首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By the method of numerical modeling, we study the influence of the velocity of constant wind on the currents and oscillations of level in the Azov Sea. A three-dimensional nonlinear numerical model is applied to determine the regions characterized by the maximum and minimum values of the velocities of surface stationary currents and the highest deviations of level in the open part of the Azov Sea. In the presented maps, we indicate the points of the water area, where the extreme values of deviations of the sea level and the highest current velocities are attained. We analyze the influence of the velocity of constant wind on the time of attainment of the extreme values of elevations and lowerings of the sea level and current velocities.  相似文献   

2.
We present the results of numerical modeling of the influence of water exchange through the Kerch Strait on the stationary motions in the Azov Sea. We use a three-dimensional nonlinear numerical model to perform the analysis of extreme deviations of the sea level and the surface and deep-water currents depending on the direction and velocity of constant wind with and without regard for the water exchange through the strait. It is shown that the influence of water exchange with the Black Sea leads to the increase in the maximum deviations of the sea level and the velocities of stationary currents. Thus, in particular, it is shown that, for a wind velocity of 10 m/sec, the maximum values of the surge and current velocities in the presence of the strait are higher than in the absence of the strait by 36 and 42%, respectively. In this case, the highest current velocities are induced by the south wind.  相似文献   

3.
We present the results of numerical simulation of currents and sea level for the Sea of Azov. In calculations, we use a three-dimensional nonlinear mathematical model taking into account the tangential wind stresses. We present the results of numerical analysis of the fields of currents and the amplitudes of oscillations of the sea level at the coastal stations as functions of the maximum velocity and the period of constant action of the west wind. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 1, pp. 12–25, January–February, 2008.  相似文献   

4.
A three-dimensional nonlinear mathematical model is used to study the dynamic processes under the action of cyclonic disturbances in the field of stationary wind in the Sea of Azov and the specific features of transformation of the impurities. The results of numerical calculations enable us to conclude that the maximum velocities of currents generated by a cyclone depend on the direction of its motion. It is shown that the cyclones moving westward generate currents with higher maximum velocities than the cyclones of other directions. It is also demonstrated that the motion of atmospheric disturbances leads to a significant enlargement of the area of propagation of pollutants as compared with the case of action solely of stationary currents. The influence of the velocities of stationary currents on the maximum current velocities caused by the passage of a cyclone is also analyzed.  相似文献   

5.
The numerical analysis of the stationary field of current velocity on the upper boundary of the bottom boundary layer in the Barents Sea is performed on the basis of a simplified model taking into account the fields of wind velocity and density of water for the principal periods of the seasonal cycle and the bottom topography. The analysis is based on the climatic BarKode database and the data on the wind velocity over the Barents Sea for the last 50 yr. The numerical results demonstrate that the field of bottom currents is fairly nonuniform and the current velocities vary from several fractions of 1 cm/sec to 5 cm/sec in the zones with noticeable slopes of the bottom. The estimates of the thickness of the bottom boundary layer are obtained for the constant coefficient of bottom friction C f = 0.04. In the major part of the water area of the Barents Sea, the thickness of the bottom boundary layer is close to 1 m. In the regions with significant slopes of the bottom, it increases to 2–2.5 m and, in the two zones of intensification of the bottom currents, becomes as large as 5 m. The maximum estimate of the coefficient of turbulent viscosity is close to 5 cm2/sec. The mean value of the coefficient of vertical density diffusion K S is equal to 2.34 cm2/sec and its standard deviation is equal to 1.52 cm2/sec. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 31–49, September–October, 2007.  相似文献   

6.
In this model, we apply a nonlinear three-dimensional sigma-coordinate model to study the waves and currents in the Sea of Azov generated by different fields of wind forcing: a constant wind, a quickly varying real wind obtained using the data of reanalysis applying the SKIRON model, and the wind resulting from their combined forcing. This mathematical model was also applied to study the transformation of the passive admixture appearing under the influence of wind fields in the Sea of Azov considered here. We compared the results of numerical calculations with the field data obtained under the wind forcing at a number of hydrological stations. We found the regularities of the water transport driven by onshore and offshore winds, the velocities of the currents, and the characteristics of the evolution of polluted regions at different depths as functions of the nonstationary wind intensity and the velocities of the stationary currents.  相似文献   

7.
The problem of the numerical analysis of currents in the Kerch Strait is studied within the framework of a linear nonstationary two-dimensional model in the nondivergent approximation. We describe the actual situation when the motion is induced by a breeze against the background of the daily average northeast wind. The breeze is specified as acting in a narrow coastal strip and can be classified as a zonal wind. The variations of circulation near the Tuzla Island are studied in detail. It is shown that the contribution of the breeze circulation to the total circulation can be significant for the explanation of the processes running in the Kerch Strait. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 6, pp. 16–27, November–December, 2007.  相似文献   

8.
The surge phenomena and currents in the Azov Sea caused by variable winds in the presence of stationary currents are studied by using a three-dimensional nonlinear mathematical model. The specific features of the transformations of impurities in the water area of the Azov Sea under the joint action of stationary and nonstationary winds are investigated. On the basis of the results of numerical calculations, we make conclusions concerning the dependence of the period of dissipation of impurities on the wind velocity and the location of the regions with impurities. It is shown that the variable wind significantly increases the deviations of the sea level and the area of distribution of the impurity as compared with the action solely of the stationary currents.  相似文献   

9.
On the basis of a simple stationary linear model and a contemporary nonlinear model, we study the mesoscale characteristics of the fields of vertical velocity and vorticity of winds over the Black Sea. It is shown that, in the idealized case (without taking into account the coastal features), the temperature contrast between the land and the sea in both models leads to the formation of circulation cells in the coastal zone. However, the mountainous features prove to be the main factor affecting the process of circulation for the actual synoptic situations. We present the map of monthly average vorticity of the surface winds constructed according to the nonlinear mesoscale model with a resolution of 30 km for January 1996–2001. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 1, pp. 52–61, January–February, 2005.  相似文献   

10.
Sea ice drift is mainly controlled by ocean currents, local wind, and internal ice stress. Information on sea ice motion, especially in situ synchronous observation of an ice velocity, a current velocity, and a wind speed, is of great significance to identify ice drift characteristics. A sea ice substitute, the so-called "modelled ice", which is made by polypropylene material with a density similar to Bohai Sea ice, is used to complete a free drift experiment in the open sea. The trajectories of isolated modelled ice, currents and wind in the Bohai Sea during non-frozen and frozen periods are obtained. The results show that the currents play a major role while the wind plays a minor role in the free drift of isolated modelled ice when the wind is mild in the Bohai Sea. The modelled ice drift is significantly affected by the ocean current and wind based on the ice–current–wind relationship established by a multiple linear regression. The modelled ice velocity calculated by the multiple linear regression is close to that of the in situ observation, the magnitude of the error between the calculated and observed ice velocities is less than12.05%, and the velocity direction error is less than 6.21°. Thus, the ice velocity can be estimated based on the observed current velocity and wind speed when the in situ observed ice velocity is missing. And the modelled ice of same thickness with a smaller density is more sensitive to the current velocity and the wind speed changes. In addition, the modelled ice drift characteristics are shown to be close to those of the real sea ice, which indicates that the modelled ice can be used as a good substitute of real ice for in situ observation of the free ice drift in the open sea, which helps solve time availability, safety and logistics problems related to in situ observation on real ice.  相似文献   

11.
Within the framework of the linear theory of long waves, with regard for the turbulent viscosity, we study the development of tidal currents in a basin of variable depth with two straits. The problem is solved numerically. The velocity field on the strait-basin boundary is regarded as known. The numerical analysis is performed for different depths of the straits. We study the influence of the geometric characteristics of the basin on the amplitudes of the profile of free surface and wave velocity and establish the dependences of the wave characteristics on the period of current velocities in the strait and the parameters of the basin. In particular, it is shown that the increase in the period of current velocities in the strait leads to significant changes in the level and structure of currents. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 3–12, July–August, 2007.  相似文献   

12.
分别采用模式气压场及模式台风场计算气压分布及风速分布,采用地形拟合的sigma坐标水动力方程组及紊流方程建立了潮流、风暴潮耦合模型。三维水动力方程组通过分裂算子法与Casulli半隐式差分格式直接求解。在珠江口的极值流速计算中,先进行了南海北部的潮流、风暴潮耦合模拟,模拟水位与实测值符合较好。以六区域模拟结果为边界,采用嵌套网格方法,在珠江口进行了高分辨率的潮流、风暴潮耦合模拟。选用1968~1999年共65个影响工程区域的台风过程,计算出珠江口的海域年极值流速序列,分析了该海域多年一遇的极值流速分布。  相似文献   

13.
We study the time decay of surges of a liquid in a round shallow-water basin of variable depth. The dependence of the logarithmic decrement of oscillations on the bottom topography and wind velocity is analyzed. The role of convective acceleration and bottom friction in the formation of both the level of vertical displacement of the surface of the basin and the velocity field of horizontal wave currents is estimated. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 2, pp. 3–11, March–April, 2006.  相似文献   

14.
We present the results of numerical experiments aimed at the simulation of the circulation of waters and transport of impurities in the Balaklava Bay for typical wind conditions established on the basis of the analysis of the data of in-situ measurements. The currents are computed by using the nonlinear σ-coordinate model. The specific features of the integral circulation and three-dimensional structure of the current field are investigated. The statistical characteristics of currents are estimated on the basis of the in-situ data on winds and model calculations. Possible scenarios of propagation of impurities from the coastal sources are analyzed for various hydrodynamic conditions. It is shown that the localized eddy structures in the current fields (in combination with the zones of intense vertical motion) can result in a complex character of the transport of substances in the bay and lead to the formation of local regions of maximum concentrations of impurities on the boundary of the north and central parts of the bay. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 43–58, July–August, 2005.  相似文献   

15.
A plane problem of free stationary gravitational waves in a horizontal current with vertical shear of the velocity is studied in the linear statement. The determination of the parameters of waves is reduced to the solution of the Sturm–Liouville boundary-value problem. For some vertical distributions of current velocity, we obtain analytic solutions. We propose a numerical algorithm for finding the parameters of waves. On the basis of the performed analysis, we establish the possibility of existence of stationary surface waves in currents for certain ranges of the Froude number. As the Froude number decreases, the waves become shorter, which leads to a faster attenuation of waves disturbances with depth. Under the actual conditions, the waves are short and suffer the influence of shear currents only in the subsurface layer of the ocean.  相似文献   

16.
We generalize the problem of evaluation of currents caused by the action of breeze winds to the three-dimensional case. In the “solid-lid” approximation, the problem is reduced to the numerical solution of a two-dimensional equation for the integral current function (with complex-valued coefficients) with subsequent evaluation of the components of current velocity according to analytic formulas. The breeze is specified as acting in a narrow coastal strip in the form of a zonal wind. The three-dimensional structure and the variations of currents near the west boundary of the Kerch Strait as functions of time are studied in detail.  相似文献   

17.
We propose a new method for the evaluation of the velocities of surface currents according to the data of measurements carried out by using high-frequency land-based radars. The method is based on the representation of the velocity fields via two scalar potentials, expansion of these potentials in series in basis functions, and determination of the coefficients of expansion according to the data of radar measurements as solutions of the corresponding variational problems. The errors of the procedure of determination of the coefficients of expansion are removed by using a special regularization procedure based on information theory. The proposed method enables one to fill gaps in the space and time series of radar measurements. We illustrate the method by an example of numerical analysis of mesoscale and submesoscale (10–50 km) surface currents in the Monterey Bay (California, USA) performed on the basis of the data of radar measurements carried out in August 1994. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 2, pp. 24–36, March–April, 2005.  相似文献   

18.
Coupled modeling of currents and wind waves in the Kerch Strait   总被引:1,自引:0,他引:1  
We present a numerical model of the dynamics of the Kerch Strait allowing one to perform the coordinated analysis of the fields of currents and wind waves. The model includes the spectral wave module and the hydrodynamic block of currents. The influence of waves on the currents is taken into account in the hydrodynamic block both via the surface and bottom tangential stresses and via the radiation stresses. In order to take into account the inverse influence of currents upon the waves, we use the fields of currents and sea level from the hydrodynamic block in the wave module. The specific features of the structure of currents and wind waves in the strait are studied for the typical wave situations. The results of the coupled and separate simulation are compared and the importance of taking into account the mechanisms of interaction between waves and currents in the analysis of the dynamic processes in the strait is demonstrated. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 5, pp. 3–20, September–October, 2007.  相似文献   

19.
We discuss the results of the numerical experiment aimed at the simulation of the behavior of currents and transformations of the temperature and salt modes in the Sevastopol Bay in January–February 1997. In the numerical analysis, we use actual data on the velocity and direction of the wind, sea surface temperature, and the discharge of River Chernaya. It is shown that the circulation and structure of hydrological fields are mainly connected with the direction of the wind, its intensity, and variability in the course of time. Since the analyzed water area is shallow, the currents inside the bay undergo rapid transformations (less than for an hour after changes in the wind). At the same time, the transformations of the thermohaline fields are slower. Due to the inflow of fresh waters of River Chernaya and salt waters from the open sea through the strait, the structure of thermohaline fields formed in the bay is nonuniform (both in the vertical and horizontal directions). The distribution of salinity plays the main role in the formation of the vertical stratification, which is natural for the winter season. Due to the process of freshening of water, a quite high vertical salinity gradient is formed in the upper layer of the sea. As a result, the process of cooling does not lead to the appearance of convection and inversions of temperature are formed in the case where warmer waters are located in the bottom layers. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 2, pp. 60–76, March–April, 2005.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号