共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
人工神经网络在多源遥感影像分类中的应用 总被引:19,自引:1,他引:19
在研究人工神经网络理论的基础上,应用动量法和学习率自适应调整的策略,改变BP神经网络的主要缺点,提出对同一地区空间配准的Landsat TM3,TM4,TM5影像和航空SAR影像,一方面采用该种网络对两类影像分别进行分类,将其分类结果按提出的融合规则进行分类融合得到最终分类结果,另一方面采用该网络对两类影像进行融合分类,得到相应分类结果,比较这两者的结果表明,基于改进的BP神经网络用于土地利用分类 相似文献
3.
基于人工神经网络--多层感知器(MLP)的遥感影像分类模型 总被引:3,自引:0,他引:3
新一代遥感信息分类方法的应用,主要是将近年来发展起来的人工神经网络、模糊理论、人工智能等技术用于遥感信息分类,从算法上改进分类的精度.论述人工神经网络中的多层感知器(MLP)的基本思想,结合实例,用多层感知器(MLP)方法对单源及多源融合遥感影像进行了分类,并与各种分类方法的结果进行比较. 相似文献
4.
针对目前深度神经网络训练耗时长、浅层神经网络多为易崩溃三层感知器(BP)的现状,提出一种基于集成全连接多层感知器(MLP)的多光谱图像快速分类方法。实验对基于焦作地区Landsat8多光谱影像,使用半随机网格搜索优化等方法搜索超参数组合,构建4种MLP分类器。实验发现位置信息与地物类别无关,地物的样本量增加时分类器会对其更敏感。比较各分类器对Landsat8多光谱影像的分类结果得知集成分类器更优。 相似文献
5.
基于神经网络的遥感影像分类研究 总被引:16,自引:1,他引:16
由于传统遥感影像分类方法存在不足,故采用BP神经元网络进行遥感影像分类研究。阐述了算法原理、实现步骤以及改进方法。通过实验示例,将BP神经元网络的分类结果与传统统计方法分类结果进行比较,获得了有意义的结果。 相似文献
6.
投影寻踪学习网络的遥感影像分类 总被引:2,自引:0,他引:2
采用投影寻踪(projection pursuit,PP)学习网络方法建立了一种新的遥感影像分类模型。该方法结合了统计学中投影寻踪算法节点函数灵活的非参数估计特点和人工神经网络的自学习功能,具有简捷的网络结构和良好的鲁棒性能。利用苏州市TM影像进行了分类实验,将分类结果与BP神经网络和最大似然法的分类结果相比较,投影寻踪学习网络的分类精度较高,具有一定的实用性。 相似文献
7.
基于自适应共振模型的遥感影像分类方法研究 总被引:9,自引:1,他引:9
人工神经网络(ANN)是人视觉和服的基本功能的抽象、简化和模拟。在对遥感影像的综合解释应用中,与传统的统计方法和符号逻辑方法相比较,ANN更接近人对影像的视觉解译分析过程。自适应共振理论(ART)是一种自组织产生认知编码的神经网络理论,其自组织、反馈式增量学习机能,能兼顾适应性和稳定性,克服了一般神经网络学习速度慢、网络结构难以确定、局部最小陷阱等缺陷。以FUZZY-ART和ARTMAP为基础,提出基于ART遥感影像非监督和监督分类的一般模型,并以实际上土覆盖分类和城市结构信息提取为应用实例,通过与传统统计方法和一般ANN分类器相比较,ART具有正确率更同、学习速度快、自适应性等优点,是复杂数据分类和信息提取的有效工具。 相似文献
8.
介绍了目前遥感影像分类的常用方法,提出了一种基于知识的信息提取的遥感影像模糊分类方法。采用GIS数据辅助进行遥感影像模糊法分类,从GIS数据库中提取一定数量的样本信息或挖掘知识形成规则,进行样本的训练学习或辅助进行分类判定。提高了分类的效率和精度,是对模糊分类方法一次有效改进。 相似文献
9.
基于知识的遥感影像模糊分类方法 总被引:2,自引:1,他引:2
介绍了目前遥感影像分类的常用方法, 提出了一种基于知识的信息提取的遥感影像模糊分类方法.采用GIS数据辅助进行遥感影像模糊法分类,从GIS数据库中提取一定数量的样本信息或挖掘知识形成规则,进行样本的训练学习或辅助进行分类判定.提高了分类的效率和精度,是对模糊分类方法一次有效改进. 相似文献
10.
11.
提出了对每一类地物的光谱特征用一个高斯混合模型(Gauss mixture model,GMM)描述的新思路,并应用在半监督分类(semi-supervised classification)中。实验证明,本方法只需少量的标定数据即可达到其他监督分类方法(如支持向量机分类、面向对象分类)的精度,具有较好的应用价值。 相似文献
12.
基于PCA-BPNN的多光谱遥感影像分类 总被引:7,自引:0,他引:7
基于BP算法的神经网络方法目前已广泛运用于遥感影像分类,提出一种主成分分析(PCA)与BP神经网络相结合的遥感影像分类方法——PCA-BPNN,实验证明该方法是可行并且有效的,在减少计算量和加快收敛的同时,提高了分类的精度。 相似文献
13.
多源遥感影像像素级融合分类与决策级分类融合法的研究 总被引:10,自引:0,他引:10
首先探讨了基于像素的多源遥感影像高频调制融合法,根据成像系统特性和Heisenberg测不准原理,设计的高斯滤波器对高分辨率影像滤波的方法是合理有效的。在研究BP神经网络的基础上,采用动量法和学习率自适应调整的策略,提高了BP神经网络学习算法收敛速度,并增强了算法的可靠性。提出并实现了多源遥感影像像素级融合分类与决策级分类融合两种分类方法,并进行了比较。采用LandsatTM 3,4,5和航空SAR影像进行试验,结果表明两种分类方法是行之有效的,均适用于多源遥感影像分类。 相似文献
14.
本文在研究BP神经网络和模糊理论的基础上,提出了传统BP算法的一种改进方法和基于模糊系统的神经网络遥感影像分类方法。通过试验表明:基于模糊技术的神经网络分类方法要优于BP神经网络方法,取得了令人满意的效果。 相似文献
15.
基于自适应遗传算法和改进BP算法的遥感影像分类 总被引:1,自引:0,他引:1
介绍了采用自适应遗传算法和改进BP算法相结合的混合算法来训练BP网络的方法,即先用自适应遗传算法进行全局训练,再用改进BP算法进行精确训练,以达到加快网络收敛速度和避免陷入局部极小值的目的。结果表明,该算法收敛速度快,分类精度较高。 相似文献
16.
提出了一种新的基于布谷鸟算法的智能式遥感分类方法。采用布谷鸟智能优化算法,自动搜索遥感影像各波段的最优阈值分割点,并定义各波段最优阈值分割点和影像分类目标类别的连线为布谷鸟的最佳解,构造以If-Then形式表达的遥感分类规则。将所提的基于布谷鸟算法的影像分类方法应用于ALOS影像分类中,并与蜂群智能遥感分类方法和See5.0决策树方法进行了对比分析。结果表明,布谷鸟智能遥感分类的总体精度和Kappa系数均比蜂群智能遥感分类和See5.0决策树方法更高,该智能遥感分类方法具有更好的分类效果。 相似文献
17.
最大似然(ML)算法是一种应用广泛的遥感图像监督分类方法,该算法对样本区域的选择有很高的精度要求,选择难度降低了算法的效率。为此,本文提出了一种结合ML算法和波利亚罐模型的全色遥感图像分类方法。首先由ML算法得到各像素分属各类别的概率,根据得到概率计算此像素的罐模型中不同颜色小球的数量,完成图像罐模型的建立;根据波利亚罐模型随机采样过程,结合邻域,更新中心像素的罐模型中各类颜色小球的组成,直到各类小球数量比例达到稳定,得到最终分类结果。该方法可以进一步精确地对图像进行分类,且对样本选择无要求,简化了分类过程;分别对合成图像和真实遥感图像进行了试验,取得了较好的试验结果;定性和定量分析结果验证了该方法的可行性及有效性。 相似文献
18.
探讨了一种将K均值算法和SOM神经网络算法相结合的方法,并将其应用于多光谱遥感图像分类,通过与K均值算法、ISODATA算法和SOM算法的对比实验,验证了该方法的有效性. 相似文献
19.
针对传统泛概念树在进行正态云综合时出现雾化现象以及使用极大判定法进行遥感图像分类时缺乏类别信息的问题,提出了一种泛概念层次构建的改进算法,并基于改进的泛概念层次构建算法进行遥感图像分类。对TM遥感影像进行分类实验,并与常用的最大似然、最小距离、马式距离等方法进行遥感图像分类的对比试验,验证了本方法的有效性。 相似文献
20.
基于Hopfield神经网络模型的遥感影像分类算法 总被引:1,自引:0,他引:1
针对遥感影像的分类特点,提出了一种基于Hopfield神经网络模型的遥感影像分娄算法。首先阐述了Hopfield神经网络的结构及其工怍原理,分析了Hopfield神经网络优化规则;然后在Hopfield神经网络通用模型基础上,实现了Hopfield神经网络的算法。实验结果表明,这种分类器具有较高的精度与效率,分类结果优于最大似然分类法。 相似文献