首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We allow a more general (step-function) form of the primordial power spectrum than the usual featureless power-law Harrison–Zeldovich (with spectral index   n =1)  power spectrum, and fit it to the latest cosmic microwave background data sets. Although the best-fitting initial power spectrum can differ significantly from the power-law shape, and contains a dip at scales   k ∼0.003  h  Mpc-1  , we find that  Ωm≈0.24  , consistent with previous analyses that assume power-law initial fluctuations. We also explore the feasibility of the early releases of the 2dF and Sloan Digital Sky Survey (SDSS) galaxy redshifts surveys to see these features, and we find that even if features exist in the primordial power spectrum, they are washed out by the window functions of the redshift surveys on scales   k <0.03  h  Mpc-1  .  相似文献   

2.
We compute the spectral distortions of the cosmic microwave background (CMB) arising during the epoch of cosmological hydrogen recombination within the standard cosmological (concordance) model for frequencies in the range 1–3500 GHz. We follow the evolution of the populations of the hydrogen levels including states up to principle quantum number   n = 30  in the redshift range  500 ≤ z ≤ 3500  . All angular momentum substates are treated individually, resulting in a total number of 465 hydrogen levels. The evolution of the matter temperature and the fraction of electrons coming from He  ii are also included. We present a detailed discussion of the distortions arising from the main dipolar transitions, for example Lyman and Balmer series, as well as the emission due to the two-photon decay of the hydrogen 2s level. Furthermore, we investigate the robusteness of the results against changes in the number of shells considered. The resulting spectral distortions have a characteristic oscillatory behaviour, which might allow experimentalists to separate them from other backgrounds. The relative distortion of the spectrum exceeds a value of 10−7 at wavelengths longer than 21 cm. Our results also show the importance of detailed follow-up of the angular momentum substates, and their effect on the amplitude of the lines. The effect on the residual electron fraction is only moderate, and mainly occurs at low redshifts. The CMB angular power spectrum is changed by less than 1 per cent. Finally, our computations show that if the primordial radiation field is described by a pure blackbody, then there is no significant emission from any hydrogen transition at redshifts greater than   z ∼ 2000  . This is in contrast to some earlier works, where the existence of a 'pre-recombination' peak was claimed.  相似文献   

3.
4.
5.
6.
7.
8.
9.
A key prediction of cosmological theories for the origin and evolution of structure in the Universe is the existence of a 'Doppler peak' in the angular power spectrum of cosmic microwave background (CMB) fluctuations. We present new results from a study of recent CMB observations which provide the first strong evidence for the existence of a 'Doppler peak' localized in both angular scale and amplitude. This first estimate of the angular position of the peak is used to place a new direct limit on the curvature of the Universe, corresponding to a density of Ω = 0.7+0.8−0.5, consistent with a flat universe. Very low-density 'open' universe models are inconsistent with this limit unless there is a significant contribution from a cosmological constant. For a flat standard cold dark matter dominated universe we use our results in conjunction with big bang nucleosynthesis constraints to determine the value of the Hubble constant as H 0 = 30 − 70 km s−1 Mpc−1 for baryon fractions Ωb = 0.05 to 0.2. For H 0 = 50 km s−1 Mpc−1 we find the primordial spectral index of the fluctuations to be n  = 1.1 ± 0.1, in close agreement with the inflationary prediction of n  ≃ 1.0.  相似文献   

10.
The Wilkinson Microwave Anisotropy Probe ( WMAP ) has measured lower amplitudes for the temperature quadrupole and octopole anisotropies than expected in the best fitting (concordance) Λ-dominated cold dark matter (ΛCDM) cosmology. Some authors have argued that this discrepancy may require new physics. However, the statistical significance of this result is not clear. Some authors have applied frequentist arguments and claim that the discrepancy would occur by chance about 1 time in 700, if the concordance model is correct. Other authors have used Bayesian arguments to claim that the data show marginal evidence for new physics. I investigate these confusing and apparently conflicting claims in this Letter using a frequentist analysis and a simplified Bayesian analysis. On either analysis, I conclude that the WMAP results are consistent with the concordance ΛCDM model.  相似文献   

11.
The bispectrum of the microwave background sky is a possible discriminator between inflationary and defect models of structure formation in the Universe. The bispectrum, which is the analogue of the temperature three-point correlation function in harmonic space, is zero for most inflationary models, but non-zero for non-Gaussian models. The expected departures from zero are small, and easily masked by noise, so it is important to be able to estimate the bispectrum coefficients as accurately as possible, and to know the errors and correlations between the estimates so that they may be used in combination as a diagnostic to rule out non-Gaussian models. This paper presents a method for estimating in an unbiased way the bispectrum from a microwave background map in the near-Gaussian limit. The method is optimal, in the sense that no other method can have smaller error bars, and, in addition, the covariances between the bispectrum estimates are calculated explicitly. The method deals automatically with partial sky coverage and arbitrary noise correlations without modification. A preliminary application to the Cosmic Background Explorer 4-yr data set shows no evidence for non-Gaussian behaviour.  相似文献   

12.
In this paper we investigate the effects of perturbations in a dark energy component with a constant equation of state on large-scale cosmic microwave background (CMB) anisotropies. The inclusion of perturbations increases the large-scale power. We investigate more speculative dark energy models with   w < −1  and find the opposite behaviour. Overall the inclusion of perturbations in the dark energy component increases the degeneracies. We generalize the parametrization of the dark energy fluctuations to allow for an arbitrary constant sound speed, and we show how constraints from CMB experiments change if this is included. Combining CMB with large-scale structure, Hubble parameter and supernovae observations we obtain   w =−1.02 ± 0.16 (1σ)  as a constraint on the equation of state, which is almost independent of the sound speed chosen. With the presented analysis we find no significant constraint on the constant speed of sound of the dark energy component.  相似文献   

13.
14.
15.
16.
We present accurate small-angle predictions of the correlation function of hotspots in the microwave background radiation for Gaussian theories such as those predicted in most inflation models. The correlation function of peaks above a certain threshold depends only on the threshold and the power spectrum of temperature fluctuations. Since these are both potentially observable quantities in a microwave background map, there are no adjustable parameters in the predictions. These correlations should therefore provide a powerful test of the Gaussian hypothesis, and provide a useful discriminant between inflation and topological defect models such as the cosmic string model. The correlations have a number of oscillatory features, which should be detectable at high signal-to-noise ratio with future satellite experiments such as MAP and Planck .  相似文献   

17.
We compute precise predictions for the two-point correlation function of local maxima (or minima) in the temperature of the microwave background, under the assumption that it is a random Gaussian field. For a given power spectrum and peak threshold there are no adjustable parameters, and since this analysis does not make the small-angle approximation of Heavens & Sheth, it is essentially complete. We find oscillatory features which are absent in the temperature autocorrelation function, and we also find that the small-angle approximation to the peak–peak correlation function is accurate to better than 0.01 on all scales. These high-precision predictions can form the basis of a sensitive test of the Gaussian hypothesis with upcoming all-sky microwave background experiments MAP and Planck , affording a thorough test of the inflationary theory of the early Universe. To illustrate the effectiveness of the technique, we apply it to simulated maps of the microwave sky arising from the cosmic string model of structure formation, and compare the two-point correlation function of peaks with the bispectrum as a non-Gaussian discriminant. We also show how peak statistics can be a valuable tool in assessing and statistically removing contamination of the map by foreground point sources.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号