Fully coupled, non-linear partial differential equations are established and then solved by using a Galerkin weighted residual approach in space domain and an implicit integrating scheme in time domain. The obtained model has been finally validated by means of some case tests for the prediction of the thermo-hydro-mechanical behaviour of unsaturated swelling soils. The calculated relative errors between experimental and numerical results are 3% for temperature and 7% for stresses. Consequently, the developed numerical model predicts satisfactory results, compared to experimental test measures. The model is applicable to two-dimensional problems with various initial and boundary conditions; non-linear soil parameters can be easily included in this model.  相似文献   

2.
A non-linear seismic response analysis method for 2-D saturated soil–structure system with an absorbing boundary is presented. According to the 3-D strain space multimechanism model for the cyclic mobility of sandy soil, a constitutive expression for the plane strain condition is first given. Next, based on Biot's two-phase mixture theory, the finite element equations of motion for a saturated soil–structure system with an absorbing boundary during earthquake loadings are derived. A simulation of the shaking table test is performed by applying the proposed constitutive model. The effectiveness of the absorbing boundary is examined for the 2-D non-linear finite element models subjected to random inputs. Finally, a numerical seismic response analysis for a typical saturated soil–structure system is performed as an application of the proposed method.  相似文献   

3.
The development of a numerical procedure for the finite element analysis of anchors dynamically penetrating into saturated soils is outlined, highlighting its unique features and capabilities. The mechanical behaviour of saturated porous media is predicted using mixture theory. An algorithm is developed for frictional contact in terms of effective normal stress. The contact formulation is based on a mortar segment-to-segment scheme, which considers the interpolation functions of the contact elements to be of order N, thus overcoming a numerical deficiency of the so-called node-to-segment (NTS) contact algorithm. The nonlinear behaviour of the solid constituent is captured by the Modified Cam Clay soil model. The soil constitutive model is also adapted so as to incorporate the dependence of clay strength on strain rate. An appropriate energy-absorbing boundary is used to eliminate possible wave reflections from the artificial mesh boundaries. To illustrate the use of the proposed computational scheme, simulations of dynamically penetrating anchors are conducted. Results are presented and discussed for the installation phase followed by ‘setup’, i.e., pore pressure dissipation and soil consolidation. The results, in particular, reveal the effects of strain rate on the generation of excess pore pressure, bearing resistance and frictional forces. The setup analyses also illustrate the pattern in which pore pressures are dissipated within the soil domain after installation. Hole closure behind a dynamic projectile is also illustrated by an example.  相似文献   

4.
滑坡形成是一个典型的岩土变形破坏时效过程,低速滑坡时效过程尤为显著。基于流变理论,建立反映滑坡变形破坏发展过程的本构模型、预测滑坡活动趋势,一直是国内外滑坡研究的基本途径和难点问题之一。然而,目前国内外已有的多数流变模型仅能反映滑坡岩土蠕变的第一、第二阶段,不能刻画滑坡岩土蠕变的第三阶段(加速蠕变阶段)。本文基于滑带在滑坡中的作用以及滑带岩土剪切蠕变发展的累进性和非线性特征,借助损伤理论,在FLAC3D内置的CVISC流变本构模型中引入非线性损伤黏塑性元件,构建了可描述滑坡加速蠕变过程的非线性损伤流变本构模型,依据类比原理建立了改进的CVISC三维差分模型,通过FLAC3D开放的用户接口实现了本构模型的二次开发,并将改进的CVISC模型用于长期缓慢滑移、伴随间歇性剧烈活动的甘肃舟曲泄流坡数值模拟中。模拟结果显示,该模型不仅呈现了滑坡的加速蠕变特征,而且揭示的滑坡活动特征与其曾经出现的活动特征基本一致,从而证实基于非线性损伤理论的改进CVISC模型具有较好的有效性。  相似文献   

5.
The paper considers a plane joint or interface element suitable for implementation into a standard non-linear finite element code. The element is intended to model discontinuities with rough contact surfaces, such as rock joints, where dilatant behaviour is present. Of particular concern is the formulation of a constitutive model which fully caters for all possible histories of opening, closing and sliding (accompained by dilation or contraction) in any direction. The non-linear incremental constitutive equations are formulated in a manner appropriate for a back-ward difference discretization in time along the path of loading. The advantage of such an approach is that no essential distinction need be drawn between opening, closing and sliding. Further, a convenient formulation of the constitutive equations is facilitated by representing the different contact conditions in relative displacement space. The state diagram in relative displacement space, however, changes from one time step to the next, and evolution equations for the updating must be formulated. These concepts are illustrated for two rock-joint models: a sawtooth asperity model and a limited dilation model. The models are based on a penalty formulation to enforce the contact constraints, and explicit equations for the tangent stiffness matrix and for the corrector step of the standard Newton–Raphson iterative algorithm are derived. These equations have been implemented as an user element into the finite element code ABAQUS7. Three examples are presented to illustrate the predictions of the formulation.  相似文献   

6.
An iterative method is presented for solving a fully coupled and implicit formulation of fluid flow in a porous medium. The mathematical model describes a set of fully coupled three-phase flow of compressible and immiscible fluids in a saturated oil reservoir. The finite element method is applied to obtain the simultaneous solution (SS) for the resulting highly non-linear partial differential equations where fluid pressures are the primary unknowns. The final discretized equations are solved iteratively by using a fully implicit numerical scheme. Several examples, illustrating the use of the present model, are described. The increased stability achieved with this scheme has permitted the use of larger time steps with smaller material balance errors.  相似文献   

7.
对固结系数的非线性变化进行了理论分析,推导了固结系数的非线性控制方程,指出了γ因子对固结系数非线性变化的影响。考虑到固结系数、渗透系数、压缩系数整体变化以及双层软土一维非线性固结方程求解困难,建立了差分格式的双层软土一维非线性固结差分方程,利用差分法对该方程进行了求解,为工程中复杂方程的计算提供了一种新的方法。研究表明:固结系数并不是决定双层软土非线性固结性状的唯一指标,须综合考虑各种因素的影响。   相似文献   

8.
A double exponential fitting model (DEFM) capable of expressing the non-linear stress-stiffness relationship of geomaterials has been proposed by Shibuya et al. (1997). The model comprises two material constants; the elastic stiffness at very small strains and the strength, together with other free parameters to determine the complete stress-stiffness relationship. In this paper, the capability of the original function used for DEFM in simulating the tangent stiffness-stress relationship of geomaterials is first discussed. Second, the methods for determining the free model parameters, as well as its conversion to obtain a stress-strain relationship are proposed. The applicability of DEFM to predicting non-linear stress-stiffness relationship is examined in detail in a total of forty-nine fitting cases of compression test data on sedimentary rock, artificial soft rock and soft clay. It is found that the DEFM is effective in expressing the non-linear stress-stiffness relationship of various kinds of geomaterials at small to intermediate strains, say less than 0.5%. The superiority of this model compared to other fitting models currently in use is also demonstrated in some of the fitting cases.  相似文献   

9.
This paper discusses the excess pore‐air and pore‐water pressure dissipations and the average degree of consolidation in the 2D plane strain consolidation of an unsaturated soil stratum using eigenfunction expansion and Laplace transformation techniques. In this study, the application of a constant external loading on a soil surface is assumed to immediately generate uniformly or linearly distributed initial excess pore pressures. The general solutions consisting of eigenfunctions and eigenvalues are first proposed. The Laplace transform is then applied to convert the time variable t in partial differential equations into the Laplace complex argument s. Once the domain is obtained, a simplified set of equations with variable s can be achieved. The final analytical solutions can be computed by taking a Laplace inverse. The proposed equations predict the two‐dimensional consolidation behaviour of an unsaturated soil stratum capturing the uniformly and linearly distributed initial excess pore pressures. This study investigates the effects of isotropic and anisotropic permeability conditions on variations of excess pore pressures and the average degree of consolidation. Additionally, isochrones of excess pore pressures along vertical and horizontal directions are presented. It is found that the initial distribution of pore pressures, varying with depth, results in considerable effects on the pore‐water pressure dissipation rate whilst it has insignificant effects on the excess pore‐air pressure dissipation rate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In the present paper, a new foundation model has been proposed by introducing a stretched rough elastic membrane in the Pasternak shear layer sandwiched between two spring layers which is an extension of Kerr model. Considering the equilibrium of different elements, the equations governing the elastic settlement response of the model are derived. Finite difference scheme has been employed to solve the governing equations. The parametric studies carried out show the effect of several parameters on the elastic settlement response of the model. The proposed model is well suited for idealizing the behavior of geosynthetic-reinforced granular fill—soft soil system besides other applications.  相似文献   

11.
This paper outlines the development as well as implementation of a numerical procedure for coupled finite element analysis of dynamic problems in geomechanics, particularly those involving large deformations and soil-structure interaction. The procedure is based on Biot’s theory for the dynamic behaviour of saturated porous media. The nonlinear behaviour of the solid phase of the soil is represented by either the Mohr Coulomb or Modified Cam Clay material model. The interface between soil and structure is modelled by the so-called node-to-segment contact method. The contact algorithm uses a penalty approach to enforce constraints and to prevent rigid body interpenetration. Moreover, the contact algorithm utilises a smooth discretisation of the contact surfaces to decrease numerical oscillations. An Arbitrary Lagrangian–Eulerian (ALE) scheme preserves the quality and topology of the finite element mesh throughout the numerical simulation. The generalised-α method is used to integrate the governing equations of motion in the time domain. Some aspects of the numerical procedure are validated by solving two benchmark problems. Subsequently, dynamic soil behaviour including the development of excess pore-water pressure due to the fast installation of a single pile and the penetration of a free falling torpedo anchor are studied. The numerical results indicate the robustness and applicability of the proposed method. Typical distributions of the predicted excess pore-water pressures generated due to the dynamic penetration of an object into a saturated soil are presented, revealing higher magnitudes of pore pressure at the face of the penetrometer and lower values along the shaft. A smooth discretisation of the contact interface between soil and structure is found to be a crucial factor to avoid severe oscillations in the predicted dynamic response of the soil.  相似文献   

12.
One proposed geothermal heat extraction scheme relies on water circulation in a large vertical crack created by hydraulic fracturing in a hot dry impermeable rock mass. Water flow, heat convection and crack opening widths are analysed by finite elements. Governing field equations of the problem are first set up rigorously and then various small terms are identified and neglected, retaining the effects of pressure gradient, buoyancy, velocity head (kinetic energy) and head loss due to viscous friction in the water flow equation, and the effects of heat convection in water and heat conduction in rock in the heat transfer equation. The finite element scheme for water flow is based on a variational principle that is typical for diffusion problems, and for heat transfer it is based on the method of least-square residuals. The system of differential equations is highly non-linear. The non-linear terms and coefficients are treated in the fiaite element analysis as constant; the finite element analysisof, the steady-state pressures, fluxes and temperatures is then iterated, evaluating all non-linear terms and coefficients on the basis of the solution obtained in the previous iteration. Numerically calculated fields at various times after the start ofcooling are presented. They indicate some features favourable for the geothermal scheme, such as formation of eddy currents, and downward flux of water toward hotter rock. However, other important questions would have to be solved to gain full understanding, of this proposed geothermal scheme.  相似文献   

13.
This paper presents semi-analytical solutions to Fredlund and Hasan’s one-dimensional consolidation for unsaturated soils under symmetric semi-permeable drainage boundary conditions. Two variables are introduced to transform two coupled governing equations of pore-air and pore-water pressures into an equivalent set of partial differential equations, which are easily solved by the Laplace transform. Then, the pore-air and pore-water pressures, and soil settlement are obtained in the Laplace domain. Crump’s method is adopted to perform the inverse Laplace transform in order to obtain semi-analytical solutions in time domain. It is shown that the present solution is more applicable to various types of drainage boundary conditions, and in a good agreement with existing solutions from the literature. Furthermore, several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with traditional drainage boundary (single or double), and single-sided and double-sided semi-permeable drainage boundaries. Finally, it illustrates the changes in pore-air and pore-water pressures and soil settlement with time at different values of symmetric semi-permeable drainage boundary conditions parameters. In addition, parametric studies are conducted by the variations of pore-air and pore-water pressures at different ratios of air-water permeability coefficient and the depth.  相似文献   

14.
仇浩淼  夏唐代  郑晴晴  周飞 《岩土力学》2018,39(11):4053-4062
基于Leclaire对饱和双相孔隙弹性介质Biot模型的扩展,研究含有两种不同固相组分的三相多孔弹性介质中体波的传播特性。以饱和冻土为例,分析了各相体积分数、颗粒形状,接触参数等因素对波动方程中惯性参数、黏性参数、刚度参数的影响;对该三相介质模型进行了退化,分析了孔隙中只含液态水或固态冰时体波的特性;以饱和冻土为例,通过数值计算,探讨了饱和冻土中体波的相速度和衰减系数与胶结参数、接触参数、频率、饱和度、孔隙率等参数的关系。结果表明:与一般的饱和土不同,饱和冻土中存在5种体波,即3种纵波和2种横波;5种体波均具有弥散性和衰减性,且P1波、S1波弥散性和衰减性远小于P2、P3、S2波;胶结参数、饱和度、孔隙率对5种体波的传播特性影响显著,接触参数对传播特性影响较小。  相似文献   

15.
Numerous mathematical models have been proposed in the research literature to represent soil–water characteristic curve data. A number of proposed mathematical models are summarized and the significance of each of the associated soil parameters is illustrated. The advantages and disadvantages of the various mathematical models are outlined. The derivatives for each of the model equations are presented along with comments regarding the efficiency of the best-fit regression procedures.The models using three soil parameters models proved to be superior for representing the wide range of soil suctions required in solving geotechnical problems. Regression analyses using three soil parameters were shown to be numerically more stable, converging with a reasonable number of iterations.  相似文献   

16.
桩承式加筋路堤的现场试验及数值分析   总被引:4,自引:0,他引:4  
费康  刘汉龙 《岩土力学》2009,30(4):1004-1012
对一桩体面积置换率为8.7 %的低置换率桩承式加筋路堤进行了现场试验及三维有限元分析。现场主要进行了桩、土荷载分担,孔压、沉降及侧向水平变形等内容的观测。将观测数据与常规设计方法及三维有限元分析结果进行了对比研究,在此基础上对设计方法的适用性进行了分析。研究结果表明,路堤填土的土拱效应造成荷载向桩体转移,这种荷载转移大幅度减小了在软土层中产生的超孔隙水压力。当填土高度大于2.5 m时,土拱效应的应力折减系数可用Russell和Pierpoint或Hewlett和Randolph提出的土拱效应分析方法进行计算,其结果与三维有限元分析也较相符,但在路堤高度较小时,只有Russell和Pierpoint方法与实测结果相接近。路堤施工过程中,实测的水平变形与沉降之比仅为0.2左右,这表明采用桩承式加筋路堤不仅可减小沉降,而且可减小水平向的变形,提高路堤的稳定性。  相似文献   

17.
范静海  栾茂田  黎勇  叶祥记 《岩土力学》2004,25(Z2):154-159
针对多体相互作用体系的非连续变形分析问题和接触问题,采用Mohr-Coulomb屈服准则和关联流动法则以及接触界面上的非线性应力分布模式,考虑接触界面特性提出了非线性接触力元模型,以结点位移和界面相互接触应力同时作为独立未知变量,建立了离散系统的总体控制方程.进而,通过数值求解能够直接确定变形体内的应力与变形、界面上的接触应力与离散体的位移与运动.将这种以接触力元为基础的多体系统分析方法具体应用于基础与地基相互作用分析,通过数值计算与分析探讨了地基与基础的相对刚度、荷载大小及其偏心距、地基与基础间界面力学参数对接触界面的应力分布和地基变形的影响,所得结果为工程中考虑基础与地基相互作用影响的设计与分析提供了参考依据.  相似文献   

18.
The problem of plates on consolidating soil is considered. Biot's three-dimensional consolidation theory, the generalization of Terzaghi's model, is employed to account for the consolidation process. A mathematical model is developed and the differential equations governing the system together with the proper boundary conditions are derived. A variational formulation of the problem and a convenient approximate method of solution are also presented. For numerical analysis, the problem of a rectangular plate on consolidating soil under various loading conditions is numerically solved and the effects of various physical factors on the settlements and the pore pressures are studied.  相似文献   

19.
A finite element procedure is developed to accurately locate the free surface of unconfined seepage flow through porous media. The free surface is taken as the boundary between wet and dry soils, with flow in the saturated region characterized by Darcy's law. The method involves equations and meshing which are fully consistent with a general formulation for geotechnical engineering problems involving simultaneous solution of pore fluid pressures and soil skeleton displacements. Accuracy and versatility of the proposed procedure are demonstrated by solving various unconfined seepage flow problems through earth structures. Free surfaces and flownets are presented for the calculated flow fields.  相似文献   

20.
A continuum representation for soil which incorporates the concepts of hypoelasticity and critical state theory is proposed. General, three-dimensional constitutive equations are formulated to relate specific volume, stress, rate of deformation and rate of change of stress, resulting in a mathematical material model which exhibits phenomenological features typical of soil response. The general constitutive equations are specialized to represent the particular cases of isotropic compression, constant, volume deformation, uniaxial compression and biaxial deformation. Methods are suggested for determining the model parameters to represent a specific soil using conventional triaxial test data. Comparisons of stress-strain response with published experimental data are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号