首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Sulfur occurs in multiple mineral forms in coals, and its fate in coal combustion is still not well understood. The sulfur isotopic composition of coal from two coal mines in Indiana and fly ash from two power plants that use these coals were studied using geological and geochemical methods. The two coal beds are Middle Pennsylvanian in age; one seam is the low-sulfur (< 1%) Danville Coal Member of the Dugger Formation and the other is the high-sulfur (> 5%) Springfield Coal Member of the Petersburg Formation. Both seams have ash contents of approximately 11%. Fly-ash samples were collected at various points in the ash-collection system in the two plants. The results show notable difference in δ34S for sulfur species within and between the low-sulfur and high-sulfur coal. The δ34S values for all sulfur species are exclusively positive in the low-sulfur Danville coal, whereas the δ34S values for sulfate, pyritic, and organic sulfur are both positive and negative in the high-sulfur Springfield coal. Each coal exhibits a distinct pattern of stratigraphic variation in sulfur isotopic composition. Overall, the δ34S for sulfur species values increase up the section in the low-sulfur Danville coal, whereas they show a decrease up the vertical section in the high-sulfur Springfield coal. Based on the evolution of δ34S for sulfur species, it is suggested that there was influence of seawater on peat swamp, with two marine incursions occurring during peat accumulation of the high-sulfur Springfield coal. Therefore, bacterial sulfate reduction played a key role in converting sulfate into hydrogen sulfide, sulfide minerals, and elemental sulfur. The differences in δ34S between sulfate sulfur and pyritic sulfur is very small between individual benches of both coals, implying that some oxidation occurred during deposition or postdeposition.The δ34S values for fly ash from the high-sulfur Springfield coal (averaging 9.7‰) are greatly enriched in 34S relative to those in the parent coal (averaging 2.2‰). This indicates a fractionation of sulfur isotopes during high-sulfur coal combustion. By contrast, the δ34S values for fly-ash samples from the low-sulfur Danville coal average 10.2‰, only slightly enriched in 34S relative to those from the parent coal (average 7.5‰). The δ34S values for bulk S determined directly from the fly-ash samples show close correspondence with the δ34S values for SO4− 2 leached from the fly ash in the low-sulfur coal, suggesting that the transition from pyrite to sulfate occurred via high-temperature oxidation during coal combustion.  相似文献   

2.
Most sulphides from various rock types and mineralization of Archean age exhibit sulphur isotope values (δ34S) near 0‰. This is due to a general absence of conditions suitable for the oxidation-reduction reactions essential for isotopic fractionation. However, some important occurrences of Archean Au mineralization do display significant variations in δ34S). One such occurrence with unusual isotopic compositions is the Hemlo gold deposit: pyrite from the ore typically has δ34S < −6‰ to a minimum value of −17.5‰ The isotopic composition of the pyrite is correlated with the content of Au, indicating that they are genetically related.The sulphur isotope data suggest that sulphur compounds experienced redox reactions in the hydrothermal system at Hemlo and that sulphate was present prior to the Au mineralization. This sulphate may be of exogenic origin from a restricted basin, or of endogenic origin from magmatic-hydrothermal fluids. Other characteristic features of the deposit, such as enrichment in Sb, Tl and Hg, may also be explained by ore deposition under moderately oxidizing conditions.Distinctive δ34S values were also observed in pyrite from Au mineralization at Heron Bay, 30 km west of Hemlo, and from baritic strata 21 to 27 km west and on approximate strike from Hemlo. These occurrences also represent sulphate-bearing hydrothermal systems and, as such, give distant information on the unusual environment of the mineralization at Hemlo. Since the isotopes of sulphur are sensitive to oxidation conditions they may be used to identify hydrothermal activities characteristic of this type of Au mineralization and to explore for other unusual areas of sulphate accumulation in Archean terrains.  相似文献   

3.
Sulfur and O isotope analyses of dissolved SO4 were used to constrain a hydrogeological model for the area overlying the Gorleben–Rambow Salt Structure, Northern Germany. Samples were collected from 80 wells screened at different depth-intervals. The study area consists of a set of two vertically stacked aquifer systems. Generally, the isotope data show a good spatial correlation, outlining well-defined groundwater zones containing SO4 of characteristic isotopic composition. Highly saline waters from deeper parts of the lower aquifer system are characterized by rather constant SO4 isotopic compositions, which are typical of Permian Zechstein evaporites (δ34S=9.6–11.9‰; δ18O=9.5–12.1‰). Above this is a transition zone containing ground waters of intermediate salinity and slightly higher isotopic values (average δ34S=16.6‰; δ18O=15.3‰). The confined groundwater horizon on the top of the lower aquifer system below the low permeable Hamburg Clays is low in total dissolved solids and is characterized by an extreme 34S enrichment (average δ34S=39.1‰; δ18O=18.4‰), suggesting that bacterially mediated SO4 reduction is a dominant geochemical process in this zone. Two areas of distinct isotopic composition can be identified in the shallow ground water horizons of the upper hydrogeological system. Sulfate in groundwaters adjacent to the river Elbe and Löcknitz has a typical meteoric isotopic signature (δ34S=5.2‰; δ18O=8.2‰), whereas the central part of the area is characterized by more elevated isotopic ratios (δ34S=12.7‰; δ18O=15.6‰). The two major SO4 pools in the area are represented by Permian seawater SO4 and a SO4 of meteoric origin that has been mixed with SO4 resulting from the oxidation of pyrite. It is suggested that the S-isotope compositions observed reflect the nature of the SO4 source that have been modified to various extent by bacterial SO4 reduction. Groundwaters with transitional salinity have resulted from mixing between brines and low-mineralized waters affected by bacterial SO4 reduction.  相似文献   

4.
Samples from two lignite seams (Lower Seam, Upper Seam) of the Lavanttal basin (Austria) and additional xylite were investigated for variations in maceral composition, petrography-based facies indicators, bulk geochemical parameters, and molecular composition of hydrocarbons. Both seams originated in a topogenous mire and evolved within a transgressive setting. The final drowning of the mire is indicated by sapropelic shales. Whereas the sapropelic shale overlying the Lower Seam was deposited in a freshwater lake, the sapropelic shale above the Upper Seam represents a brackish lake.Numerous relationships are found between petrography-based facies indicators and the geochemical composition of organic matter. The contents of macerals of the liptinite group are positively correlated with soluble organic matter (SOM) yields and hydrogen index (HI). Consistent with maceral composition and high HI values, enhanced proportions of short-chain n-alkanes, which are predominantly found in algae and microorganisms, are obtained from samples of the sapropelic shales. The final drowning of the mire is reflected by decreasing pristane/phytane ratios, due to the rise in (ground)water table and the establishment of anaerobic conditions, as well as by decreasing ratios of diasterenes/sterenes, indicating increasing pH values in the mire. The degree of gelification of plant tissue (gelification index) is governed by the microbial activity in the mire, as indicated by the hopanes concentration. The differences in floral assemblage during the formation of the Lavanttal lignite seams are reflected by major differences in tissue preservation. Preservation of plant tissue (TPI) in the Lavanttal lignite is obviously controlled by the presence/absence of decay-resistant gymnosperms in the peat-forming vegetation, and additionally influenced by the relative contribution of wood to coal formation. The results provide evidence that valuable information for coal facies characterization could be obtained by petrography-based and geochemical facies indicators. An influence of the floral assemblage (gymnosperms/angiosperms ratio) and of the contribution of algal biomass on carbon isotopic composition of the organic matter (δ13C = − 24.2 to − 28.6‰) is proposed. Carbon cycling during biogeochemical decomposition of plant tissue by bacteria is suggested to affect the δ13C values of the coal. The chemotaxonomical classification of the xylites as gymnosperm remnants, based on the molecular composition of terpenoid biomarkers, is corroborated by the carbon isotopic composition of the xylites (mean δ13C = − 24.1‰) and the extracted cellulose (mean δ13C = − 20.2‰). The higher isotopic difference of about 3.9‰ between cellulose and total organic carbon of the xylites, compared to the difference between cellulose and wood found in modern trees, is explained by the smaller effect of decomposition on δ13C of cellulose.  相似文献   

5.
The Huize Pb–Zn deposit of Yunnan Province, China, is located in the center of the Sichuan–Yunnan–Guizhou Pb–Zn–Ag district. Four primary orebodies (orebody No. 1, No. 6, No. 8 and No. 10), with Pb + Zn reserves from 0.5 Mt to 1 Mt, have been found at depth in this deposit. This paper provides new data on the sulfur isotopic compositions of the four orebodies. The data show that the principal sulfide minerals (galena, sphalerite and pyrite) in the four orebodies are enriched in heavy sulfur, the δ34S values between 10.9‰ and 17.7‰ and where δ34Spyrite > δ34Ssphalerite > δ34Sgalena. The δ34S values of sulfide are close to that of the sulfates from the carbonate strata within the region. The similarity in sulfur isotope composition between sulfides and sulfates indicates the sulfur in the ore-forming fluids was likely derived by thermochemical sulfate reduction of sulfates contained within carbonate units.  相似文献   

6.
The intraplate volcanic suite of the Chaîne des Puys (French Massif Central) shows a complete petrologic range, from alkali basalts to trachytes. The significant variations of trace elements and radiogenic isotopes along the series strongly support the occurrence of crustal assimilation associated with fractional crystallization (AFC). The least contaminated basalts are clearly related to a HIMU-type reservoir (206Pb/204Pb > 19.6; 87Sr/86Sr < 0.7037; εNd > + 4). The behavior of radiogenic isotopes suggests that the most likely crustal contaminants are meta-sediments located in the lower crust.The Li isotopic compositions of the lavas range from high δ7Li (> + 7‰) in basalts to lighter values in more evolved lavas (down to δ7Li ≈ 0‰). The mantle component, expressed in the least evolved lavas, has a heavy Li isotopic signature, in good agreement with previous δ7Li measurements of OIB lavas with HIMU affinities. The evolution of Li isotopic compositions throughout the volcanic series is in agreement with the AFC model suggested by the Sr–Nd–Pb isotopic systems. Although the behavior of Li isotopes during assimilation processes is currently poorly constrained, our calculations suggest that at least a portion of the lower crust beneath the Chaîne des Puys is characterized by a light Li isotopic composition (δ7Li < − 5‰).  相似文献   

7.
Stable (δ13C and δ18O) and radiogenic 87Sr/86Sr isotopic data have been used to investigate the origin of cleat dawsonite (NaAlCO3(OH)2) in the Late Permian Wittingham Coal Measures of the Upper Hunter region in the Sydney Basin, New South Wales. The δ13CPDB values have a narrow range (− 1.7‰ to + 2.4‰), with an average of + 0.3‰, suggesting a magmatic source for the carbon. In contrast, δ18OSMOW values have a wide range (+ 13.6‰ to + 19.8‰), and decrease systematically with decreasing distance from a major intrusion. This systematic variation reflects establishment of localised hydrothermal cells. Water–rock interaction between fluids associated with these hydrothermal cells, and Rb-poor volcaniclastic detritus in the coal measures, produced mantle-like 87Sr/86Sr (0.705032 to 0.706464) in the dawsonite.  相似文献   

8.
Individual and monthly precipitation samples from the polluted atmosphere of Bologna (Emilia-Romagna province) were collected during March 1996 to May 1997 and analyzed for major ions in solution and S isotopes in dissolved SO4.Weighted mean enrichment factors relative to seawater are found to be 1.0 for Na, 15.2 for K, 105 for Ca, 3.3 for Mg, 17.3 for SO4 and 663 for HCO3. Very good positive correlations are observed for the Ca2+–Mg2+–HCO3–SO2−4–NO3 system, indicating that dissolution of Ca (±Mg)-carbonate particles by H2SO4 and HNO3 from combustion of oil and gas is a major process controlling the chemical composition of rain and snow. Na+ and Cl in monthly precipitation derive essentially from sea spray, but the contribution of Na+ from continental sources is appreciable in a number of individual rains. NH+4 appears to be on average more abundant in spring and summer precipitation, its main sources being microbial activity in soils and application of fertilizers. K+ is probably of continental origin from soil dust.The S isotopic composition of SO4 is systematically positive, with mean δ34S values of +3.2±1.6‰ (n=40) in individual precipitation and +2.8±1.4‰ (n=12) in monthly precipitation. These isotopic compositions are interpreted in terms of a dominant contribution of S from anthropogenic emissions and subordinate contributions from biogenic and marine sources. Pollutant SO4 is estimated to have a δ34S value in the range +2.5 to +4.5‰, whereas a distinctive δ34S of −4.5‰ or lower indicates SO4 from oxidation of biogenic gases.The isotopic and chemical compositions of SO4 do not depend on wind direction, thus testifying to a mostly local source for pollutant S in the Bologna atmosphere.  相似文献   

9.
The carbonate-hosted Kabwe Pb–Zn deposit, Central Zambia, has produced at least 2.6 Mt of Zn and Pb metal as well as minor amounts of V, Cd, Ag and Cu. The deposit consists of four main epigenetic, pipe-like orebodies, structurally controlled along NE–SW faults. Sphalerite, galena, pyrite, minor chalcopyrite, and accessory Ge-sulphides of briartite and renierite constitute the primary ore mineral assemblage. Cores of massive sulphide orebodies are surrounded by oxide zones of silicate ore (willemite) and mineralized jasperoid that consists largely of quartz, willemite, cerussite, smithsonite, goethite and hematite, as well as numerous other secondary minerals, including vanadates, phosphates and carbonates of Zn, Pb, V and Cu.Galena, sphalerite and pyrite from the Pb–Zn rich massive orebodies have homogeneous, negative sulphur isotope ratios with mean δ34SCDT permil (‰) values of − 17.75 ± 0.28 (1σ), − 16.54 ± 0.0.27 and − 15.82 ± 0.25, respectively. The Zn-rich and Pb-poor No. 2 orebody shows slightly heavier ratios of − 11.70 ± 0.5‰ δ34S for sphalerite and of − 11.91 ± 0.71‰ δ34S for pyrite. The negative sulphur isotope ratios are considered to be typical of sedimentary sulphides produced through bacterial reduction of seawater sulphate and suggest a sedimentary source for the sulphur.Carbon and oxygen isotope ratios of the host dolomite have mean δ13CPDB and δ18OSMOW values of 2.89‰ and 27.68‰, respectively, which are typical of marine carbonates. The oxygen isotope ratios of dolomite correlate negatively to the SiO2 content introduced during silicification of the host dolomite. The depletion in 18O in dolomite indicates high temperature fluid/rock interaction, involving a silica- and 18O-rich hydrothermal solution.Two types of secondary fluid inclusions in dolomite, both of which are thought to be related to ore deposition, indicate temperatures of ore deposition in the range of 257 to 385 and 98 to 178 °C, respectively. The high temperature fluid inclusions contain liquid + vapour + solid phases and have salinities of 15 to 31 eq. wt.% NaCl, whereas the low temperature inclusions consist of liquid + vapour with a salinity of 11.5 eq. wt.% NaCl.Fluid transport may have been caused by tectonic movements associated with the early stages of the Pan-African Lufilian orogeny, whereas ore deposition within favourable structures occurred due to changes in pressure, temperature and pH in the ore solution during metasomatic replacement of the host dolomite. The termination of the Kabwe orebodies at the Mine Club fault zone and observed deformation textures of the ore sulphides as well as analysis of joint structures in the host dolomite, indicate that ore emplacement occurred prior to the latest deformation phase of the Neoproterozoic Lufilian orogeny.  相似文献   

10.
Groundwater samples were collected at a site in N Norfolk, UK, comprising a borehole penetrating Upper Chalk and piezometers open within the overlyinf glacial deposits and intervening, weathered Putty Chalk. The samples were analyzed for δ18O (water), δ34S and δ18O(SO4) and δ13C(HCO3) as well as major ions. Variations in solute concentration and isotopic composition with depth were found to be caused by limited groundwater circulation at the site and incomplete flushing of old groundwater. The isotopic data prove the existence of a mineralized palaeowater at depth, which has undergone SO4 reduction and is being slowly modified by mixing with recent groundwater circulating at a shallow depth in a more transmissive Chalk horizon. One measured δ18O (H2O) value of −8.25‰vsmow represents the lightest value reported for the Norfolk Chalk aquifer and is evidence for a component of Late Pleistocene recharge trapped at depth.The wide range of observed isotope ratios at the site, e.g.δ34S and δ18O SO4 between 7.8 to 27.8‰cdt and 5.2 to 20.0‰ovsmow respectively, demonstrates the importance of vertical stratification of solutes and the implications this has for interpreting spatial hydrochemical surveys of groundwater.  相似文献   

11.
Previous studies on the coal-bed methane potential of the Zonguldak basin have indicated that the gases are thermogenic and sourced by the coal-bearing Carboniferous units. In this earlier work, the origin of coal-bed gas was only defined according to the molecular composition of gases and to organic geochemical properties of the respective source rocks, since data on isotopic composition of gases were not available. Furthermore, in the western Black Sea region there also exist other source rocks, which may have contributed to the coal-bed gas accumulations. The aim of this study is to determine the origin of coal-bed gas and to try a gas-source rock correlation. For this purpose, the molecular and isotopic compositions of 13 headspace gases from coals and adjacent sediments of two wells in the Amasra region have been analyzed. Total organic carbon (TOC) measurements and Rock-Eval pyrolysis were performed in order to characterize the respective source rocks. Coals and sediments are bearing humic type organic matter, which have hydrogen indices (HI) of up to 300 mgHC/gTOC, indicating a certain content of liptinitic material. The stable carbon isotope ratios (δ13C) of the kerogen vary from −23.1 to −27.7‰. Air-free calculated gases contain hydrocarbons up to C5, carbon dioxide (<1%) and a considerable amount of nitrogen (up to 38%). The gaseous hydrocarbons are dominated by methane (>98%). The stable carbon isotope ratios of methane, ethane and propane are defined as δ13C1: −51.1 to −48.3‰, δ13C2: −37.9 to −25.3‰, δ13C3: −26.0 to −19.2 ‰, respectively. The δD1 values of methane range from −190 to −178‰. According to its isotopic composition, methane is a mixture, partly generated bacterially, partly thermogenic. Molecular and isotopic composition of the gases and organic geochemical properties of possible source rocks indicate that the thermogenic gas generation took place in coals and organic rich shales of the Westphalian-A Kozlu formation. The bacterial input can be related to a primary bacterial methane generation during Carboniferous and/or to a recent secondary bacterial methane generation. However, some peculiarities of respective isotope values of headspace gases can also be related to the desorption process, which took place by sampling.  相似文献   

12.
The maceral and microlithotype composition of selected coals has been investigated with respect to the grinding properties, specifically Hardgrove grindability index (HGI), of the coals. The study expands upon previous investigations of HGI and coal petrology by adding the dimension of the amount and composition of the microlithotypes. Coal samples, both lithotypes and whole channels, were selected from restricted rank ranges based on vitrinite maximum reflectance: 0.75–0.80% Rmax, 0.85–0.90% Rmax and 0.95–1.00% Rmax. In this manner, the influence of petrographic composition can be isolated from the influence of rank. Previous investigations of high volatile bituminous coals demonstrated that, while rank is an important factor in coal grindability, the amount of liptinite and liptinite-rich microlithotypes is a more influential factor. In this study, we provide further quantitative evidence for the influence of microlithotypes on HGI and, ultimately, on pulverizer performance.  相似文献   

13.
Twenty two samples of calcretes from seven depth-profiles in the Menindee catchment, Broken Hill region, Australia were analysed for their inorganic and organic carbon contents and inorganic carbon and oxygen isotopes. The organic carbon content is very low (from 0.06 to 0.31 wt.%) while inorganic carbon (carbonate) is up to 3.9 wt.%. Both δ13C and δ18O become more positive closer to the surface. Carbon isotopes vary from − 8.5‰ to −5.5‰ PDB. Oxygen isotopes vary from − 6‰ to − 1.8‰ V-PDB. Depth-related δ13C and δ18O variations correlate over at least 15 km and show no significant variation along the flow path. δ13C values increase by 3‰ and δ18O values increase by 4‰ with decreasing depth in a 1.40 m thick soil profile. The variation is interpreted to indicate an increasingly elevated air temperature, greater water stress and subsequently an aridification of the area through time. The Broken Hill calcrete data confirm that climatic evolution can be deduced from isotopic series and be applied successfully to the Broken Hill region.  相似文献   

14.
The Daduhe gold field comprises several shear-zone-controlled Tertiary lode gold deposits distributed at the eastern margin of the Tibetan Plateau. The deposits are hosted in a Precambrian granite–greenstone terrane within the Yangtze Craton. The gold mineralization occurs mainly as auriferous quartz veins with minor sulphide minerals. Fluid inclusions in pyrite have 3He/4He ratios of 0.16 to 0.86 Ra, whereas their 40Ar/36Ar ratios range from 298 to 3288, indicating a mixing of fluids of mantle and crust origins. The δ34S values of pyrite are of 0.7–4.2‰ (n = 12), suggesting a mantle source or leaching from the mafic country rocks. δ18O values calculated from hydrothermal quartz are between − 1.5‰ and + 6.0‰ and δD values of the fluids in the fluid inclusions in quartz are − 39‰ and − 108‰. These ranges demonstrate a mixing of magmatic/metamorphic and meteoric fluids. The noble gas isotopic data, along with the stable isotopic data suggest that the ore-forming fluids have a dominantly crustal source with a significant mantle component.  相似文献   

15.
D/H, 13C/12C, 18O/16O and 34S/32S ratios in the organic matrix and organic solvent extracts of Australian coals, and in the fluids and minerals associated with these coals, are reported and reviewed against similar isotopic data for coals from other regions.Where coals are immature, original isotopic differences between macrolithotypes, and between solvent extracts (lipid concentrates) and insoluble residues, are largely preserved. However, with increasing maturity these characteristic differences, particularly those between macrolithotypes, are rapidly erased. Conversely, where, as indicated by low total sulfur contents, coals of Cretaceous to Permian age were deposited under essentially freshwater conditions, δ34S values* for the organically-bound sulfur remain remarkably constant at +4 ± 3‰ relative to meteoritic sulfur. In similar, younger Tertiary coals, the organic sulfur is markedly enriched in 34S.Five distinctive isotopic patterns, which may be interpreted in terms of the environment of sulfate reduction, can be recognized from 34S/32S ratio measurements on the various forms of sulfur in Australian coals.Isotopic studies of seam gas hydrocarbons collected in situ show these to be unexpectedly strongly depleted in the heavier isotopes of hydrogen and carbon relative to natural gases from proposed humic sources. Furthermore, no pronounced increase in the 13C content in methane with increase in rank of the parent coal was observed. In addition, several sources of associated carbon dioxide have been delineated, including normal maturation processes, invasion of the seams by magnetic carbon dioxide, and interaction of the coal with intrusive magma.Isotopic exchange between free seam gases is not accepted as an explanation for some unusual isotopic fractionations seen, rather the data suggest that these gases may be formed in a state approaching isotopic equilibrium. This argument also satisfactorily explains the isotopic compositions of primary siderite and secondary calcite associated with bituminous coal seams. However, where seams are invaded and permeated with externally derived carbon dioxide, usually of magnetic origin, carbonates are frequently absent, presumably as a result of the action of carbonic acid.  相似文献   

16.
Sulfur and carbon contents and isotope ratios are reported for five Archean iron-formations, Helen, Nakina and Finlayson, Lumby and Bending Lake areas, distributed across 850 km of the Canadian shield all 2.7 Ga-old.A δ34S profile through a complete stratigraphic column (oxide facies excluded) of the Helen iron-formation shows a δ34S range of 30.2‰, mean δ34S value of 2.5‰ and a standard deviation (δi) of 7.3‰ In sharp contrast to the sulfide and siderite facies, the oxide facies in the column shows a uniform δ34S value close to zero. The δ34S values obtained for the other four iron-formations are again wide ranging, highly variable in the sulfide and pyrite—siderite facies, but uniform and close to zero for the oxide facies.The carbon in the oxide, siderite, chert facies has δ13C values of +2.3 to −1.1‰ in the range of Phanerozoic marine carbonates. However, the carbonates in the graphite rich sulfide facies have δ13C values as low as −7.6‰. The mixing of reduced carbon with marine carbonate is suggested to explain the light carbonate values. The reduced carbon associated with the light carbonate is also relatively light at up to δ13Corg = 33.5‰, but is in the range of other Precambrian values. Distal, high temperature, abiogenic sulfate reduction as a source of highly fractionated sulfides in the Archean iron-formations is ruled out on the basis of both isotopic and geologic evidence. It is concluded that only the bacterial reduction of sulfate at low temperatures could produce the wide ranging, highly variable δ34S values exhibited by these sulfides over large areas.  相似文献   

17.
The Maastrichtian–Danian limestones of the Yacoraite Formation (northwestern Argentina) show carbon and oxygen isotopic values consistent with shallow marine conditions. The members of the formation respond to different sedimentary environments and are characterised by distinctive stable isotopes and geochemistry. The basal Amblayo Member is composed of high-energy dolomitic limestones and limestones with positive isotopic values (+2‰ δ13C, +2‰ δ18O). The top of the member reveals an isotopic shift of δ13C (−5‰) and δ18O (−10‰), probably related to a descent in the sea level. The sandy Güemes Member has isotopically negative (−2‰ δ13C, −1‰ δ18O) limestones, principally controlled by water mixing, decreased organic productivity, and compositional changes in the carbonates. The isotopically lighter limestones are calcitic, with a greater terrigenous contribution and different geochemical composition (high Si–Mn–Fe–Na, low Ca–Mg–Sr). These isotopic and lithological changes relate to the Cretaceous–Palaeogene transition. The Alemanía Member, composed of dolomitic limestones and pelites, represents a return to marine conditions and shows a gradual increase in isotopic values, reaching values similar to those of the Amblayo Member. The Juramento Member, composed of stromatolite limestones, shows isotopic variations that can be correlated with the two well-defined, shallowing-upward sequences of the member.  相似文献   

18.
Isotope systematics are well defined for conventional sapropelic, Type I/II kerogens and their associated bacterial and thermogenic natural-gas products. These geochemical tools are used to estimate source type, maturity and depositional environment, and as a correlation technique. In many cases the natural gas signatures in near-surface samples and drill cuttings can be used to classify or predict a deeper lying source rock or reservoir.Corresponding interpretative schemes for coals, Type III kerogens and their associated hydrocarbons are progressing quickly. The shift in attention to humic sources is driven primarily by depletion of conventional oil and gas resources and the economic and societal requirements of coal and coal-bed methane.Carbon, hydrogen and nitrogen stable isotope variations can be large between different coals and humic kerogens. These differences can often be recognized in their bulk δ13Corg, δDorg and δ15Norg values. Isotope signatures of coals can be diagnostic of several factors, including deposit age, type, geographic location, maturity and generation history. However, these characteristic isotopic variations are substantially better defined by the C-, H- and N-isotope ratios of the separate maceral groups, such as vitrinite, exinite and inertinite. This new application of stable isotopes, at the maceral and compound levels, have great potential to improve the interpretative precision over conventional whole coal or bulk techniques.Hydrocarbon gases, including coal gases, derived from coals and humic kerogens can be distinguished from Type I/II sources, based on their molecular rations, i.e., C1/(C2 + C3) and by comparing their stable isotope compositions, especially δ13CCH4 and δDCH4. The δ13CC2H6 can also be valuable, but ethane is generally present in small amount (<1 vol. %) and requires  相似文献   

19.
Coal-derived hydrocarbons from Middle–Lower Jurassic coal-bearing strata in northwestern China are distributed in the Tarim, Junggar, Qaidam, and Turpan-Harmi basins. The former three basins are dominated by coal-derived gas fields, distributed in Cretaceous and Tertiary strata. Turpan-Harmi basin is characterized by coal-derived oil fields which occur in the coal measures. Based on analysis of gas components and carbon isotopic compositions from these basins, three conclusions are drawn in this contribution: 1) Alkane gases with reservoirs of coal measures have no carbon isotopic reversal, whereas alkane gases with reservoirs not of coal measures the extent of carbon isotopic reversal increases with increasing maturity; 2) Coal-derived alkane gases with high δ13C values are found in the Tarim and Qaidam basins (δ13C1: − 19.0 to − 29.9‰; δ13C2: − 18.8 to − 27.1‰), and those with lowest δ13C values occur in the Turpan-Harmi and Junggar basins (δ13C1: − 40.1 to − 44.0‰; δ13C2: − 24.7 to − 27.9‰); and 3) Individual specific carbon isotopic compositions of light hydrocarbons (C5–8) in the coal-derived gases are lower than those in the oil-associated gases. The discovered carbon isotopic reversal of coal-derived gases is caused by isotopic fractionation during migration and secondary alteration. The high and low carbon isotopic values of coal-derived gases in China may have some significance on global natural gas research, especially the low carbon isotope value of methane may provide some information for early thermogenic gases. Coal-derived methane typically has much heavier δ13C than that of oil-associated methane, and this can be used for gas–source rock correlation. The heavy carbon isotope of coal-derived ethane is a common phenomenon in China and it shed lights on the discrimination of gas origin. Since most giant gas fields are of coal-derived origin, comparative studies on coal-derived and oil-associated gases have great significance on future natural gas exploration in the world.  相似文献   

20.
We recently showed that silicon isotopic fractionation in banana (Musa acuminata Colla, cv Grande Naine) was related to phytolith production, and therefore to silica content in plant. The present study focuses on isotopic fractionation between the different plant parts. Silicon isotopic compositions were measured using a Nu plasma multicollector plasma source mass spectrometer (MC–ICP–MS) operating in dry plasma mode. The results are expressed as δ29Si relatively to the NBS28 standard, with an average precision and accuracy of ± 0.08‰ (± 2σ). On mature banana (Musa acuminata Colla, cv Grande Naine) from Cameroon, δ29Si ranged from + 0.13‰ in the petiole to + 0.49‰ in the lamina, yielding to a 0.36‰ change towards heavier isotopic composition in the upper parts of the plant. This strongly accords with results obtained on in vitro banana plantlets cultivated in hydroponics, where the δ29Si increase from pseudostems to lamina is 0.26‰. These preliminary results on in situ banana show a trend of intra-plant fractionation comparable with that of in vitro hydroponics banana plantlets and with previous data obtained on bamboo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号