首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
There are still relatively few hydrochemical studies of glacial runoff and meltwater routing from the high latitudes, where non-temperate glacier ice is frequently encountered. Representative samples of glacier meltwater were obtained from Scott Turnerbreen, a ‘cold-based’ glacier at 78° N in the Norwegian high Arctic archipelago of Svalbard, during the 1993 melt season and analysed for major ion chemistry. Laboratory dissolution experiments were also conducted, using suspended sediment from the runoff. Significant concentrations of crustal weathering derived SO2−4 are present in the runoff, which is characterized by high ratios of SO2−4: (SO2−4+HCO3) and high p(CO2). Meltwater is not routed subglacially, but flows to the glacier terminus through subaerial, ice marginal channels, and partly flows through a proglacial icing, containing highly concentrated interstitial waters, immediately afront the terminus. The hydrochemistry of the runoff is controlled by: (1) seasonal variations in the input of solutes from snow- and icemelt; (2) proglacial solute acquisition from the icing; and (3) subaerial chemical weathering within saturated, ice-cored lateral moraine adjoining drainage channels at the glacier margins, sediment and concentrated pore water from which is entrained by flowing meltwater. Diurnal variations in solute concentration arise from the net effects of variable sediment pore water entrainment and dilution in the ice marginal streams. Explanation of the hydrochemistry of Scott Turnerbreen requires only one major subaerial flow path, the ice marginal channel system, in which seasonally varying inputs of concentrated snowmelt and dilute icemelt are modified by seepage or entrainment of concentrated pore waters from sediment in lateral moraine, and by concentrated interstitial waters from the proglacial icing, supplied by leaching, slow drainage at grain intersections or simple melting of the icing itself. The ice marginal channels are analogous neither to dilute supra/englacial nor to concentrated subglacial flow components. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
Moraines that dam proglacial lakes pose an increasing hazard to communities in the Andes and other mountain ranges. The moraines are prone to failure through collapse, overtopping by lake waters or the effect of displacement waves resulting from ice and rock avalanches. Resulting floods have led to the loss of thousands of lives in the Cordillera Blanca mountains of Peru alone in the last 100 years. On 22 April 2002 a rock avalanche occurred immediately to the south‐west of Laguna Safuna Alta, in the Cordillera Blanca. The geomorphic evidence for the nature, magnitude and consequences of this event was investigated in August 2002. Field mapping indicated that the avalanche deposited 8–20 × 106 m3 of rock into the lake and onto the surface of the frontal region of Glaciar Pucajirca, which flows into the lake. Repeated bathymetric surveying indicated that ~5 × 106 m3 of this material was deposited directly into the lake. The immediate effect of this event was to create a displacement wave that gained in height as it travelled along the lake basin, overtopping the impounding moraine at the lake's northern end. To achieve overtopping, the maximum wave height must have been greater than 100 m. This, and subsequent seiche waves, caused extensive erosion of both the proximal and distal faces of the impounding terminal moraine. Further deep gullying of the distal face of this moraine resulted from the supply of pressurized water to the face via a relief overflow tunnel constructed in 1978. Two‐dimensional, steady‐state analysis of the stability of the post‐avalanche moraine rampart indicates that its proximal face remains susceptible to major large‐scale rotational failure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Recent understanding of chemical weathering in glacierized catchments has been focused on mid-latitude, Alpine catchments; comparable studies from the high latitudes are currently lacking. This paper attempts to address this deficiency by examining solute provenance, transport and denudation in a glacierized catchment at 78°N in the Svalbard High Arctic archipelago. Representative samples of snow, glacier ice, winter proglacial icing and glacier meltwater were obtained from the catchment during spring and summer 1993 and analysed for major ion chemistry. Seasonal variations in the composition of glacier meltwater occur and are influenced by proglacial solute acquisition from the icing at the very start of the melt season, and subsequently by a period of discharge of concentrated snowmelt caused by snowpack elution; weathering within the ice-marginal channels that drain the glacier, particularly carbonation reactions, continues to furnish solute to meltwater when suspended sediment concentrations increase later in the melt season. Partitioning the solute flux into its various components (sea-salt, crustal, aerosol and atmospheric sources) shows that c. 25% of the total flux is sea salt derived, consistent with the maritime location of the glacier, and c. 71% is crustally derived. Estimated chemical denudation, 160 meq m−2 a−1 sea salt-corrected cation equivalent weathering rate, is somewhat low compared with other studied glacierized catchments (estimates in the range 450–1000 meq m−2 a−1), which is probably attributable to the relatively short melt season and low specific runoff in the High Arctic. A positive relationship was identified between discharge and CO2 drawdown owing to carbonation reactions in turbid meltwater. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents detailed geomorphological and sedimentological investigations of small recessional moraines at Fjallsjökull, an active temperate outlet of Öræfajökull, southeast Iceland. The moraines are characterized by striking sawtooth or hairpin planforms, which are locally superimposed, giving rise to a complex spatial pattern. We recognize two distinct populations of moraines, namely a group of relatively prominent moraine ridges (mean height ~1.2 m) and a group of comparatively low-relief moraines (mean height ~0.4 m). These two groups often occur in sets/systems, comprising one pronounced outer ridge and several inset smaller moraines. Using a representative subsample of the moraines, we establish that they form by either (i) submarginal deformation and squeezing of subglacial till or (ii) pushing of extruded tills. Locally, proglacial (glaciofluvial) sediments are also incorporated within the moraines during pushing. For the first time, to our knowledge, we demonstrate categorically that these moraines formed sub-annually using repeat uncrewed aerial vehicle (UAV) imagery. We present a conceptual model for sub-annual moraine formation at Fjallsjökull that proposes the sawtooth moraine sequence comprises (i) sets of small squeeze moraines formed during melt-driven squeeze events and (ii) larger push moraines formed during winter re-advances. We suggest the development of this process-form regime is linked to a combination of elevated temperatures, high surface meltwater fluxes to the bed and emerging basal topography (a depositional overdeepening). These factors result in highly saturated subglacial sediments and high porewater pressures, which induces submarginal deformation and ice-marginal squeezing during the melt season. Strong glacier recession during the summer, driven by elevated temperatures, allows several squeeze moraines to be emplaced. This process-form regime may be characteristic of active temperate glaciers receding into overdeepenings during phases of elevated temperatures, especially where their englacial drainage systems allow efficient transfer of surface meltwater to the glacier bed near the snout margin. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

5.
We use cosmogenic 10Be concentrations in amalgamated rock samples from active, ice‐cored medial moraines to constrain glacial valley sidewall backwearing rates in the Kichatna Mountains, Alaska Range, Alaska. This dramatic landscape is carved into a small ~65 Ma granitic pluton about 100 km west of Denali, where kilometer‐tall rock walls and ‘cathedral’ spires tower over a radial array of over a dozen valley glaciers. These supraglacial landforms erode primarily by rockfall, but erosion rates are difficult to determine. We use cosmogenic 10Be to measure rockwall backwearing rates on timescales of 103–104 years, with a straightforward sampling strategy that exploits ablation‐dominated medial moraines. A medial moraine and its associated englacial debris serve as a conveyor system, bringing supraglacial rockfall debris from accumulation‐zone valley walls to the moraine crest in the ablation zone. We discuss quantitatively several factors that complicate interpretation of cosmogenic concentrations in this material, including the complex scaling of production rates in very steep terrain, the stochastic nature of the rockfall erosion process, the unmixed nature of the moraine sediment, and additional cosmogenic accumulation during transport of the sediment. We sampled medial moraines on each of three glaciers of different sizes and topographic aspects. All three moraines are sourced in areas with identical rock and similar sidewall relief of ~1 km. Each sample was amalgamated from 25 to 35 clasts collected over a 1‐km longitudinal transect of each moraine. Two of the glaciers yield similar 10Be concentrations (~1·6–2·2 × 104 at/g) and minimum sidewall slope‐normal erosion rates (~0·5–0·7 mm/yr). The lowest 10Be concentrations (8 × 103 at/g) and the highest erosion rates (1·3 mm/yr) come from the largest glacier in the range with the lowest late‐summer snowline. These rates are reasonable in an alpine glacial setting, and are much faster than long‐term exhumation rates of the western Alaska Range as determined by thermochronometric studies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Glacier recession and landform development in a debris‐charged glacial landsystem characterized by an overdeepening is quantified using digital photogrammetry, digital elevation model (DEM) construction and mapping of the Icelandic glacier Kvíárjökull for the period 1945–2003. Melting of ice‐cores is recorded by surface lowering rates of 0·8 m yr–1 (1945–1964), 0·3 m yr–1 (1964–1980), 0·015 m yr–1 (1980–1998) and 0·044 m yr–1 (1998–2003). The distribution/preservation of pushed and stacked ice‐cored moraine complexes are determined by the location of the long‐term glacial drainage network in combination with retreat from the overdeepening, into which glacifluvial sediment is being directed and where debris‐rich ice masses are being reworked and replaced by esker networks produced in englacial meltwater pathways that bypassed the overdeepening and connected to outwash fans prograding over the snout. Recent accelerated retreat of Kvíárjökull, potentially due to increased mass balance sensitivity, has made the snout highly unstable, especially now that the overdeepening is being uncovered and the snout flooded by an expanding pro‐glacial, and partially supraglacial, lake. This case study indicates that thick sequences of debris‐charged basal ice/controlled moraine have a very low preservation potential but ice‐cored moraine complexes can develop into hummocky moraine belts in de‐glaciated terrains because they are related to the process of incremental stagnation, which at Kvíárjökull has involved periodic switches from transport‐dominant to ablation‐dominant conditions. Glacier recession is therefore recorded temporally and spatially by two suites of landforms relating to two phases of landform production which are likely typical for glaciers occupying overdeepenings: an early phase of active, temperate recession recorded by push moraines and lateral moraines and unconfined pro‐glacial meltwater drainage; and a later phase of incremental stagnation and pitted outwash head development initiated by the increasing topographic constraints of the latero‐frontal moraine arc and the increasing importance of the overdeepening as a depo‐centre. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The recently deglaciated environments in maritime permafrost regions are usually affected by very active paraglacial processes. Elephant Point is an ice‐free area of 1.16 km2 located in the SW of Livingston island (South Shetland Islands, Antarctica). Between 1956–2010 the retreat of the ice cap covering most part of this island has exposed 17.3% of the land surface in this peninsula. Two geomorphological units were identified in this new ice‐free area: a moraine extending from the western to the eastern coastlines and a relatively flat proglacial surface. The glacier in 1956 sat in contact with the northern slope of the moraine, but its accelerated retreat ‐ in parallel to the warming trend recorded in the Antarctic Peninsula ‐ left these areas free of glacier ice. Subsequently, the postglacial evolution was controlled by the relaxation phase typical of paraglacial systems. The typology and intensity of geomorphological processes show a significantly different dynamics between the southern and northern slopes of the moraine. This pattern is related to the different stage of paraglacial adjustment in both slopes. In the southern side, on coarser sediments, pronival ramparts, debris flows and alluvial fans are distributed, with a low to moderate activity of slope processes. In the northern side, mass wasting processes are extremely active on fine‐grained unconsolidated sediments. Ice‐rich permafrost is being degraded by thermokarst processes. Landslides and mudflows transfer large amounts of sediments down‐slope. The surface affected by retrogressive‐thaw slumps in the moraine has been quantified in 24,172 m2, which accounts for 9.6% of its surface. The abundance of kettle‐lakes is also indicative of the degradation of the ground ice. Paraglacial processes are expected to continue in the moraine and proglacial area in the near future, although their intensity and duration will depend on the magnitude and rate of future climate trends in the northern Antarctic Peninsula. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Recession of high‐mountain glaciers in response to climatic change frequently results in the development of moraine‐dammed glacial lakes. Moraine dam failure is often accompanied by the release of large volumes of water and sediment, termed a Glacial Lake Outburst Flood (GLOF). Chukhung Glacier is a small (~3 km2) receding valley glacier in Mt. Everest (Sagarmatha) National Park, Nepal. Unlike many Himalayan glaciers, which possess a thick mantle of supraglacial debris, its surface is relatively clean. The glacier terminus has receded 1.3 km from its maximum Holocene position, and in doing so provided the space for an ice‐contact moraine‐dammed lake to develop. The lake had a maximum volume of 5.5 × 105 m3 and drained as a result of breaching of the terminal moraine. An estimated 1.3 × 105 m3 of material was removed from the terminal moraine during breach development. Numerical dam‐breach modelling, implemented within a Generalised Likelihood Uncertainty Estimation (GLUE) framework, was used to investigate a range of moraine‐dam failure scenarios. Reconstructed outflow peak discharges, including failure via overtopping and piping mechanisms, are in the range 146–2200 m3 s‐1. Results from two‐dimensional hydrodynamic GLOF modelling indicate that maximum local flow depths may have exceeded 9 m, with maximum flow velocities exceeding 20 m s‐1 within 700 m of the breach. The floodwaters mobilised a significant amount of material, sourced mostly from the expanding breach, forming a 300 m long and 100 m wide debris fan originating at the breach exit. moraine‐dam. These results also suggest that inundation of the entire floodplain may have been achieved within ten minutes of initial breach development, suggesting that debris fan development was rapid. We discuss the key glaciological and geomorphological factors that have determined the evolution of a hazardous moraine‐dammed lake complex and the subsequent generation of a GLOF and its geomorphological impact. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

9.
Knowledge of the spatial and temporal variations in Alpine glaciations is essential for reconstructing the regional and global timing of ice ages. This study investigates glacial deposits at the mouth of the Muksu catchment in the northern Pamir using 10Be surface-exposure age dating. We sampled boulders from the furthest downstream recessional moraine (20 samples) and five lateral moraines (41 samples) near the former terminus of the Fedchenko Glacier, the longest (∼72 km) present-day Alpine glacier of the Pamir. After the identification of outliers, the boulder population of the recessional moraine yielded a mean exposure age of 17.5 ± 1.9 ka. The maximum exposure age of the lateral moraines, collected ∼5 km up-valley of the recessional moraine, is 18.2 ± 1.7 ka. The boulder ages reflect glacial deposition during the Last Glacial Maximum (Marine Isotope Stage 2) in the region; they are in accordance with published glacial deposition ages in the western Tian Shan.  相似文献   

10.
Glacier and permafrost hazards such as glacial‐lake outburst floods and rock–ice avalanches cause significant socio‐economic damages worldwide, and these processes may increase in frequency and magnitude if the atmospheric temperature rises. In the extratropical Andes nearly 200 human deaths were linked to these processes during the twentieth century. We analysed bibliographical sources and satellite images to document the glacier and permafrost dynamics that have caused socio‐economic damages in this region in historic time (including glacial lake outburst floods, ice and rock–ice avalanches and lahars) to unravel their causes and geomorphological impacts. In the extratropical Andes, at least 15 ice‐dammed lakes and 16 moraine‐dammed lakes have failed since the eighteenth century, causing dozens of floods. Some floods rank amongst the largest events ever recorded (5000 × 106 m3 and 229 × 106 m3, respectively). Outburst flood frequency has increased in the last three decades, partially as a consequence of long‐term (decades to centuries) climatic changes, glaciers shrinkage, and lake growth. Short‐term (days to weeks) meteorological conditions (i.e. intense and/or prolonged rainfall and high temperature that increased meltwater production) have also triggered outburst floods and mass movements. Enormous mass failures of glaciers and permafrost (> 10 × 106 m3) have impacted lakes, glaciers, and snow‐covered valleys, initiating chain reactions that have ultimately resulted in lake tsunamis and far‐reaching (> 50 km) flows. The eruption of ice‐covered volcanoes has also caused dozens of damaging lahars with volumes up to 45 × 106 m3. Despite the importance of these events, basic information about their occurrence (e.g. date, causes, and geomorphological impact), which is well established in other mountain ranges, is absent in the extratropical Andes. A better knowledge of the processes involved can help to forecast and mitigate these events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Holocene glaciers have contributed to an abundance of unstable sediments in mountainous environments. In permafrost environments, these sediments can contain ground ice and are subject to rapid geomorphic activity and evolution under condition of a warming climate. To understand the influence of ground ice distribution on this activity since the Little Ice Age (LIA), we have investigated the Pierre Ronde and Rognes proglacial areas, two cirque glacier systems located in the periglacial belt of the Mont Blanc massif. For the first time, electrical resistivity tomography, temperature data loggers and differential global positioning systems (dGPS) are combined with historical documents and glaciological data analysis to produce a complete study of evolution in time and space of these small landsystems since the LIA. This approach allows to explain spatial heterogeneity of current internal structure and dynamics. The studied sites are a complex assemblage of debris‐covered glacier, ice‐rich frozen debris and unfrozen debris. Ground ice distribution is related to former glacier thermal regime, isolating effect of debris cover, water supply to specific zones, and topography. In relation with this internal structure, present dynamics are dominated by rapid ice melt in the debris‐covered upper slopes, slow creep processes in marginal glacigenic rock glaciers, and weak, superficial reworking in deglaciated moraines. Since the LIA, geomorphic activity is mainly spatially restricted within the proglacial areas. Sediment exportation has occurred in a limited part of the former Rognes Glacier and through water pocket outburst flood and debris flows in Pierre Ronde. Both sites contributed little sediment supply to the downslope geomorphic system, rather by episodic events than by constant supply. In that way, during Holocene and even in a paraglacial context as the recent deglaciation, proglacial areas of cirque glaciers act mostly as sediment sinks, when active geomorphic processes are unable to evacuate sediment downslope, especially because of the slope angle weakness. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Rockwall slope erosion is defined for the upper Bhagirathi catchment using cosmogenic Beryllium-10 (10Be) concentrations in sediment from medial moraines on Gangotri glacier. Beryllium-10 concentrations range from 1.1 ± 0.2 to 2.7 ± 0.3 × 104 at/g SiO2, yielding rockwall slope erosion rates from 2.4 ± 0.4 to 6.9 ± 1.9 mm/a. Slope erosion rates are likely to have varied over space and time and responded to shifts in climate, geomorphic and/or tectonic regime throughout the late Quaternary. Geomorphic and sedimentological analyses confirm that the moraines are predominately composed of rockfall and avalanche debris mobilized from steep relief rockwall slopes via periglacial weathering processes. The glacial rockwall slope erosion affects sediment flux and storage of snow and ice at the catchment head on diurnal to millennial timescales, and more broadly influences catchment configuration and relief, glacier dynamics and microclimates. The slope erosion rates exceed the averaged catchment-wide and exhumation rates of Bhagirathi and the Garhwal region on geomorphic timescales (103−105 years), supporting the view that erosion at the headwaters can outpace the wider catchment. The 10Be concentrations of medial moraine sediment for the upper Bhagirathi catchment and the catchments of Chhota Shigri in Lahul, northern India and Baltoro glacier in Central Karakoram, Pakistan show a tentative relationship between 10Be concentration and precipitation. As such there is more rapid glacial rockwall slope erosion in the monsoon-influenced Lesser and Greater Himalaya compared to the semi-arid interior of the orogen. Rockwall slope erosion in the three study areas, and more broadly across the northwest Himalaya is likely governed by individual catchment dynamics that vary across space and time. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons, Ltd.  相似文献   

13.
Well-preserved Late Glacial moraines in the Barenduo and Yuqiongqu valleys on the eastern slope of the Samdainkangsang Peak present an opportunity to reconstruct glacier extents and examine the character of the climate during the Late Glacial stage in the Nyaiqentanggulha Mountains.This study employs a coupled mass-balance and ice-flow model to reconstruct the glacier extents in the two valleys and assess the magnitudes of temperature and precipitation change during the Late Glacial period.Model results indicate that during the Late Glacial,the Barenduo valley contained an ice volume of 1.67×10~8m~3,with the equilibrium-line altitude(ELA)being~5500 m asl;and the Yuqiongqu valley had an ice volume of 5.56×10~8 m~3,with the ELA being~5470 m asl.A climate scenario,temperature depression of 2.6-2.8℃and 60-70%,percent of modern(1981-2010)precipitation,can sustain both of the Late Glacial glacier extents in the two valleys.A 50%increase or decrease from modern precipitation would have been coupled with the respective Late Glacial temperature depressions of 1.6 and 3.0℃in the Barenduo valley,and 2.1 and 2.8℃in the Yuqiongqu valley.  相似文献   

14.
A new and more detailed analysis of the hypsometry of the Antarctic continent, based upon 1° digital data on ice thickness and surface and subglacial elevations, shows that Antarctica, even when deglaciated according to a simple Airy-isostatic model, is an unusual continent. It is the only one with a markedly bimodal hypsometric curve, and separation of the two modes shows that they are the single modes of West Antarctica (at ?450 m a.s.1.) and East Antarctica (at 950 m a.s.1.) respectively; the two parts of the continent are probably distinct tectonic entities. The modal height of East Antarctica is 700 m higher than that of the global ensemble of continents, suggesting that hotspot epeirogeny or a less well-known mechanism has affected its recent history. The age of this modal-height anomaly has important tectonic and especially climatic implications: it is equivalent to a 4–6°C cooling of the continental surface. The area of dry land after deglaciation is 10.5 × 106 km2; the volume of ice in Antarctica is estimated at 26.9 × 106 km3, and of ice in the Northern Hemisphere at 2.5 × 106 km3; these figures lead to a eustatic sea-level equivalent for present-day glacier ice of 68 m or somewhat less.  相似文献   

15.
The water storage and energy transfer roles of supraglacial ponds are poorly constrained, yet they are thought to be important components of debris‐covered glacier ablation budgets. We used an unmanned surface vessel (USV) to collect sonar depth measurements for 24 ponds to derive the first empirical relationship between their area and volume applicable to the size distribution of ponds commonly encountered on debris‐covered glaciers. Additionally, we instrumented nine ponds with thermistors and three with pressure transducers, characterizing their thermal regime and capturing three pond drainage events. The deepest and most irregularly‐shaped ponds were those associated with ice cliffs, which were connected to the surface or englacial hydrology network (maximum depth = 45.6 m), whereas hydrologically‐isolated ponds without ice cliffs were both more circular and shallower (maximum depth = 9.9 m). The englacial drainage of three ponds had the potential to melt ~100 ± 20 × 103 kg to ~470 ± 90 × 103 kg of glacier ice owing to the large volumes of stored water. Our observations of seasonal pond growth and drainage with their associated calculations of stored thermal energy have implications for glacier ice flow, the progressive enlargement and sudden collapse of englacial conduits, and the location of glacier ablation hot‐spots where ponds and ice cliffs interact. Additionally, the evolutionary trajectory of these ponds controls large proglacial lake formation in deglaciating environments. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
The sedimentology of proglacial Silt Lake was assessed by lake sediment coring and monitoring of lacustrine processes during a late‐summer period of high glacier melt to characterize sediment delivery from the heavily glacierized catchment and investigate the sediment trapping dynamics of this upland lake. A complete varve chronology was established for a distal basin of the lake which was exposed by Lillooet Glacier retreat between 1947 and 1962. The varve record showed decreasing sedimentation rates in the basin while the glacier retreated, and as the lake became free of ice contact in the early 1970s. Although recession has continued over recent decades, and glacier proximity to the lake has, therefore, continued decreasing, lacustrine sedimentation rates are now accelerating due to changing basin morphometry caused by delta progradation. Over shorter time scales, lake sedimentation patterns respond to changing runoff conditions, including late‐summer glacier melt intensity, intra‐annual flooding events, diumal runoff fluctuations, and within‐lake turbidity currents. Turbidity currents included quasi‐regular flows during high diurnal discharges and an episodic flushing of temporarily stored sediment from the sandur or delta at a time of low stage. Suspended sediment yield to Silt Lake is estimated to exceed 103 Mg km?2 a?1, a magnitude that surpasses previous local and regional yield estimates for the glacierized headwaters of the Lillooet River valley. Since Silt Lake currently traps a significant prooportion of that upland sediment supply, and the trapping efficiency of the basin has been variable at decadal time scales, the formation and continued development of Lilt Lake has likely had a significant influence on downstream sediment delivery. Lacustrine sediment‐based proxies of long‐term hydroclimatic variability being developed in glacially distal settings should include provisions for dynamic sediment trapping effects in upstream water bodies that often form in the active proglacial environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
18.
We evaluate the paraglacial activity in Nexpayantla, a subtropical mountainous gorge in Popocatépetl volcano (Central Mexico), fully deglaciated in the 20th century. Glacial advances are evidenced by the presence of moraines. Fluvio-glacial terraces and an alluvial megafan resulted from the gorge deglaciation. Current reworking of the glacigenic material is done by landslides and debris flows produced on the moraines and terraces. To study the different phases of mobilization of glacigenic sediment, we used an approach based on the study of the optically stimulated luminescence (OSL) signals obtained from a portable OSL (POSL) reader in samples extracted from both glacigenic and paraglacial deposits. The luminescence (POSL) results obtained at moraines increase as altitude decreases, which is expected for deglaciated valleys where the oldest moraines are located at lower elevations. We evaluate the grade of luminescence signal reset of the glacigenic sediments during the proglacial stage, and the subsequent deglaciation phases. Our results indicate that there is a marked transition between glacial and fluvially dominated processes at Nexpayantla Gorge. We find that the grade of luminescence signal resetting in the paraglacial deposits is a good indicator to trace paraglacial stages and the beginning of exhaustion of the paraglacial activity in mountain areas. OSL ages confirm that the oldest fluvio-glacial terraces found at the middle sector of Nexpayantla Gorge are ~2 ka, which is also supported by an AMS 14C age. OSL dating was found challenging, since quartz grains have low sensitivity because of their volcanic origin; POSL signals, however, are in good agreement with the location and distribution of geomorphic markers. We propose that luminescence data obtained from the POSL unit can be useful to provide information about sediment mobilization in paraglacial environments during different climatic pulses – even for the case where mineral grains have low sensitivity, such as in volcanic sediments. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
The nested moraines of the Chilean Lake District have been used to establish a glacial chronology for southernmost South America. This paper focuses on non-climatic controls which may have modulated the climatic signal. It presents a model for formation of the moraines around Lagos Puyehue and Rupanco where there is a nested complex dating from the last glaciation. These moraines can be divided into two types on the basis of their form, position and constituent materials: rampart moraines are broad amalgamated moraine complexes whilst ridge moraines are narrow single ridges usually located around lakeshores. Both types have lateral moraines with low up-glacier longitudinal gradients. Sections in the moraines show they are largely composed of stratified glaciofluvial sediments overthrust on their proximal flanks by clay-rich diamicts containing reworked glaciofluvial material. Despite their different characteristics, a single model explains the features of both moraine types and their location around the down-glacier ends of the lakes. Moraine formation depends crucially on the presence of a layer of water-saturated, fine, impermeable sediment in the lake basins which allows the glacier lobes to advance with negligible surface gradients, probably on a deforming bed. Although the formation of moraines requires a climatically triggered advance, their precise position is not dictated by climatic factors but by contrasts in sediment permeability and grain-size.  相似文献   

20.
The sediment yields of Alpine catchments are commonly determined from streamload measurements made some distance downstream from glaciers. However, this approach indiscriminately integrates erosion processes occurring in both the glacial and proglacial areas. A specific method is required to ascertain the respective inputs from (i) subglacial and supraglacial sediments, (ii) proglacial hillslopes and (iii) proglacial alluvial areas or sandurs. This issue is addressed here by combining high‐resolution monitoring (2 min) of suspended sediment concentrations at different locations within a catchment with discharge gauging and precipitation data. This methodological framework is applied to two proglacial streams draining the Bossons glacier (Mont Blanc massif, France): the Bossons and Crosette streams. For the Bossons stream, discharge and suspended load data were acquired from June to October 2013 at 1.15 and 1.5 km from the glacial terminus, respectively upstream and downstream from a small valley sandur. These hydro‐sedimentary data are compared with the Crosette stream dataset acquired at the outlet of the Bossons glacier subglacial drainage system. A fourfold analysis focusing on seasonal changes in streamload and discharge, multilinear regression modelling, evaluation of the sandur flux balance and probabilistic uncertainty assessment is used to determine the catchment sediment budget and to explain the proglacial sediment dynamics. The seasonal fluctuation of the sediment signal observed is related to the gradual closing of the subglacial drainage network and to the role of the proglacial area in the sediment cascade: the proglacial hillslopes appear to be disconnected from the main channel and the valley sandur acts as a hydrodynamic sediment buffer both daily and seasonally. Our findings show that an understanding of proglacial sediment dynamics can help in evaluating paraglacial adjustment and subglacial erosion processes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号