首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A general framework for multi-criteria optimal design is presented which is well suited for performance-based design of structural systems operating in an uncertain dynamic environment. A decision theoretic approach is used which is based on aggregation of preference functions for the multiple, possibly conflicting, design criteria. This allows the designer to trade off these criteria in a controlled manner during the optimization. Reliability-based design criteria are used to maintain user-specified levels of structural safety by properly taking into account the uncertainties in the modelling and seismic loads that a structure may experience during its lifetime. Code-based requirements are also easily incorporated into this optimal design process. The methodology is demonstrated with a simple example involving the design of a three-storey steel-frame building for which the ground motion uncertainty is characterized by a probabilistic response spectrum which is developed from available attenuation formulas and seismic hazard models. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
A multi‐objective optimization procedure is presented for designing steel moment resisting frame buildings within a performance‐based seismic design framework. Life cycle costs are considered by treating the initial material costs and lifetime seismic damage costs as two separate objectives. Practical design/construction complexity, important but difficult to be included in initial cost analysis, is taken into due account by a proposed diversity index as another objective. Structural members are selected from a database of commercially available wide flange steel sections. Current seismic design criteria (AISC‐LRFD seismic provisions and 1997 NEHRP provisions) are used to check the validity of any design alternative. Seismic performance, in terms of the maximum inter‐storey drift ratio, of a code‐verified design is evaluated using an equivalent single‐degree‐of‐freedom system obtained through a static pushover analysis of the original multi‐degree‐of‐freedom frame building. A simple genetic algorithm code is used to find a Pareto optimal design set. A numerical example of designing a five‐storey perimeter steel frame building is provided using the proposed procedure. It is found that a wide range of valid design alternatives exists, from which a decision maker selects the one that balances different objectives in the most preferred way. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
在基于性能抗震设计中,要求实现多级设防,目的是使结构抗震设计不仅要保护生命安全,同时也要控制因结构破坏而带来的经济损失,使结构在整个生命周期内费用达到最小。但由于结构抗震设计中存在着大量的不确定因素,使得实现每个性能水平都是不确定的,因此,每个性能水平的目标可靠度究竟取多高才能达到设计要求,是目前抗震设计的一个基本问题。针对这一问题,将地震作用、自重荷载、材料强度等看作随机变量,分析了结构造价与失效概率之间的近似关系,明确了不同性能水平失效概率之间的合理比例关系,采用"投资-效益"准则,且控制人员伤亡率小于社会可接受水平,来确定结构的目标性能水平。以两个钢筋混凝土框架结构为例,说明了该方法的应用。  相似文献   

4.
Passive structural control techniques are generally used as seismic rehabilitation and retrofit methodologies for existing structures. A poorly explored and exciting opportunity within structural seismic control research is represented by the possibility to design new structural forms and configurations, such as slender buildings, without compromising the structural performance through an integrated design approach. In this paper, with reference to viscous dampers, an integrated seismic design procedure of the elastic stiffness resources and viscoelastic properties of a dissipative bracing‐damper system is proposed and developed to ensure a seismic design performance, within the displacement‐based seismic design, explicitly taking into account the dynamic behaviour both of the structural and control systems. The optimal integrated seismic design is defined as the combination of the variables that minimizes a suitable index, representing an optimized objective function. Numerical examples of the proposed integrated cost‐effectiveness seismic design approach both on an equivalent SDOF system and a proportionally damped MDOF integrated system are developed defining the design variables, which minimize the cost index. Validation of the effectiveness of the proposed integrated design procedure is carried out by evaluating the average displacement of the time‐history responses to seven unscaled acceleration records selected according to EC8 provisions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Structural engineering problems are always affected by many sources of uncertainty, such as aleatory of material properties, applied loads and earthquake intensity, therefore, seismic assessment of structures should be based on probabilistic methods. Since PBSD (Performance‐based Seismic Design) philosophy was formulated, many researches have been conducted in this field in order to develop simple and accurate procedures for evaluating structural reliability. An important contribution has been provided by Jalayer and Cornell, who have developed a closed‐form expression to evaluate the mean annual frequency of exceeding a defined limit state. In this paper, by assuming the record‐to‐record variability as the only source of uncertainty, the seismic reliability of concentrically braced frames designed according to traditional and innovative methodologies is investigated, and a comparison between their performances is presented. In particular, two design methodologies have been applied: Eurocode 8 provisions and a new design methodology based on a rigorous application of ‘capacity design’ criteria. The innovative reduced section solution strategy, based on the reduction of cross sections at bracing member ends, has also been analysed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A new direct performance‐based design method utilizing design tools called performance‐spectra (P‐Spectra) for low‐rise to medium‐rise frame structures incorporating supplemental damping devices is presented. P‐Spectra are graphic tools that relate the responses of nonlinear SDOF systems with supplemental dampers to various damping parameters and dynamic system properties that structural designers can control. These tools integrate multiple response quantities that are important to the performance of a structure into a single compact graphical format to facilitate direct comparison of different potential solutions that satisfy a set of predetermined performance objectives under various levels of seismic hazard. An SDOF to MDOF transformation procedure that defines the required supplemental damping properties for the MDOF structure to achieve the response defined by the target SDOF system is also presented for hysteretic, linear viscous and viscoelastic damping devices. Using nonlinear time‐history analyses of idealized shear structures, the accuracy of the transformation procedure is verified. A seismic performance upgrade design example is presented to demonstrate the usefulness of the proposed method for achieving design performance goals using supplemental damping devices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The design code for each country is revised and updated based on an expected zone’s seismic intensities,geotechnical site classifications,structural systems,construction materials and methods of construction in order to provide more realistic considerations of seismic demand,seismic response,and seismic capacity.Based on the aforementioned provisions,structures designed according to different seismic codes may yield different performances for the same level of hazard.This study aims to investigate and compare the induced responses related to the earthquake-resistant design of reinforced concrete(RC)buildings according to the Saudi building code(SBC-301),American code(ASCE-7),uniform building code(UBC-97),and European code(EC-8).In order to account for the provision regarding the hazard specification and its effect on the induced seismic responses,four regions in the Kingdom of Saudi Arabia with different seismic levels are selected.The code provisions related to the specification of site classification and its effect on the induced design base shear are investigated as well.Significant differences are observed in the induced responses with the variation in seismic design codes for the considered seismic hazards and site classifications.  相似文献   

8.
With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.  相似文献   

9.
A principal aspect of seismic design is the verification of performance limit states, which help ensure satisfactory behaviour within a performance-based earthquake engineering framework. However, it is increasingly acknowledged that while ensuring life safety is a suitable basic design requirement, more meaningful metrics of seismic performance exist. Expected annual loss (EAL) has gained attention in recent years but tends to be limited to seismic assessment. This article proposes a novel conceptual design framework that employs EAL as a design tool and requires very little building information at the design outset. This means that designers may commence from a definition of required EAL and arrive at a number of feasible structural solutions without the need for any detailed design calculations or numerical analysis. This works by transforming the building performance definition to a design solution space using a number of simplifying assumptions. A suitable structural response backbone is subsequently determined and used to identify feasible building typologies and associated structural geometries. The assumptions made to implement such a conceptual design framework are discussed and justified herein followed by a case study application. This proposed design framework is intended to form the first step in seismic design to identify suitable typologies and layouts before subsequent member detailing and design verification. This way, engineers, architects, and clients can make more informed decisions that target certain performance goals at the beginning of design before further refinement.  相似文献   

10.
This paper examines the potential development of a probabilistic design methodology, considering hysteretic energy demand, within the framework of performance‐based seismic design of buildings. This article does not propose specific energy‐based criteria for design guidelines, but explores how such criteria can be treated from a probabilistic design perspective. Uniform hazard spectra for normalized hysteretic energy are constructed to characterize seismic demand at a specific site. These spectra, in combination with an equivalent systems methodology, are used to estimate hysteretic energy demand on real building structures. A design checking equation for a (hypothetical) probabilistic energy‐based performance criterion is developed by accounting for the randomness of the earthquake phenomenon, the uncertainties associated with the equivalent system analysis technique, and with the site soil factor. The developed design checking equation itself is deterministic, and requires no probabilistic analysis for use. The application of the proposed equation is demonstrated by applying it to a trial design of a three‐storey steel moment frame. The design checking equation represents a first step toward the development of a performance‐based seismic design procedure based on energy criterion, and additional works needed to fully implement this are discussed in brief at the end of the paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The performance‐based seismic design of steel special moment‐resisting frame (SMRF) structures is formulated as a multiobjective optimization problem, in which conflicting design criteria that respectively reflect the present capital investment and the future seismic risk are treated simultaneously as separate objectives other than stringent constraints. Specifically, the initial construction expenses are accounted for by the steel material weight as well as by the number of different standard steel section types, the latter roughly quantifying the degree of design complexity related additional construction cost; the seismic risk is considered in terms of maximum interstory drift demands at two hazard levels with exceedance probabilities being 50% and 2% in 50 years, respectively. The present formulation allows structural engineers to find an optimized design solution by explicitly striving for a desirable compromise between the initial investment and seismic performance. Member sizing for code‐compliant design of a planar five‐story four‐bay SMRF is presented as an application example using the proposed procedure that is automated by a multiobjective genetic algorithm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The traditional construction of masonry infills adjacent to RC structural elements is still widely adopted in European countries, including seismically active regions. Given the repeated field observations from damaging earthquakes, pointing to unacceptably high levels of masonry infill damage, the present study is motivated by the need to improve further the European seismic design approach for new RC structures with masonry infills, in order to exclude the poor seismic behaviour probably caused by deficiencies in the verification procedure. Since the in-plane damage to non-structural panels is commonly controlled through the limitation of inter-storey drifts, the possibility to introduce more effective verification criteria, accounting for structural properties, infill layouts and masonry properties is explored. Therefore, starting from the assumption that analyses and verifications in the design of buildings are commonly accomplished neglecting the presence of infills, results of extensive nonlinear numerical analyses for different building configurations are examined. As a result, a simplified procedure for the prediction of expected inter-storey drifts for infilled structures, based on the corresponding demands of bare configurations, in function of a simple parameter accounting for structural properties and the presence of infills, is introduced. Possible implications of the proposed approach aimed at the improvement of the current design provisions are discussed.  相似文献   

13.
Seismic hazard levels lower than those for design of new buildings have been permitted for seismic evaluation and retrofit of existing buildings due to the relatively short remaining lifespans. The seismic hazard reduction enables costeffective seismic evaluation and retrofit of existing buildings with limited structural capacity. The current study proposes seismic hazard reduction factors for Korea, one of low to moderate seismicity regions. The seismic hazard reduction factors are based on equal probabilities of non-exceedance within different remaining building lifespans. A validation procedure is proposed to investigate equality of seismic risk in terms of ductility-based limit states using seismic fragility assessment of nonlinear SDOF systems, of which retrofit demands are determined by the displacement coefficient method of ASCE 41-13 for different target remaining building lifespans and corresponding reduced design earthquakes. Validation result shows that the use of seismic hazard reduction factors can be permitted in conjunction with appropriate lower bounds of the remaining building lifespans.  相似文献   

14.
Viscous dampers are widely employed for enhancing the seismic performance of structural systems, and their design is often carried out using simplified approaches to account for the uncertainty in the seismic input. This paper introduces a novel and rigorous approach that allows to explicitly consider the variability of the intensity and characteristics of the seismic input in designing the optimal viscous constant and velocity exponent of the dampers based on performance-based criteria. The optimal solution permits controlling the probability of structural failure, while minimizing the damper cost, related to the sum of the damper forces. The solution to the optimization problem is efficiently sought via the constrained optimization by linear approximation (COBYLA) method, while Subset simulation together with auxiliary response method are employed for the performance assessment at each iteration of the optimization process. A 3-storey steel moment-resisting building frame is considered to illustrate the application of the proposed design methodology and to evaluate and compare the performances that can be achieved with different damper nonlinearity levels. Comparisons are also made with the results obtained by applying simplifying approaches, often employed in design practice, as those aiming to minimize the sum of the viscous damping constant and/or considering a single hazard level for the performance assessment.  相似文献   

15.
This paper analyzes the influence of damper properties on the probabilistic seismic performance of building frames equipped with viscous dampers. In particular, a probabilistic methodology is employed to evaluate the influence of the damper nonlinearity, measured by the damper exponent, on the performance of structural and nonstructural components of building frames, as described by the response hazard curves of the relevant engineering demand parameters. The performance variations due to changes in the damper nonlinearity level are evaluated and highlighted by considering two realistic design scenarios and by comparing the results of a set of cases involving dampers with different exponents designed to provide the same deterministic performance. By this way, it is possible to evaluate the influence of the nonlinear response and of its dispersion on the demand hazard. It is shown that the damper nonlinearity level strongly affects the seismic performance and different trends are observed for the demand parameters of interest. A comparison with code provisions shows that further investigation is necessary to provide more reliable design formulas accounting for the damping nonlinearity level. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Previous comparison studies on seismic isolation have demonstrated its beneficial and detrimental effects on the structural performance of high‐speed rail bridges during earthquakes. Striking a balance between these 2 competing effects requires proper tuning of the controlling design parameters in the design of the seismic isolation system. This results in a challenging problem for practical design in performance‐based engineering, particularly when the uncertainty in seismic loading needs to be explicitly accounted for. This problem can be tackled using a novel probabilistic performance‐based optimum seismic design (PPBOSD) framework, which has been previously proposed as an extension of the performance‐based earthquake engineering methodology. For this purpose, a parametric probabilistic demand hazard analysis is performed over a grid in the seismic isolator parameter space, using high‐throughput cloud‐computing resources, for a California high‐speed rail (CHSR) prototype bridge. The derived probabilistic structural demand hazard results conditional on a seismic hazard level and unconditional, i.e., accounting for all seismic hazard levels, are used to define 2 families of risk features, respectively. Various risk features are explored as functions of the key isolator parameters and are used to construct probabilistic objective and constraint functions in defining well‐posed optimization problems. These optimization problems are solved using a grid‐based, brute‐force approach as an application of the PPBOSD framework, seeking optimum seismic isolator parameters for the CHSR prototype bridge. This research shows the promising use of seismic isolation for CHSR bridges, as well as the potential of the versatile PPBOSD framework in solving probabilistic performance‐based real‐world design problems.  相似文献   

17.
This paper presents a procedure for seismic design of reinforced concrete structures, in which performance objectives are formulated in terms of maximum accepted mean annual frequency (MAF) of exceedance, for multiple limit states. The procedure is explicitly probabilistic and uses Cornell's like closed‐form equations for the MAFs. A gradient‐based constrained optimization technique is used for obtaining values of structural design variables (members' section size and reinforcement) satisfying multiple objectives in terms of risk levels. The method is practically feasible even for real‐sized structures thanks to the adoption of adaptive equivalent linear models where element‐by‐element stiffness reduction is performed (2 linear analyses per intensity level). General geometric and capacity design constraints are duly accounted for. The procedure is applied to a 15‐storey plane frame building, and validation is conducted against results in terms of drift profiles and MAF of exceedance, obtained by multiple‐stripe analysis with records selected to match conditional spectra. Results show that the method is suitable for performance‐based seismic design of RC structures with explicit targets in terms of desired risk levels.  相似文献   

18.
19.
Seismic safety of low ductility structures used in Spain   总被引:1,自引:0,他引:1  
The most important aspects of the design, seismic damage evaluation and safety assessment of structures with low ductility like waffle slabs buildings or flat beams framed buildings are examined in this work. These reinforced concrete structural typologies are the most used in Spain for new buildings but many seismic codes do not recommend them in seismic areas. Their expected seismic performance and safety are evaluated herein by means of incremental non linear structural analysis (pushover analysis) and incremental dynamic analysis which provides capacity curves allowing evaluating their seismic behavior. The seismic hazard is described by means of the reduced 5% damped elastic response spectrum of the Spanish seismic design code. The most important results of the study are the fragility curves calculated for the mentioned building types, which allow obtaining the probability of different damage states of the structures as well as damage probability matrices. The results, which show high vulnerability of the studied low ductility building classes, are compared with those corresponding to ductile framed structures.  相似文献   

20.
Performance-Based Seismic Design is now widely recognized as the pre-eminent seismic design and assessment methodology for building structures. In recognition of this, seismic codes may require that buildings achieve multiple performance objectives such as withstanding moderate, yet frequently occurring earthquakes with minimal structural and non-structural damage, while withstanding severe, but rare earthquakes without collapse and loss of life. These objectives are presumed to be satisfied by some codes if the force-based design procedures are followed. This paper investigates the efficacy of the Eurocode 8 force-based design provisions with respect to RC frame building design and expected seismic performance. Four, eight, and 16-storey moment frame buildings were designed and analyzed using the code modal response spectrum analysis provisions. Non-linear time-history analyses were subsequently performed to determine the simulated seismic response of the structures and to validate the Eurocode 8 force-based designs. The results indicate the design of flexural members in medium-to-long period structures is not significantly influenced by the choice of effective member stiffness; however, calculated interstorey drift demands are significantly affected. This finding was primarily attributed to the code’s enforcement of a minimum spectral ordinate on the design spectrum. Furthermore, design storey forces and interstorey drift demand estimates (and therefore damage), obtained by application of the code force-based design procedure varied substantially from those found through non-linear time-history analysis. Overall, the results suggest that though the Eurocode 8 may yield life-safe designs, the seismic performance of frame buildings of the same type and ductility class can be highly non-uniform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号