首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the mechanisms of glacial inception by using the Earth system model of intermediate complexity, CLIMBER-2, which encompasses dynamic modules of the atmosphere, ocean, biosphere and ice sheets. Ice-sheet dynamics are described by the three-dimensional polythermal ice-sheet model SICOPOLIS. We have performed transient experiments starting at the Eemiam interglacial, at 126 ky BP (126,000 years before present). The model runs for 26 kyr with time-dependent orbital and CO2 forcings. The model simulates a rapid expansion of the area covered by inland ice in the Northern Hemisphere, predominantly over Northern America, starting at about 117 kyr BP. During the next 7 kyr, the ice volume grows gradually in the model at a rate which corresponds to a change in sea level of 10 m per millennium. We have shown that the simulated glacial inception represents a bifurcation transition in the climate system from an interglacial to a glacial state caused by the strong snow-albedo feedback. This transition occurs when summer insolation at high latitudes of the Northern Hemisphere drops below a threshold value, which is only slightly lower than modern summer insolation. By performing long-term equilibrium runs, we find that for the present-day orbital parameters at least two different equilibrium states of the climate system exist—the glacial and the interglacial; however, for the low summer insolation corresponding to 115 kyr BP, we find only one, glacial, equilibrium state, while for the high summer insolation corresponding to 126 kyr BP only an interglacial state exists in the model.
Reinhard CalovEmail:
  相似文献   

2.
We investigate the sensitivity of simulations of the last glacial inception (LGI) with respect to initial (size of the Greenland ice sheet) and surface (state of ocean/vegetation) conditions and two different CO2 reconstructions. Utilizing the CLIMBER-2 Earth system model, we obtain the following results: (a) ice-sheet expansion in North America at the end of the Eemian can be reduced or even completely suppressed when pre-industrial or Eemian ocean/vegetation is prescribed. (b) A warmer surrounding ocean and, in particular, a large Laurentide ice sheet reduce the size of the Greenland ice sheet before and during the LGI. (c) A changing ocean contributes much stronger to the expansion of the Laurentide ice sheet when we apply the CO2 reconstruction according to Barnola et al. (Nature 329:408–414, 1987) instead of Petit et al. (Nature 399:429–436, 1999). (d) In the fully coupled model, the CO2 reconstruction used has only a small impact on the simulated ice sheets but it does impact the course of the climatic variables. (e) For the Greenland ice sheet, two equilibrium states exist under the insolation and CO2 forcing at 128,000 years before present (128 kyear BP); the one with an ice sheet reduced by about one quarter as compared to its simulated pre-industrial size and the other with nearly no inland ice in Greenland. (f) Even the extreme assumption of no ice sheet in Greenland at the beginning of our transient simulations does not alter the simulated expansion of northern hemispheric ice sheets at the LGI.  相似文献   

3.
The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1°C, ice sheet topography, reduced CO2, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1°C less than the control run, there are many lowland tropical land areas 4–6°C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part of the Amazon and Congo Basins are simulated to be substantially drier in the ice age—consistent with many (but not all) paleo data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable to that which the proxy data represent.  相似文献   

4.
5.
To explore processes involved in glacial inception at 116 kaBP, the response of an atmospheric general circulation model (AGCM) to changes in lower boundary conditions is investigated. Two 116 kaBP experiments are conducted to examine the importance of sea surface conditions (sea surface temperature and sea ice distribution): one with the present-day sea surface conditions, and the other with 116 kaBP sea surface conditions. These two different sea surface conditions are obtained from simulations using an earth system climate model of intermediate complexity. Perennial snow cover occurred over the Canadian Archipelago under 116 kaBP orbital and CO2 forcing with present-day "warm" sea surface conditions, and further expanded over northeastern Canada when 116 kaBP "cool" sea surface conditions were applied. The net positive accumulation in northeastern Canada, with little in Alaska, is in good agreement with geological records. Two additional 116 kaBP experiments are conducted to examine the combined importance of sea surface conditions and land surface conditions (vegetation): one with the present-day sea surface and modified land surface conditions, and the other with 116 kaBP sea surface and modified land surface conditions. Modifying vegetation, based on cooling during summer induced by 116 kaBP sea surface conditions, leads to much larger areas of perennial snow cover. Only when 116 kaBP sea surface conditions are applied, is a realistic global net snow accumulation rate obtained. Contrary to the earlier ice age hypothesis, our results suggest that the capturing of glacial inception at 116 kaBP requires the use of "cooler" sea surface conditions than those of the present climate. Also, the large impact of vegetation change on climate suggests that the inclusion of the vegetation feedback is important for model validation, at least, in this particular period of Earth history.  相似文献   

6.
The climates of the mid-Holocene (MH, 6,000 years ago) and the Last Glacial Maximum (LGM, 21,000 years ago) have been extensively documented and as such, have become targets for the evaluation of climate models for climate contexts very different from the present. In Part 1 of the present work, we have studied the MH and LGM simulations performed with the last two versions of the IPSL model: IPSL_CM4, run for the PMIP2/CMIP3 (Coupled Model Intercomparion Project) projects and IPSL_CM5A, run for the most recent PMIP3/CMIP5 projets. We have shown that not only are these models different in their simulations of the PI climate, but also in their simulations of the climatic anomalies for the MH and LGM. In the Part 2 of this paper, we first examine whether palaeo-data can help discriminate between the model performances. This is indeed the case for the African monsoon for the MH or for North America south of the Laurentide ice sheet, the South Atlantic or the southern Indian ocean for the LGM. For the LGM, off-line vegetation modelling appears to offer good opportunities to distinguish climate model results because glacial vegetation proves to be very sensitive to even small differences in LGM climate. For other cases such as the LGM North Atlantic or the LGM equatorial Pacific, the large uncertainty on the SST reconstructions, prevents model discrimination. We have examined the use of other proxy-data for model evaluation, which has become possible with the inclusion of the biogeochemistry morel PISCES in the IPSL_CM5A model. We show a broad agreement of the LGM–PI export production changes with reconstructions. These changes are related to the mixed layer depth in most regions and to sea-ice variations in the high latitudes. We have also modelled foraminifer abundances with the FORAMCLIM model and shown that the changes in foraminifer abundance in the equatorial Pacific are mainly forced by changes in SSTs, hence confirming the SST-foraminifer abundance relationship. Yet, this is not the case in all regions in the North Atlantic, where food availability can have a strong impact of foraminifer abundances. Further work will be needed to exhaustively examine the role of factors other than climate in piloting changes in palaeo-indicators.  相似文献   

7.
TraCE-21ka是全球首个利用全耦合模式针对末次盛冰期(LGM)至今气候演变的瞬变模拟。利用现代再分析资料和历史特征时期重建的连续冻土边界对TraCE-21ka模拟做了评估。结果表明TraCE-21ka能够较好地模拟现代半球尺度环流和降水的空间形态,对东亚地区的模拟冬季较好而夏季欠佳。TraCE-21ka模拟的现代时期与再分析资料相比偏冷,北半球年平均表面温度比再分析资料低3~4 ℃,基于现代温度误差的分析表明TraCE-21ka对东亚地区气候演变的模拟欠佳。对于历史特征时期,重建的连续冻土边界线指示TraCE-21ka模拟的亚欧大陆在LGM偏暖,全新世中期偏冷,即低估了LGM以来的变温幅度。利用连续冻土边界线的年均表面温度约为-7 ℃这一特性,进一步定量评估出TraCE-21ka模拟的亚欧大陆中纬地区从LGM至今的升温幅度约为真实气候的40%。通过分析近百年全球升温速率证实TraCE-21ka的气候敏感性显著偏低,由此产生的误差在瞬变模拟中会不断累积。  相似文献   

8.
This paper examines several prominent thermodynamic and dynamic factors responsible for the meridional and vertical warming asymmetries using a moist coupled atmosphere–surface radiative transportive four-box climate model. A coupled atmosphere–surface feedback analysis is formulated to isolate the direct response to an anthropogenic greenhouse gas forcing from individual local feedbacks (water vapor, evaporation, surface sensible heat flux, and ice-albedo), and from the non-local dynamical feedback. Both the direct response and response to water vapor feedback are stronger in low latitudes. The joint effect of the ice-albedo and dynamical greenhouse-plus feedbacks acts to amplify the high latitude surface warming whereas both the evaporation and dynamical greenhouse-minus feedbacks cause a reduction of the surface warming in low latitudes. The enhancement (reduction) of local feedbacks in high (low) latitudes in response to the non-local dynamic feedback further strengthens the polar amplification of the surface warming. Both the direct response and response to water vapor feedback lead to an increase of lapse rate in both low and high latitudes. The stronger total dynamic heating in the mean state in high latitudes is responsible for a larger increase of lapse rate in high latitudes in the direct response and response to water vapor feedback. The local evaporation and surface sensible heat flux feedbacks reduce the lapse rate both in low and high latitudes through cooling the surface and warming the atmosphere. The much stronger evaporation feedback leads to a final warming in low latitudes that is stronger in the atmosphere than the surface.  相似文献   

9.
In the first part of this study, results of a computational fluid dynamics simulation over an array of cubes have been validated against a set of wind-tunnel measurements. In Part II, such numerical results are used to investigate spatially-averaged properties of the flow and passive tracer dispersion that are of interest for high resolution urban mesoscale modelling (e.g. non resolved obstacle approaches). The results show that vertical profiles of mean horizontal wind are linear within the canopy and logarithmic above. The drag coefficient, derived from the numerical results using the classical formula for the drag force, is height dependent (it decreases with height). However, a modification of the formula is proposed (accounting for subgrid velocity scales) that makes the drag coefficient constant with height. Results also show that the dispersive fluxes are similar in magnitude to the turbulent fluxes, and that they play a very important role within the canopy. Vertical profiles of turbulent length scales (to be used in kl closure schemes, where k is the turbulent kinetic energy and l a turbulent length scale) are also derived. Finally the distribution of the values around the mean over the reference volumes are analysed for wind and tracer concentrations.  相似文献   

10.
The multi-component “green” McGill Paleoclimate Model (MPM), which includes interactive vegetation, is used to simulate the next glacial inception under orbital and prescribed atmospheric CO2 forcing. This intermediate complexity model is first run for short-term periods with an increasing atmospheric CO2 concentration; the model's response is in general agreement with the results of GCMs for CO2 doubling. The green MPM is then used to derive projections of the climate for the next 100 kyr. Under a constant CO2 level, the model produces three types of evolution for the ice volume: an imminent glacial inception (low CO2 levels), a glacial inception in 50 kyr (CO2 levels of 280 or 290 ppm), or no glacial inception during the next 100 kyr (CO2 levels of 300 ppm and higher). This high sensitivity to the CO2 level is due to the exceptionally weak future variations of the summer insolation at high northern latitudes. The changes in vegetation re-inforce the buildup of ice sheets after glacial inception. Finally, if an initial global warming episode of finite duration is included, after which the atmospheric CO2 level is assumed to stabilize at 280, 290 or 300 ppm, the impact of this warming is seen only in the first 5 kyr of the run; after this time the response is insensitive to the early warming perturbation.  相似文献   

11.
Paleoclimate simulations of the mid-Holocene (MH) and Last Glacial maximum (LGM) by the latest versions of the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 and Grid-point Version 2 (FGOALS-s2 and g2) are evaluated in this study. The MH is characterized by changes of insolation induced by orbital parameters, and the LGM is a glacial period with large changes in greenhouse gases, sea level and ice sheets. For the MH, both versions of FGOALS simulate reasonable responses to the changes of insolation, such as the enhanced summer monsoon in African-Asian regions. Model differences can be identified at regional and seasonal scales. The global annual mean surface air temperature (TAS) shows no significant change in FGOALS-s2, while FGOALS-g2 shows a global cooling of about 0.7 C that is related with a strong cooling during boreal winter. The amplitude of ENSO is weaker in FGOALS-g2, which agrees with proxy data. For the LGM, FGOALS-g2 captures the features of the cold and dry glacial climate, including a global cooling of 4.6 C and a decrease in precipitation by 10%. The ENSO is weaker at the LGM, with a tendency of stronger ENSO cold events. Sensitivity analysis shows that the Equilibrium Climate Sensitivity (ECS) estimated for FGOALS ranges between 4.23 C and 4.59 C. The sensitivity of precipitation to the changes of TAS is~2.3% C-1 , which agrees with previous studies. FGOALS-g2 shows better simulations of the Atlantic Meridional Overturning Circulation (AMOC) and African summer monsoon precipitation in the MH when compared with FGOALS-g1.0; however, it is hard to conclude any improvements for the LGM.  相似文献   

12.
 A set of sensitivity experiments with the climate system model of intermediate complexity CLIMBER-2 was performed to compare its sensitivity to changes in different types of forcings and boundary conditions with the results of comprehensive models (GCMs). We investigated the climate system response to changes in freshwater flux into the Northern Atlantic, CO2 concentration, solar insolation, and vegetation cover in the boreal zone and in the tropics. All these experiments were compared with the results of corresponding experiments performed with different GCMs. Qualitative, and in many respects, quantitative agreement between the results of CLIMBER-2 and GCMs demonstrate the ability of our climate system model of intermediate complexity to address diverse aspects of the climate change problem. In addition, we used our model for a series of experiments to assess the impact of some climate feedbacks and uncertainties in model parameters on the model sensitivity to different forcings. We studied the role of freshwater feedback and vertical ocean diffusivity for the stability properties of the thermohaline ocean circulation. We show that freshwater feedback plays a minor role, while changes of vertical diffusivity in the ocean considerably affect the circulation stability. In global warming experiments we analysed the impact of hydrological sensitivity and vertical diffusivity on the long-term evolution of the thermohaline circulation. In the boreal and tropical deforestation experiments we assessed the role of an interactive ocean and showed that for both types of deforestation scenarios, an interactive ocean leads to an additional cooling due to albedo and water vapour feedbacks. Received: 28 May 2000 / Accepted: 9 November 2000  相似文献   

13.
The focus is on sensitivity studies to identify factors that increase the skill of the ECHAM4 atmosphere general circulation model (GCM) in representing the intraseasonal oscillation (ISO). The ISO mode is dominated by an eastward propagating oscillation during boreal winter, also known as the Madden-Julian oscillation. A previous study compared observations and reanalysis data to uncoupled and coupled versions of the ECHAM4 GCM. The sensitivity experiments in the present study use those results to assess the importance of the following mechanisms for the simulation of the ISO. First, the vertical resolution is increased to indicate the effect of improved representation of the tropospheric stratification. Second, the horizontal resolution is increased to investigate the importance of the ratio of vertical and horizontal resolution. Third, the effects of the land-sea distribution are studied in an experiment with land points associated with the maritime continent replaced by sea points. Fourth, the ECHAM4 GCM is forced by a T42 version of the observed optimum interpolated SST (OISST) dataset as used in the ECMWF reanalysis to study the influence of the SST as a boundary condition. In addition to integrations with monthly mean SSTs, also an experiment with weekly mean SSTs is examined. The increased vertical resolution slightly slows down the propagation speed of the simulated ISO. Increasing the horizontal resolution from T42 to T106 results in a very noisy and therefore poorer simulation of the ISO. It is suggested that this is due to an inappropriate ratio of vertical and horizontal resolution. Replacing the land points associated with the maritime continent with sea points leads to a more realistic representation of convection over the maritime continent than in the standard model. A consequence is a reduction of the erroneous eastward shift of the simulated ISO activity, although the phase speed of the ISO is simultaneously increased. ECHAM4 forced by an OISST dataset interpolated to the models T42 grid leads to the strongest improvements, since the annual mean AMIP SST averaged over the maritime continent region is 0.14 K warmer than the OISST, and individual grid points can be more than 0.5 K warmer. The reason is that the AMIP SST uses only measurements over water for grid points that are partly covered by land, whereas the OISST also blends these measurements with measurements over the land portions. ECHAM4 forced by the interpolated OISST, which is in the mean only 0.04 K colder over the maritime continent than the OISST, produces a reasonable ISO with a mean period of 40 days for a forcing with monthly mean SSTs and 48 days for a forcing with weekly mean SSTs. These results illustrate the strong influence of the details of the prescribed SST on the simulation of the ISO.  相似文献   

14.
The first results of the UVic Earth System Model coupled to a land surface scheme and a dynamic global vegetation model are presented in this study. In the first part the present day climate simulation is discussed and compared to observations. We then compare a simulation of an ice age inception (forced with 116 ka BP orbital parameters and an atmospheric CO2 concentration of 240 ppm) with a preindustrial run (present day orbital parameters, atmospheric [CO2] = 280 ppm). Emphasis is placed on the vegetations response to the combined changes in solar radiation and atmospheric CO2 level. A southward shift of the northern treeline as well as a global decrease in vegetation carbon is observed in the ice age inception run. In tropical regions, up to 88% of broadleaf trees are replaced by shrubs and C4 grasses. These changes in vegetation cover have a remarkable effect on the global climate: land related feedbacks double the atmospheric cooling during the ice age inception as well as the reduction of the meridional overturning in the North Atlantic. The introduction of vegetation related feedbacks also increases the surface area with perennial snow significantly.  相似文献   

15.
Summary Two-dimensional simulations of plume advection over a hill are presented. The calculations are carried out in two steps. In a first step the flow is calculated by a mesoscale-model. This model solves the equations of motions in a cartesian grid. In a second step, the transport equation is solved using the calculated flow-parameters of the mesoscale model. The numerical formulation of the transport-equation was presented in Part I. This calculation is performed in a coordinatetransformed grid. The merit of this combination is discussed in the paper.With 11 Figures  相似文献   

16.
The soluble and insoluble parts of 4 major components (Al, Ca, K and Mg) of the continental dust input over East Antarctica, as well as size, distribution parameters of the insoluble part of this dust, have been studied along an ice core which spanns the last climatic cycle (160 kyr). These results provide a better understanding of the respective impact of the different potential dust sources. While Al and K were probably entrapped in illite originating from arid areas and in a lesser extent from shallow marine sediments, Ca and Mg inputs were dominated by marine carbonate of exposed continental shelves emissions.  相似文献   

17.
A range of diagnostics from two GCM simulations, one of the present-day climate and one of the last glacial maximum (LGM) is used to gain insight into their different temperature structures and eddy dynamics. There are large local increases in baroclinicity at the LGM, especially in the Atlantic storm track, with large accompanying increases in the low level transient eddy heat flux. However, the differences in the zonal mean are much smaller, and the increases in both baroclinicity and heat flux are confined to low levels. Supplementary experiments with baroclinic wave lifecycles confirm the marked contrast between local and zonal mean behaviour, but do not adequately explain the differences between the zonal mean climates. The total flux of energy across latitude circles in the Northern Hemisphere does not change much during DJF, although its transient component is actually reduced at the LGM (during JJA the transient component is increased). Calculations of total linear eddy diffusivity reveal that changes in the time mean stationary waves are chiefly responsible for the seasonal range of this quantity at the LGM, while they only account for half the seasonal range at the present-day.  相似文献   

18.
In order to investigate the impact of the smoothed orography and the spurious orographic ripples on simu-lations in the low-resolution spectral model, three different numerical tests, that is, the unsmoothed orography scheme, the smoothed orography scheme and non-ripples scheme are performed. In this paper, the model used by us is the same as Part I except for orographic specification.The results from simulations indicate that, as far as the climatic simulation is concerned, some aspects of the simulated stationary disturbances, zonal and meridional wind, temperature and precipitation in the low-resolu-tion spectral model with properly smoothed mountains are significantly improved, especially in winter hemis-phere.The deep ripples in the model with the unsmoothed orography produce spurious high pressure regions at the surface with subsidence, and suppress rainfall, causing an unrealistic splitting of the precipitation area in northern winter and summer. Removal of tbe deep ripples by using the special procedure for smoothing topog-raphy allows a strong upward motion in the ripple area with heavy rainfall, eliminating the unrelistic split in the precipitation area.  相似文献   

19.
The mechanisms involved in the glacial inception are still poorly constrained due to a lack of high resolution and cross-dated climate records at various locations. Using air isotopic measurements in the recently drilled NorthGRIP ice core, we show that no evidence exists for stratigraphic disturbance of the climate record of the last glacial inception (∼123–100 kyears BP) encompassing Dansgaard–Oeschger events (DO) 25, 24 and 23, even if we lack sufficient resolution to completely rule out disturbance over DO 25. We quantify the rapid surface temperature variability over DO 23 and 24 with associated warmings of 10±2.5 and 16±2.5°C, amplitudes which mimic those observed in full glacial conditions. We use records of δ18O of O2 to propose a common timescale for the NorthGRIP and the Antarctic Vostok ice cores, with a maximum uncertainty of 2,500 years, and to examine the interhemispheric sequence of events over this period. After a synchronous North–South temperature decrease, the onset of rapid events is triggered in the North through DO 25. As for later events, DO 24 and 23 have a clear Antarctic counterpart which does not seem to be the case for the very first abrupt warming (DO 25). This information, when added to intermediate levels of CO2 and to the absence of clear ice rafting associated with DO 25, highlights the uniqueness of this first event, while DO 24 and 23 appear similar to typical full glacial DO events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号