首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonlinear elastic behavior of fiber-reinforced soil under cyclic loading   总被引:5,自引:0,他引:5  
Experimental investigations and modeling of nonlinear elasticity of fiber-reinforced soil under cyclic loading at small strain are conducted in this paper. The investigations include three aspects. First, cyclic shear tests are conducted using conventional triaxial apparatus. Twenty-seven specimens with three different fiber contents are employed to conduct triaxial cyclic shear tests under different confining pressure and loading repetition. Effects of geofiber, confining pressure and loading repetition on elastic shear modulus of reinforced soil are studied and analyzed. Second, a hyperbolic function is introduced to describe the nonlinear stress–strain skeletal curve under cyclic loading. Nonlinear elastic modulus is expressed as a function of shear strain and two variables A and B that are related to the initial tangential modulus and ultimate cyclic loading stress, respectively. In the present paper, variables A and B both are further assumed to be functions of geofiber content, confining pressure and loading repetition. Finally, eight constitutive coefficients of the nonlinear elastic model are calibrated using stress–strain curves from cyclic triaxial shear tests. The calibration of parameters is conducted using the technique of the linear regression for multiple variables. Impacts and effects of geofiber, confining pressure and loading repetitions on soil nonlinear elastic behavior are discussed.  相似文献   

2.
充液井孔中的偶极子声源能在周围岩层和土层中激发弯曲模式声波,它们在截止频率附近,沿井轴传播的速度为井壁介质的横波速度.使用可调声功率源使偶极子声波测井系统能适应软、硬地层的现场井孔测试.相关法算出横波声速,野外测试的结果和理论计算值相符.计算动弹模量和剪切模量,确定破碎层位置,可用于工程地质勘察中  相似文献   

3.
横波测井的原理和方法研究   总被引:2,自引:1,他引:2       下载免费PDF全文
充液井孔中的偶极子声源能在周围岩层和土层中激发弯曲模式声波,它们在截止频率附近,沿井轴传播的速度为井壁介质的横波速度.使用可调声功率源使偶极子声波测井系统能适应软、硬地层的现场井孔测试.相关法算出横波声速,野外测试的结果和理论计算值相符.计算动弹模量和剪切模量,确定破碎层位置,可用于工程地质勘察中  相似文献   

4.
Knowledge of the dynamic properties of the soil is of great importance as the dynamic shear modulus and damping ratio are necessary input data in finite element modeling programs. This paper presents a post-processing strategy to identify the shear modulus and damping ratio vs. shear strain curves using the experimental results of a dynamic centrifuge program. Application is presented for the Fontainebleau sand. The proposed methodology is fast, robust and able to capture the nonlinear hysteretic behavior of the material. Based on the results, specific parameters for the Fontainebleau sand are identified for the empirical equation of shear modulus and damping ratio proposed by Ishibashi and Zhang [1]. It is found that confining pressure has an important influence on both shear modulus evolution and damping ratio.  相似文献   

5.
剪切波速是区别土动力学和静力学的重要参数,其影响因素包括土层埋深、颗粒形状、颗粒比重、压缩模量、孔隙比、含水率和密度等,其中土层埋深对剪切波速的变化影响较大。本文搜集整理了华北地区10个城市的928个钻孔共10703个测点的剪切波速与土层埋深之间的经验统计关系,探讨华北地区剪切波速随深度变化的特征,并从岩性条件、沉积环境等方面分析其原因。通过对比分析,给出了华北地区黏性土和砂类土剪切波速随深度变化的最佳拟合经验统计关系,并进行实例验证,所得结果可为缺乏数据的区域提供一定参考。  相似文献   

6.
基于航空工业组团阎良片区地震小区划项目中大量动三轴试验结果,通过双曲线拟合方法,得到主要土类(黄土状土、粉质粘土、粉土、细砂)在8个典型剪应变(0.000005、0.00001、0.00005、0.0001、0.0005、0.001、0.005、0.01)下的动剪切模量比和阻尼比统计值,并将得到的统计值与廖振鹏给出的建议值、陈党民等给出的典型值和袁晓铭等给出的推荐值进行比较,进一步论证土动力学参数的地域性特征。文中还探讨了土样埋深和取样手段(试样等级)对动剪切模量比和阻尼比的影响。文中给出的统计值可为该片区地震小区划中的土层地震反应模型提供参数,同时也为研究该片区场地土动力特性及重大工程地震安全性评价工作提供参考和借鉴。  相似文献   

7.
The dynamic characteristics of compacted loess are of great significance to the seismic construction of the Loess Plateau area in Northwest China, where earthquakes frequently occur. To study the change in the dynamic modulus of the foundation soil under the combined action of vertical and horizontal earthquakes, a hollow cylindrical torsion shear instrument capable of vibrating in four directions was used to perform two-way coupling of compression and torsion of Xi'an compacted loess under different dry density and deviator stress ratios. The results show that increasing the dry density can improve the initial dynamic compression modulus and initial dynamic shear modulus of compacted loess. With an increase in the deviator stress ratio, the initial dynamic compression modulus increases, to a certain extent, but the initial dynamic shear modulus decreases slightly. The dynamic modulus gradually decreases with the development of dynamic strain and tends to be stable, and the dynamic modulus that reaches the same strain increases with an increasing dry density. At the initial stage of dynamic loading, the attenuation of the dynamic shear modulus with the strain development is faster than that of the dynamic compression modulus. Compared with previous research results, it is determined that the dynamic modulus of loess under bidirectional dynamic loading is lower and the attenuation rate is faster than that under single-direction dynamic loading. The deviator stress ratio has a more obvious effect on the dynamic compression modulus. The increase in the deviator stress ratio can increase the dynamic compression modulus, to a certain extent. However, the deviator stress ratio has almost no effect on the dynamic shear modulus, and can therefore be ignored.  相似文献   

8.
介绍了现场测试与实验室测试土的最大动剪切模量的差别、动剪切模量和阻尼比与剪应变关系的表达式及其地区经验成果、固结比对最大动剪切模量影响、动泊松比研究、实验误差及其对地震动的影响等方面的主要成果。提出应加强动泊松比研究,加强共振柱和动三轴试验土动力学参数统一的数学模型研究,加强土动力学参数在均等固结与非均等固结条件下关系研究,加强土动力学参数与土的常规物理力学性质指标关系研究和土动力学参数实验误差研究。  相似文献   

9.
Many laminar shear boxes have recently been developed into sliding-frame containers that can reproduce 1D ground-response boundary conditions. The measured responses of such large specimens can be utilized to back-calculate soil properties. This study investigates how the boundary effect in large specimens affects the identified soil properties through shaking table tests on a soil-filled large laminar box conducted at the National Center for Research on Earthquake Engineering in Taiwan. The tested soil-box system is unique because only 80% of the container is filled with soil. This system can be regarded as a two-layer system: an empty top and soil-filled bottom. The dynamic properties of this two-layer system are identified through various approaches, including theoretical solutions of wave propagation, free vibration, and nonparametric stress–strain analyzes. Therefore, the coupling effect of the box and soil can be evaluated. Results show that, compared with the two-layer system considering the influence of the box, the conventional approach with a single-layer system slightly underestimates shear wave velocity but obtains the same damping ratio of the soil layer. In addition, the identified modulus reduction and damping curves in the two-layer system are consistent with those obtained in a laboratory test on a small specimen. Furthermore, based on detailed acceleration measurements along different depths of soil, a piecewise profile of shear wave velocity is built. The identified shear wave velocity increases with depth, which is not uniform and differs from the constant velocity typically assumed for the specimen.  相似文献   

10.
马兰黄土剪应力松弛特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
运用Riemann-Liouville的分数阶导数理论及经典模型理论相结合的方法,采用Abel黏壶取代在经典模型理论中的Newton黏壶,得出了分数阶标准线性体模型剪应力松弛的解析表达式。采用不同含水量马兰黄土在不同正压力条件下进行直接剪切松弛试验,并对得到的9组剪应力松弛曲线特征进行了研究。考虑到最小二乘法对分数阶标准线性体模型参数进行拟合无法获得确切的结果,采用Monte Carlo方法对试验结果拟合。拟合结果表明,马兰黄土的松弛特性可由分数阶标准线性体模型有效的表征。确定了马兰黄土的松弛时间和粘滞系数,揭示了马兰黄土在直接剪切试验条件下的松弛特性。  相似文献   

11.
通过一系列野外及实验室试验,对澳门地区土层地震波速进行了初步测量,从初步的现场试验结果来看,浅层的地震波速受到堆填物料的影响颇大,变化显得较为宽广,随着深度的增加,由于天然土层较为均一,地震波速的变化亦见收窄,现场剪切波速数据与标准贯人试验(SPT)数据可见一定吻合性。而通过等向及异向固结的实验室试验,发现澳门海泥的剪切波速在同一平均有效应力而不同应力路径下大致相同,此外,比较野外及实验室试验结果,亦显示澳门海泥的剪切波速受土体天然结构影响不大。  相似文献   

12.
The effect of fabric on low-strain shear stiffness properties of granular soils was assessed using Discrete Element simulations. These soils were idealized as a collection of non-spherical particles that interact according to Hertz׳s contact law. Different fabrics of the same soil were obtained by extracting particles from the weak or strong interparticle force networks. The associated stiffness properties were evaluated for various levels of isotropic triaxial confining stress conditions. The conducted analyses showed that a soil with a given void ratio and level of confining stress may have various fabrics associated with noticeably different low-strain shear moduli. The mechanical coordination number and particle shape were found to be the main factors that dictate the low-strain stiffness properties of a certain granular soil (with a specific contact law). For a defined level of confining stress, the shear stiffness of a particular soil is shown to be linked to the mechanical coordination number by a unique relation.  相似文献   

13.
动三轴试验是将试样在轴对称的三轴应力下进行固结,在不排水条件下进行的振动试验,同时可测定土样的动剪切模量比和阻尼比。土的动剪切模量比和阻尼比是土动力学特性的2个重要参数,在工程场地地震安全性评价工作和土层地震反应分析中不可缺少。为了减少工期,提高工效,及时而又准确地提交报告,我们结合自己多年的土工试验经验,对可塑状态以上的粘性土试样进行了缩短固结时间的对比试验,并得到理想的试验结果。  相似文献   

14.
Initial fabric of a soil induced by its cyclic strain history is an important parameter together with the void ratio, state of stress and amplitude in respect to further accumulation of deformations under drained cyclic loading. It is of importance for the further deformation prediction to determine the initial fabric of the grain skeleton or the cyclic loading history of the soil. An attempt is made within this paper to correlate small strain stiffness of non-cohesive soil with its cyclic loading history. The results of performed cyclic and dynamic torsional tests show that small strain shear modulus is only moderately affected by cyclic prestraining even if high amplitudes are applied. A signature of prestraining history is observed in the tests since the sand memorizes its prestraining amplitude and the number of applied cycles.  相似文献   

15.
小应变硬化土模型参数的确定与敏感性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
地下工程施工引起的土体扰动区可分为剧烈扰动区、扰动区、微扰动区和未扰动区。为全面反映土体在扰动下的应力路径和力学响应,必须考虑全应变范围的土体特性,尤其是小应变范围内的力学响应,因此对小应变硬化土本构模型关键参数(初始剪切模量和剪应变阀值)的确定方法进行介绍。开展上海典型软土的三轴固结排水剪切试验和固结试验研究,给出确定上海软土小应变硬化土模型(HSSmall)参数的方法,建议采用原位测试的方法确定土体的初始弹性模量。基于土单元数值模拟进行初始弹性模量和剪应变阀值的参数敏感性分析。随着初始弹性模量的增大,初始压缩曲线与卸载-再压缩曲线的斜率均增大。由于对应的回弹模量不变,初始弹性模量与回弹模量的差值增大,应变与偏应力试验曲线的回滞环宽度也随之增大。随着剪应变阀值的增大,初始压缩曲线和再压缩曲线的近似直线段增长,在同样剪应力情况下,土体的应变值减小,土体保持初始弹性模量刚度的区间增大。  相似文献   

16.
Shear moduli of volcanic soils   总被引:1,自引:0,他引:1  
The shear modulus of soils is one of the important parameters in small strain level geotechnical problems (i.e. the study of earthquake effects and soil–structure interaction). In this paper, the shear moduli of crushable volcanic soils at small strain level were investigated in bender element and cyclic undrained triaxial tests. Comparison of results shows that the shear moduli from bender element tests agree well with those determined in cyclic triaxial tests. The influence of particle breakage, effective confining pressure, consolidation time, void ratio and fines content on the shear modulus are also discussed. In the present study, empirical equations for evaluating the shear modulus of granular materials with particle breakage are proposed based on the test results.  相似文献   

17.
Seismic piezocone (SCPTu) data compiled from 86 sites in the greater Christchurch, New Zealand area are used to evaluate several existing empirical correlations for predicting shear wave velocity from cone penetration test (CPT) data. It is shown that all the considered prediction models are biased towards overestimation of the shear wave velocity of the Christchurch soil deposits, demonstrating the need for a Christchurch-specific shear wave velocity prediction model (McGann et al., 2014) [1]. It is hypothesized that the unique depositional environment of the considered soils and the potential loss of soil ageing effects brought about by the 2010–2011 Canterbury earthquake sequence are the primary source of the observed prediction bias.  相似文献   

18.
采用动三轴试验系统对加筋土试样进行固结不排水三轴剪切试验。研究了在不同加筋材料、不同加筋层数、不同围压、不同固结应力比条件下的加筋土的动弹性模量变化规律,并与素土试样试验结果进行对比。研究结果表明,加筋土的动弹性模量随围压和固结应力比的增加而增大,窗纱加筋试样的最大动模量相比素土有了较大的提高,并随着加筋层数的增加而增大,土工布加筋土试样最大动弹模量与素土的最大动弹模量增减趋势不明确。  相似文献   

19.
Shear modulus and damping ratio of grouted sand   总被引:2,自引:0,他引:2  
An experimental comparative study of three different grouted sands in terms of their effects on the values of two dynamic properties is presented. The dynamic properties studied are the shear modulus and the damping ratio which are determined with resonant column tests and cyclic triaxial tests. The behaviour of a pure Fontainebleau sand is compared with the behaviour of a Fontainebleau sand grouted with a silicate grout, a micro-fine cement grout and a mineral grout. The effects of the grouting treatment, the type of grout, the confining pressure, and the strains, on the shear modulus and the damping ratio are studied. The test results have shown that grouting improves the stiffness of the sand especially for small strains. Whatever the type of material, confining stress improves the shear modulus whereas it has a negligible effect on the damping ratio. When strain increases, the shear modulus decreases and the damping ratio increases.  相似文献   

20.
It is evident from the laboratory experiments that shear moduli of different porous isotropic rocks may show softening behaviour upon saturation. The shear softening means that the shear modulus of dry samples is higher than of saturated samples. Shear softening was observed both at low (seismic) frequencies and high (ultrasonic) frequencies. Shear softening is stronger at seismic frequencies than at ultrasonic frequencies, where the softening is compensated by hardening due to unrelaxed squirt flow. It contradicts to Gassmann's theory suggesting that the relaxed shear modulus of isotropic rock should not depend upon fluid saturation, provided that no chemical reaction between the solid frame and the pore fluid. Several researchers demonstrated that the shear softening effect is reversible during re-saturation of rock samples, suggesting no permanent chemical reaction between the solid frame and the pore fluid. Therefore, it is extremely difficult to explain this fluid–rock interaction mechanism theoretically, because it does not contradict to the assumptions of Gassmann's theory, but contradicts to its conclusions. We argue that the observed shear softening of partially saturated rocks by different pore fluids is related to pore-scale interfacial phenomena effects, typically neglected by the rock physics models. These interface phenomena effects are dependent on surface tension between immiscible fluids, rock wettability, aperture distribution of microcracks, compressibility of microcracks, porosity of microcracks, elastic properties of rock mineral, fluid saturation, effective stress and wave amplitude. Derived equations allow to estimate effects of pore fluids and saturation on the shear modulus and mechanical strength of rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号