首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A regional geochemical and mineralogical study aimed at investigating the mineralization in the western-part of the Walawe Ganga (river) Basin in Sri Lanka is represented in this paper. The river basin is the 3rd largest in the country and has within it a boundary zone between two geologically different crustal blocks, which are marked by granulitic grade rocks and amphibolite grade rocks. Size fractions of stream sediments (< 63 μm; 63–125 μm; 125–177 μm and 177–250 μm) developed on the granulite-grade metamorphic terrain have been analysed at their source for their mineralogical and selected element compositions. Thirty-eight (38) sediment samples and 15 representative probable parent rock samples were chemically analysed giving special emphasis to the High Field Strength trace Elements (HFSE) including the Rare Earth Elements (REE). The granulite grade rocks in the study area is geochemically similar to that of post Archean upper crust. However the stream sediments developed from the high-grade rocks during the intense weathering, are markedly enriched with HFSE and REE. The enrichment of HFSE and LREE is accounted for by the presence of HFSE- and REE- rich accessory mineral phases such as zircon, monazite, apatite, garnet and rutile in the sediments. In some samples, the content of heavy minerals contributes as much as 50 wt. %. These minerals act as a source of elements in the sediments. However, extreme hydraulic sorting of HFSE- and REE-bearing minerals during the sediment deposition cannot be expected within a short distance from near the sources except from a mineralized occurrence. Therefore, the higher enrichment of these elements presumably indicates occurrences of scattered mineral sources such as highly differentiated granites and associated pegmatites within the Walawe Ganga drainage basin. These granitic pegmatites are probably intruded during or soon after the main granulite-facies metamorphic event and similar events are seen in other terrains of East-Gondwana.  相似文献   

2.
Molybdenum mining in the Knabena—Kvina drainage basin (1918–1973) left more than eight million tons of tailings in two small lakes in the headwater area of the Knabena river. The piles, that reach above the water surface, were freely eroded until a dam was built to reduce the dispersion in 1976. Sampling of tailings and fluvial sediments took place almost 20 years later. Sampling media were natural sediment sources, 1-cm-thick slices of overbank sediments of various depths, material from the tailings pond, sandbars, stream sediments, fjord sediments, and integrated samples of floodplain surfaces (0–25 cm). In total 734 samples were collected. Chemical analysis (ICP-AES after aqua regia or HNO3 extraction) showed that overbank sediments at a certain depth represent the pre-industrial trace metal concentrations within the drainage basin. The tailings and recent fluvial sediments were enriched in approximately the same element suite. The highest enrichment factors were obtained for Cu (8–53) and Mo (22–57). Fluvial processes in the tailings pond have probably selectively eroded fine-grained, low-density particles. Thus, coarse chalcopyrite may have been left behind, while molybdate associated with fine-grained particles may have been selectively entrained causing dilution of Cu and enrichment of Mo in the downstream fluvial sediments. In the sandbars, the highest Cu and Mo concentrations were found in fine-grained sediments downstream of a low-gradient reach that act as a bedload trap. On the floodplains, it is seen that the first areas to be inundated in a flood situation (proximal to the river and in depressions) have the highest metal concentrations. For regional geochemical mapping it is suggested that overbank sediment profiles along river reaches with a laterally stable or slowly migrating channel, should be sampled. In such floodplains, pre-industrial overbank sediments are usually preserved at depth. In case of laterally unstable reaches upstream of the sampling point, polluted and unpolluted sediments may be interlayered or mixed. Therefore, samples should be collected from various depths or sedimentary units in such profiles. A similar sampling strategy should probably be adopted to detect vertical migration of elements especially in areas with acid rain and low bedrock buffer capacity. To obtain high contrasts between polluted and unpolluted drainage basins, the overbank sediment profiles should be within the proximal part of the floodplain.  相似文献   

3.
《Applied Geochemistry》2003,18(2):283-309
International agreements (e.g. OSPAR) on the release of hazardous substances into the marine environment and environmental assessments of shelf seas require that concentrations and bioavailability of metals from anthropogenic sources can be distinguished from those originating as a result of natural geological processes. The development of a methodology for distinguishing between anthropogenic and natural sources of metals entering the Irish Sea through river inputs is described. The geochemistry of stream, river and estuarine sediments has been used to identify background geochemical signatures, related to geology, and modifications to these signatures by anthropogenic activities. The British Geological Survey (BGS) geochemical database, based on stream sediments from 1 to 2 km2 catchments, was used to derive the background signatures. Where mining activity was present, the impact on the signature was estimated by comparison with the geochemistry of sediments from a geologically similar, but mining free, area. River sediment samples taken upstream and downstream of major towns were used respectively to test the validity of using stream sediments to estimate the chemistry of the major river sediment and to provide an indication of the anthropogenic impact related to urban and industrial development. The geochemistry of estuarine sediments from surface samples and cores was then compared with river and offshore sediment chemistry to assess the importance of riverine inputs to the Irish Sea. Studies were undertaken in the Solway, Ribble, Wyre and Mersey estuaries. The results verify that catchment averages of stream sediments and major river samples have comparable chemistry where anthropogenic influences are small. Major urban and industrial (including mining) development causes easily recognised departures from the natural multi-element geochemical signature in river sediment samples downstream of the development and enhanced metal levels are observed in sediments from estuaries with industrial catchments. Stream sediment chemistry coupled with limited river and estuarine sampling provides a cost-effective means of identifying anthropogenic metal inputs to the marine environment. Investigations of field and laboratory protocols to characterise biological impact (bioaccumulation) of metals in sediments of the Irish Sea and its estuaries show that useful assessments can be made by a combination of surveys with bioindicator species such as clams Scrobicularia plana, selective sediment measurements that mimic the ‘biologically available’ fractions, and laboratory (mesocosm) studies.  相似文献   

4.
Water and sediment samples were collected from the headwaters of the Yangtze River, Tongtian He and Jinsha Jiang (upstream of the Yangtze River which flows on the eastern Qinghai-Tibet Plateau). A detailed geochemical study of the river system was carried out to determine: (i) temporal and spatial variations of the major ions and their implications; (ii) contribution of carbonate, silicate and evaporite to the river dissolved load and (iii) CO2 consumption via silicate weathering. Results show that cations derived from evaporite dissolution account for 44.7–82.8% of the total cations in the headwaters of the Yangtze River and increasing from SE to NW of the drainage basin. The contribution from silicate weathering gradually increases from the headwaters due to exposure of intrusive rocks and volcanic rocks in the Jinsha Jiang suture belt. Proportion of cations derived from silicate weathering to the total cations in river waters reaches a maximum at Panzhihua City, which is consistent with the abundant exposure of Cenozoic granitoids and Precambrian high-grade metamorphic rocks around Panzhihua. The Jinsha Jiang basin has higher silicate weathering rates but lower carbonate weathering rates than the middle and lower reaches of the Yangtze River. The calculated enrichment factors of potentially harmful metals in the river sediments are within the range of 0.33–2.59, indicative of level 1 or 2 contamination. The highest enrichment factor for Co, Cr and V is found in Panzhihua City, indicating that it has been influenced by anthropogenic sources.  相似文献   

5.
Nd model ages determined for the high-grade rocks of Sri Lanka delineate three crustal units, viz., the Highland Complex (HC), the Wanni Complex WC), and the Vijayan Complex (VC). The distribution of these three units differs considerably from the three geological divisions demarcated previously on the basis of geological mapping. The centrally located HC comprises mainly granulite grade charnockitic rocks, and metasediments characterized by older Nd model ages (2.0–3.4 Ga). The Highland sedimentary pile was thickened by intermittent granitoid intrusions, most of which are now charnockitic gneiss, and granulites, and basaltic sills, and dikes. All these metaigneous rocks now occur as conformable bands or layers due to intense polyphase deformation. The HC is bounded on the east by the amphibolite grade VC, composed mainly of granitic gneisses, basic gneisses, and migmatites, and they have ‘younger’ Nd model ages (1.1–1.8 Ga). The isotopic, and geochemical characteristics identify the precursors to the Vijayan rocks as I-type calc-alkaline granitoids originated at an ‘arc’-related tectonic environment. Thus, the earlier interpretation that the Vijayan rocks represent reworked HC was rejected. The granulite inliers within the VC, earlier considered as “resisters” to re-working, are now shown as overthrust klippen or rotated rafts of the HC. The WC, demarcated on the basis of Nd model ages (1.1–1.8 Ga) similar to those of the VC, lies west of the HC. It consists mainly of granitic gneisses, charnockitic gneisses, and migmatites, and the metamorphic grade ranges from amphibolite to granulite.Comprehensive geothermobarometric surveys constrain the P-T evolution of the three crustal units, and indicate that both the HC, and WC underwent near isobaric cooling, followed by a decompression with decreasing temperature. Extensive isotopic studies (U-Pb, Pb-Pb, Sm-Nd, Rb-Sr) have established a new geochronological framework for these high-grade rocks of Sri Lanka. The new framework has bracketed the age of high grade metamorphism in the three crustal units at 550–600 Ma.The recent advances in knowledge of the geology of Sri Lanka favour a strong geological correlation of the HC, and the VC of Sri Lanka, respectively, with the Lutzöw-Holm Complex, and the Yatmato-Belgica Complex in the East Antarctica. The geology of the WC suggests a possible correlation with Madagascar, and East Africa. The amalgamation of the three crustal units of Sri Lanka, is apparently related to the two distinct orogenic events that resulted in the assembly of the Gondwana supercontinent.  相似文献   

6.
Research undertaken by IGCP 259 (International Geochemical Mapping) indicates that wide-spaced sampling is a fundamental concept of international geochemical mapping as it appears to provide the only practical way to obtain a relative rapid (10–20 years) overview of global geochemistry. The main aim of this study is to test the suitability of floodplain sediment as a global sampling medium.Thirteen floodplain sediment samples and 13 stream sediment samples were taken at the exit of 13 super large drainage basins (SCB). The areal extents of these basins are in the order of 1000–10,000 km2. Within each SCB, 3–11 stream sediment samples each representing a component catchment basin (CCB) of 100–1000 km2 were also taken. Fourty nine elements were analyzed. The results were compared with the average values derived from calculating thousands of stream sediment data available from China's National Geochemical Mapping (RGNG) program. Strong similiarities were demonstrated in distribution and trends among the three levels of data. The set of floodplain sediment data shows great coincidence with RGNR stream sediment data.  相似文献   

7.
秦岭造山带主要大地构造单元的新划分   总被引:48,自引:6,他引:42  
根据近年来的地层、沉积、岩浆-火山和构造变形及岩石地球化学等方面研究新进展,结合前人的成果,按照大地构造相单元划分原则,将秦岭造山带分为13个主要构造单元: ①华北南缘陆坡带,包括第一层序的青白口系大庄组、震旦系罗圈组和寒武系,与之对应的豫西栾川群;第二层序的奥陶纪陶湾群;②北秦岭弧后杂岩带,以宽坪群和部分二郎坪群中的基性火山岩与碳酸盐岩的构造块体与变质的古生代深海碎屑岩混杂为特征;③秦岭岛弧杂岩带,由丹凤群不同的古洋隆块体、富水幔源岛弧基性岩浆杂岩、云架山群、斜峪关群和草滩沟群的岛弧钙碱性岩浆岩和火山岩及深海沉积物及秦岭群弧基底杂岩等构成,时间跨度为奥陶纪-石炭纪;④秦岭弧前盆地系,泥盆系及其它晚古生代地层是其主要充填物,同沉积断裂控制了一系列的次级盆地;⑤秦岭增生混杂带,由泥、砂岩组成的基质和基性、超基性岩、火山岩、灰岩、硅质岩等岩块构成,最终形成于二叠纪末-三叠纪初;⑥南秦岭岛弧杂岩带,碧口群的基性-中酸性火山岩和岩浆岩组成,称碧口弧;由三花石群的中基性火山岩以及西乡群的中酸性火山岩共同构成,称西乡弧;由耀岭河群和郧西群中基性熔岩和中酸性火山岩组成,称安康弧;⑦南秦岭弧前盆地系,碧口弧前盆地充填物是以碎屑岩为主的横丹群和关家沟群;西乡弧前沉积主要由三花岩群包括王家坝组砂岩以及由泥岩、砂岩和中酸性火山岩变质而成的片岩、片麻岩和石英岩组成.安康弧前盆地具有明显的深海扇沉积特征梅子垭群和大贵坪组;⑧南秦岭弧后盆地系,包括后龙门山的茂县群和上古生界及三叠系,大巴山的洞河群和部分耀岭河群的火山岩;⑨南秦岭弧后陆坡带,只保留大巴山弧后陆缘,是高川-毛坝以南的下古生界;⑩南秦岭前陆褶冲带,包括龙门山北段、米仓山和大巴山前陆褶冲带.三带形成于印支-燕山期,但构造线不同,且在出现的时间上,由西到东由早到晚;(11)三叠纪残余海盆;(12)中-新生代走滑拉分和断陷盆地;(13)基底断块.  相似文献   

8.
Neoproterozoic–lower Palaeozoic successions in the Brasiliano fold belts are described and a brief synthesis of these terranes is presented in order to erect a tectonic framework for this region. Tectonic events that occurred around the Río de La Plata craton were diachronous and reflected successive stages of the Brasiliano orogenic cycle. They took place in mobile belts that constituted part of the Gondwana supercontinent. The most thoroughly investigated Neoproterozoic sections are located in the eastern and southeastern regions of Uruguay. The Dom Feliciano Belt shows a tectonic evolution from back-arc to foreland basin characterized by fold-and-thrust, thick-skinned belts developed during the Brasiliano/Pan-African orogenic cycle. The most conspicuous features were late-tectonic high-K calc-alkaline granitoids, HT-LP metamorphism, significant displacements along shear zones, and post-tectonic granitoids. The final stage was characterized by post-collisional basins (molassic sequences) and extensional magmatism related to a phase of crustal stretching. Several lithotectonic units are present as basement inliers in the Dom Feliciano Belt: these include a low-to-medium metamorphic grade sequence (the Zanja del Tigre Formation), granitoids and gneisses (the Campanero Unit), high-grade basement of the Cerro Olivo Complex (Palaeoproterozoic or Neoproterozoic), and a low-metamorphic grade orogenic belt (the Rocha Formation). This paper provides a simplified tectonic map of eastern Uruguay, which we use to describe tectonic evolution from Precambrian to early Palaeozoic time.  相似文献   

9.
This study compares the geochemical response of stream sediments and adjacent vegetation samples, with variations in drainage catchment lithology and the occurrence of mineralisation, within a 14,000-km2 block of the northeastern region of New South Wales, Australia. The area contains a range of lithologies within a Devonian–Permian accretionary complex and Mesozoic sedimentary basin, as well as a wide range of mineral deposits. Sampling was designed to confine each sub-catchment to a single lithological group (mafic and ultramafic rocks, acid intrusives, volcanics, metasedimentary and sedimentary rocks or alluvium). Leaves of over 20 genera, dominated by (Allo-)Casuarina, Eucalyptus, Acacia, Callistemon and Melaleuca, and the <250-μm fraction of the stream sediments were analysed by INAA. The uptake of most trace elements varied between genera, with Callistemon displaying the highest median As and La contents and Eucalyptus the highest Co contents. The stream sediment and vegetation geochemistry reflect both hydromorphic and mechanical dispersion within sub-catchments, with regional patterns dominant over local influences. The vegetation appears to be influenced to a greater extent by hydromorphic dispersion, as indicated by differences in the ratio of leaf to sediment Cr concentrations in sub-catchments draining serpentinites and basalts. Although most known mineral deposits in the region produced anomalies in at least one medium, there was little correlation between the trace element concentrations of the vegetation and stream sediments on a site-by-site basis. A number of Au targets were only detected on the basis of the biogeochemistry and others were only reflected in the stream sediment geochemistry. In general, vegetation displayed more extensive dispersion trains away from mineralisation than did the stream sediments. Differences in the response of the two sampling media suggest their joint use in exploration or environmental surveys to maximise the probability of detecting mineralisation.  相似文献   

10.
The rivers of western India are monsoon dominated and have been so throughout the late Quaternary. Sediment accumulation in these river basins has been controlled by climatic and tectonic changes over a time span from the Late Pleistocene to the recent. The lithofacies assemblages associated with the various sediment archives in the Narmada basin range from the boulders of the alluvial fans to overbank fines on the alluvial plains. Estimates, based on clast size, of stream power and competence, bed shear stress and discharge reveal that hydrological conditions during the Late Pleistocene (∼90 ka) were comparable to the present day. The size of the transported clasts and the thickness of the accumulated sediment indicate the influence of basin subsidence rather than an increase in discharge. Discharge estimates based on sedimentary structures preserved in the alluvial-plain facies suggest that the channel had a persistent flow, with a low width-depth ratio and large meander wavelength. The hydrological changes during the Holocene are more pronounced where the early Holocene is marked by a high-intensity hydrological regime that induced erosion and incision of the earlier sediments. The mid-Holocene stream channel was less sinuous and had a higher width-depth ratio and a higher meander amplitude in comparison with the present-day channel. Palaeo-fluvial reconstructions based on the sediment archives in the alluvial reach of the river basin are important tools in understanding the long-term hydrological changes and the intricate fluvial architecture preserved in the Narmada River basin ensures scope for detailed studies to identify phases of weak and enhanced hydrological regimes.  相似文献   

11.
The Ordovician Sierras Pampeanas, located in a continental back-arc position at the Proto-Andean margin of southwest Gondwana, experienced substantial mantle heat transfer during the Ordovician Famatina orogeny, converting Neoproterozoic and Early Cambrian metasediments to migmatites and granites. The high-grade metamorphic basement underwent intense extensional shearing during the Early and Middle Ordovician. Contemporaneously, up to 7000 m marine sediments were deposited in extensional back-arc basins covering the pre-Ordovician basement. Extensional Ordovician tectonics were more effective in mid- and lower crustal migmatites than in higher levels of the crust. At a depth of about 13 km the separating boundary between low-strain solid upper and high-strain lower migmatitic crust evolved to an intra-crustal detachment. The detachment zone varies in thickness but does not exceed about 500 m. The formation of anatectic melt at the metamorphic peak, and the resulting drop in shear strength, initiated extensional tectonics which continued along localized ductile shear zones until the migmatitic crust cooled to amphibolite facies P–T conditions. P–T–d–t data in combination with field evidence suggest significant (ca. 52%) crustal thinning below the detachment corresponding to a thinning factor of 2.1. Ductile thinning of the upper crust is estimated to be less than that of the lower crust and might range between 25% and 44%, constituting total crustal thinning factors of 1.7–2.0. While the migmatites experienced retrograde decompression during the Ordovician, rocks along and above the detachment show isobaric cooling. This suggests that the magnitude of upper crustal extension controls the amount of space created for sediments deposited at the surface. Upper crustal extension and thinning is compensated by newly deposited sediments, maintaining constant pressure at detachment level. Thinning of the migmatitic lower crust is compensated by elevation of the crust–mantle boundary. The degree of mechanical coupling between migmatitic lower and solid upper crust across the detachment zone is the main factor controlling upper crustal extension, basin formation, and sediment thickness in the back-arc basin. The initiation of crustal extension in the back-arc, however, crucially depends on the presence of anatectic melt in the middle and lower crust. Consumption of melt and cooling of the lower crust correlate with decreasing deposition rates in the sedimentary basins and decreasing rates of crustal extension.  相似文献   

12.
Consolidated crust in the North Barents basin with sediments 16–18 km thick is attenuated approximately by two times. The normal faults in the basin basement ensure only 10-15% stretching, which caused the deposition of 2–3 km sediments during the early evolution of the basin. The overlying 16 km of sediments have accumulated since the Late Devonian. Judging by the undisturbed reflectors to a depth of 8 s, crustal subsidence was not accompanied by any significant stretching throughout that time. Dramatic subsidence under such conditions required considerable contraction of lithospheric rocks. The contraction was mainly due to high-grade metamorphism in mafic rocks in the lower crust. The metamorphism was favored by increasing pressure and temperature in the lower crust with the accumulation of a thick layer of sediments. According to gravity data, the Moho in the basin is underlain by large masses of high-velocity eclogites, which are denser than mantle peridotites. The same is typical of some other ultradeep basins: North Caspian, South Caspian, North Chukchi, and Gulf of Mexico basins. From Late Devonian to Late Jurassic, several episodes of rapid crustal subsidence took place in the North Barents basin, which is typical of large petroleum basins. The subsidence was due to metamorphism in the lower crust, when it was infiltrated by mantle-source fluids in several episodes. The metamorphic contraction in the lower crust gave rise to deep-water basins with sediments with a high content of unoxidized organic matter. Along with numerous structural and nonstructural traps in the cover of the North Barents basin, this is strong evidence that the North Barents basin is a large hydrocarbon basin.  相似文献   

13.
《Gondwana Research》2008,13(4):489-508
U–Pb SHRIMP zircon geochronology, bulk-rock geochemistry, and Sr–Nd isotopic data are herein presented in order to better constrain the tectonic evolution of the Nico Pérez Terrane (NPT), Uruguay. The studies are focused on two key geological units located in the southern part of the NPT, namely Carapé Complex (CC) and Lavalleja Metamorphic Complex (LMC). The Carapé Complex, previously interpreted as part of a remnant magmatic arc, formed at 1.75 Ga mainly by partial melting of Archean crust (TDM model ages between 2.8 and 3.0 Ga with strong negative ɛNd (t) values). The Lavalleja Metamorphic Complex, previously interpreted as a back-arc basin, has volcanic units formed at 0.59 Ga during the Brasiliano Cycle, but may also contain older (Paleoproterozoic) units. The geochemistry of the LMC meta-igneous rocks indicates a complex scenario. Two distinct signatures have been recognized, one similar to MORBs and the other similar OIBs. Sm–Nd TDM model ages of basic rocks present a bimodal (Paleoproterozoic and Archean) distribution, which is also recognized in several other units of the NPT. In the light of new results, we conclude that the NPT represents a cratonic margin setting, characterized by the stacking of lithotectonic assemblages with Archean, Paleoproterozoic, and Neoproterozoic age at the margin of the Rio de la Plata Craton.  相似文献   

14.
The Quebradagrande Complex of Western Colombia consists of volcanic and Albian–Aptian sedimentary rocks of oceanic affinity and outcrops in a highly deformed zone where spatial relationships are difficult to unravel. Berriasian–Aptian sediments that display continental to shallow marine sedimentary facies and mafic and ultramafic plutonic rocks are associated with the Quebradagrande Complex. Geochemically, the basalts and andesites of the Quebradagrande Complex mostly display calc-alkaline affinities, are enriched in large-ion lithophile elements relative to high field strength elements, and thus are typical of volcanic rocks generated in supra-subduction zone mantle wedges. The Quebradagrande Complex parallels the western margin of the Colombian Andes’ Central Cordillera, forming a narrow, discontinuous strip fault-bounded on both sides by metamorphic rocks. The age of the metamorphic rocks east of the Quebradagrande Complex is well established as Neoproterozoic. However, the age of the metamorphics to the west – the Arquía Complex – is poorly constrained; they may have formed during either the Neoproterozoic or Lower Cretaceous. A Neoproterozoic age for the Arquía Complex is favored by both its close proximity to sedimentary rocks mapped as Paleozoic and its intrusion by Triassic plutons. Thus, the Quebradagrande Complex could represent an intracratonic marginal basin produced by spreading-subsidence, where the progressive thinning of the lithosphere generated gradually deeper sedimentary environments, eventually resulting in the generation of oceanic crust. This phenomenon was common in the Peruvian and Chilean Andes during the Uppermost Jurassic and Lower Cretaceous. The marginal basin was trapped during the collision of the Caribbean–Colombian Cretaceous oceanic plateau, which accreted west of the Arquía Complex in the Early Eocene. Differences in the geochemical characteristics of basalts of the oceanic plateau and those of the Quebradagrande Complex indicate these units were generated in very different tectonic settings.  相似文献   

15.
长江水系沉积物碎屑矿物组成及其示踪意义   总被引:24,自引:2,他引:22  
长江碎屑矿物组成研究表明,轻矿物以石英、长石和岩屑为主,不同支流轻矿物组成特征不同,成熟度指数平均是2.0,一般干流高于支流,成熟度随沉积物搬运距离增加而增大。QFL及QtFL三角图解显示长江沉积物主要来自再旋回造山带物源区,流域风化剥蚀速度较快,不同支流物质汇入干流,使得干流轻矿物组成复杂多变而难以和支流区别。重矿物含量从长江上游至下游呈递减趋势,其主要组合是磁铁矿-普通角闪石-普通辉石-石榴子石-绿帘石-褐铁矿-钛铁矿。红柱石和磷灰石是金沙江沉积物的特征矿物组合;蓝晶石是岷江流域的特征矿物;涪江的特征矿物是榍石;汉江的特征矿物组合是磷灰石、紫苏辉石和硅镁石;锆石是湘江的特征矿物。不同流域的特征矿物指示其源岩性质。上游的雅砻江、大渡河以及岷江等支流沉积物对中、下游干流沉积物的贡献较弱。涪陵以上长江流域风化作用强烈,母岩主要是沉积岩类(碎屑岩、泥岩);其下流域沉积物中近源弱风化物质明显增加,其源岩类型体现为岩浆岩和变质岩类;而金沙江攀枝花地区及湘江、沅江沉积物则更多来自流域内广泛分布的大片变质岩类。  相似文献   

16.
The comparison of two multiple regression models is based on the assumption that geochemical composition of the drainage basin alluvial sediments is derived primarily from the underlying bedrock lithology. The parent material is integrated with both stream sediment and overbank sediment geochemistry via the two essentially different approaches as regards the drainage basin geomorphological data: (1) as the relative area of influence representing a portion of the catchment basin occupied by a specific rock type and (2) as the relative “line” of influence representing a narrow zone of the underlying bedrock traversed by the perennial streams which form the active stream network. The model comparison is established on the goodness-of-fit test for both experimental designs and for the same set of data. Both experiments converge on the linear approach as the more appropriate model in evaluating the lithologic influence on the analysed sample media in small mountainous watersheds.  相似文献   

17.
 The Bengal basin, Bangladesh, represents one of the most densely populated recent floodplains of the world. The sediment flux through the basin is one of the highest on a global scale. A significant portion of this sediment load find its sink in the basin itself because of its lower elevation and frequent flooding. The textural, mineralogical and chemical nature of the sediments thus have an important bearing on the environmental quality of the basin as well as for the Bay of Bengal. The sediment load of the Ganges-Brahmaputra-Meghna (GBM) river system consists exclusively of fine sand, silt and clay at their lower reaches within the Bengal basin, Bangladesh, and is deposited under uniformly fluctuating, unidirectional energy conditions. The sediments have a close simitarity in grain size with the sediments of the surrounding floodplain. The mineral assemblage is dominated by quartz and feldspars. Illite and kaolinite are the major clay minerals, and occur in almost equal proportion in bed sediments. The heavy mineral assemblage is dominated by unstable minerals which are mostly derived from high-rank metamorphic rocks. The characteristic smaller grain-size, i.e. having large surface-to-mass ratios, and the mineralogy of sediments suggests that they are susceptible to large chemical adsorptive reactions and thus could serve as a potential trap for contaminants. However, the sediments of the GBM river system in the Bengal basin, Bangladesh, shows lower concentration of Pb, Hg and As, and a marginally higher value for Cd as compared to that of standard shale. Considering population density and extensive agricultural practice in the basin, the sediments can in the long run become contaminated. Received: 9 November 1994 · Accepted: 18 June 1996  相似文献   

18.
Partitioning of Cu, Pb, Zn, U, As and Mo between the minus 70 μm and minus 200 μm fractions of stream sediments from arid and semi-arid terrains is examined in the light of published case histories supplemented by new data. The advantages of selecting a particular fraction for routine sampling in such arid environments are assessed in terms of five criteria: (1) homogeneity of background population; (2) definition of threshold; (3) absolute element abundance levels; (4) contrast between anomalous and background populations; and (5) length of dispersion train. The most homogeneous background population distributions and improved definition of the threshold between background and anomaly occur in the very fine, minus 70 μm fraction of stream sediments for the majority of elements, in particular for Zn, Cu, U and As. Data for Pb and Mo do not consistently favour either size fraction in the case histories studied. Increased abundance levels of elements which are normally close to the analytical detection limit (U, Mo, As) occur most frequently in the minus 70 μm fraction, although Cu, Pb and Zn levels are commonly higher in the coarser fraction. In addition the finer size fraction better defines the anomalous population and provides the longer dispersion trains for Cu, Pb, Zn, U and As in the majority of case histories.The data examined indicate that the minus 70 μm fraction provides more useful information, in many instances, than the minus 200 μm fraction. The evidence suggests that problems expected with the use of the fine fraction — dilution through the abundance of wind blown material, and insufficient fine sediment — do not restrict the use of this fraction in stream sediment surveys in arid terrains.  相似文献   

19.
The sediment fill of a silled bedrock valley in Western Norway has been investigated with respect to stratigraphy and infill history using a combination of mapping, georadar, seismic profiling and drilling. A small outlet glacier occupies the head of the valley that displays a stepwise down-valley profile and terminates in a lake at 29 m above sea-level. The valley is surrounded by high, steep bedrock slopes and is characterized by a series of filled basins each limited by sills of bedrock or moraine accumulations. Till, glacial outwash and/or rockslide deposits fill in the lower half of the two larger basins. (Fan) delta deposits fringed by the deposits of alluvial fans and colluvial cones dominate the upper fill of most basins. (Fan) delta deposits interfinger downstream with lake sediments in the larger basins and fluvial deposits comprise the top fill. The overall infill pattern was controlled by deglaciation as well as basin size and shape. An overall decreasing sediment supply following deglaciation is shown in the fill of a larger basin down-valley, whereas a recently increasing sediment supply during glacier growth is reflected primarily in an upstream basin. Only the lowermost basin was exposed to a sea-level drop from 75 m above sea-level to the present lake level associated with incision and river migration. This observation is in contrast to the basins above marine influence where incision has been limited due to fixed downstream sills resulting in insignificant erosion except for some fan-head entrenchment. It follows that the fills of these small valley basins display progradational and aggradational trends of deposition and paraglacial reworking has been limited. Additionally, the study demonstrates that georadar profiling, combined with other methods, is very useful for comprehensive investigation of valley basins.  相似文献   

20.
《Applied Geochemistry》2005,20(8):1489-1495
Trace element data for stream sediment samples collected from 6 river basins situated in geomorphologically and climatologically different terrains of Sri Lanka were analyzed to identify a suitable geochemical ratio to delineate potential areas for gems. All the areas are located in high grade metamorphic terrains with different lithologies. Correlations between different elements were studied using Spearman rank correlation and elements showing consistent high correlations were selected to calculate element ratios that can be used to discriminate areas with different potentials for gems. It was noted that the Rb, Ba, Sr, and the Ti, Nb, Zr element groups have high correlations between them. From the calculated ratios Ba/Sr, Rb/Sr and RbxBa/Sr2 were identified as being useful. The best ratio was determined considering the discrimination %, and representation of within category gem potential variation.Results show that RbxBa/Sr2 is the best ratio and a value greater than 4 represents gem potential areas while a ratio less than 1 represents low/no potential areas. Application of these results to the locations where test gem pits were validated this empirical rule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号