首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ion microprobe at Johnson Space Center has been calibrated for in situ water determinations on a 10-μm scale over the range 0.2 wt.% H2O to 1.8, 6.8, and 3.7 wt.%, for basaltic, albitic, and rhyolitic glasses, respectively. The basalt glass calibration curve differs substantially from those of albite and rhyolite glasses, indicating a need to carefully match composition and/or melt structure between H2O standards and unknowns.A value for the diffusivity of water as a function of concentration and time has been calculated from water diffusion profiles measured in rhyolite glasses prepared at 850°C and 700 barsPt(H2O) [1]. Transient diffusion into a semi-infinite medium is described by the equation:?(φ/2)?¸/?φ=?(Dw?¸/?φ)/?φ #x003B8;=1, φ=0, θ→ 0, θ→∞, wherex =distance from the cylinder edge,t =time,C0 =initial concentration,Cs =concentration at the edge,C =concentration at x,θ = C ? C0/Cs ? C0,φ = x/t1/2, andDw =diffusivity of water. An iterative technique has been used to calculate solutions to the diffusion equation as a function ofDw [2]. Comparison of these solutions with the ion probe data indicate that, for0.2wt.% ≤ C ≤ 3.7wt.%H2O,Dw can be described by an exponential function of θ, of the formDw = D0exp(bθ), withD0 (i.e.,Dw at 0.2%) = (0.8?2.2) × 10?8 cm2/s and2 ≤ b ≤ 4.  相似文献   

2.
Thermal diffusivity (D) was measured using laser-flash analysis on pristine and remelted obsidian samples from Mono Craters, California. These high-silica rhyolites contain between 0.013 and 1.10?wt% H2O and 0 to 2?vol% crystallites. At room temperature, D glass varies from 0.63 to 0.68?mm2?s?1, with more crystalline samples having higher D. As T increases, D glass decreases, approaching a constant value of ??0.55?mm2?s?1 near 700?K. The glass data are fit with a simple model as an exponential function of temperature and a linear function of crystallinity. Dissolved water contents up to 1.1?wt% have no statistically significant effect on the thermal diffusivity of the glass. Upon crossing the glass transition, D decreases rapidly near ??1,000?K for the hydrous melts and ??1,200?K for anhydrous melts. Rhyolitic melts have a D melt of ??0.51?mm2?s?1. Thermal conductivity (k?=?D·??·C P) of rhyolitic glass and melt increases slightly with T because heat capacity (C P) increases with T more strongly than density (??) and D decrease. The thermal conductivity of rhyolitic melts is ??1.5?W?m?1?K?1, and should vary little over the likely range of magmatic temperatures and water contents. These values of D and k are similar to those of major crustal rock types and granitic protoliths at magmatic temperatures, suggesting that changes in thermal properties accompanying partial melting of the crust should be relatively minor. Numerical models of shallow rhyolite intrusions indicate that the key difference in thermal history between bodies that quench to obsidian, and those that crystallize, results from the release of latent heat of crystallization. Latent heat release enables bodies that crystallize to remain at high temperatures for much longer times and cool more slowly than glassy bodies. The time to solidification is similar in both cases, however, because solidification requires cooling through the glass transition in the first case, and cooling only to the solidus in the second.  相似文献   

3.
Colors of plinian pumices were measured by spectrocolorimetry, and their quantitative color parameters in the L*a*b* color space were determined. A series of heating experiments of obsidian was conducted to simulate the color-change processes of rhyolitic glasses. In these experiments, following three stages of color-change processes were observed. Stage I showed a rapid b* (yellowishness) increase associated with fast dehydration controlled by water diffusivity (D water). In stage II, a* (reddishness) increase was accompanied by Fe2+ decrease. Both a* increase and Fe2+ decrease can be simulated by a diffusion model. Obtained diffusivity D oxidation were about two orders of magnitude smaller than D water . The a*-value increase after the oxidation in stage III appeared to be quasi-linear with time, indicating the zeroth order reaction corresponding to the formation of hematite-like structures in rhyolitic glasses. The diffusion-limited a* increase model in stage II was applied to a natural plinian pumice fall unit to evaluate time periods of color-change processes through oxidation by air of fragmented rhyolitic materials.  相似文献   

4.
We investigated the distribution of Cl, F, Li, and Be in pumices, obsidians, and crystallized dome rocks at Chaitén volcano in 2008?C2009 in order to explore the behavior of these elements during explosive and effusive volcanic activity. Electron and ion microprobe analyses of matrix and inclusion glasses from pumice, obsidian, and microlite-rich dome rock indicate that Cl and other elements were lost primarily during crystallization of the rhyolitic dome after it had approached the surface. Glass in pumice and microlite-free obsidian has 888?±?121?ppm Cl, whereas residual glass in evolved microlite-rich dome rock generally retains less Cl (as low as <100?ppm). Estimated Cl losses were likely >0.7?Mt Cl, with a potential maximum of 1.8?Mt for the entire 0.8-km3 dome. Elemental variations reflect an integrated bulk distribution ratio for Cl?>?1.7 (1.7 times more Cl was degassed or incorporated into crystals than remained in the melt). Because Cl is lost dominantly as the very last H2O is degassed, and Cl is minimally (if at all) partitioned into microlites, the integrated vapor/melt distribution ratio for Cl exceeds 200 (200 times more Cl in the evolved vapor than in the melt). Cl is likely lost as HCl, which is readily partitioned into magmatic vapor at low pressure. Cl loss is accelerated by the change in the composition of the residual melt due to microlite growth. Cl loss also may be affected by open-system gas fluxing. Integrated vapor-melt distribution ratios for Li, F, and Be all exceed 1,000. On degassing, an unknown fraction of these volatiles could be immediately dissolved in rainwater.  相似文献   

5.
An ion-microprobe-based technique has been used to measure lithium tracer-diffusion coefficients (DLi) in an alkali-basaltic melt at 1300, 1350 and 1400°C. The results can be expressed in the form:DLi=7.5 ×10?2exp(?27,600/RT)cm2S?1The results show significantly faster diffusion rates than those previously recorded for other monovalent, divalent and trivalent cations in a tholeiitic melt. Consequently, diffusive transport of ions acting over a given time in a basaltic melt can produce a wider range of transport distance values than hitherto supposed. Hence, it is concluded that great care should be exercised when applying diffusion data to petrological problems.  相似文献   

6.
The content of K, Th and U in the continental crust is estimated based on the assumption that the concentration of these elements decreases with depth asAx = A0e?x/D [11], withAx andA0 the heat production rates at depthx and at the surface, respectively. Taking the weighted mean heat production rate of the intrusive rocks of the upper crust asA0 = 2.33 μWm?3, that of the granulites representing the lower crust asAx = 0.72 μWm?3, and the mean scale heightD= 9.5km [1] the average vertical distancex = b between these intrusives and granulites is 11.2 km. Withb known and the average concentrations of K, Th and U in granulites and intrusive rocks of the upper crust the scale heights of the vertical distribution of these elements areDK = 71km,DTh = 9.5km,DU = 5.8km. The knowledge of these parameters permits to calculate the average concentrations of these elements in a 33.3 km thick crust:K= 2.19%,Th= 4.43ppm,U= 0.66ppm; Th/U = 6.7 and K/U = 3.3 × 104. The resulting heat flow is 23.0 mW m?2 which is practically identical with the value deduced from heat flow measurements. Assuming that the Th/U ratio of the entire crust—including the sediments—is 3.9, the high ratio of 6.7 in the crystalline crust indicates that about 7.2 × 1012 t U were extracted from it. All rocks with Th/U ratios <3.9 are possible sinks of this U. About half that amount is deposited in sedimentary rocks, mainly in black shales. The second important sink are the volcanic rocks of the continental margins.  相似文献   

7.
29Si,27Al MAS NMR and IR spectra of rnonophase K-feldspars (sanidine, orthoclase and microcline) and Na-feldspars (monalbite, anorthoclase and low albite) in different structural states have been studied. The NMR and IR spectra of K-feldspars and Na-feldspars vary regularly along with their degrees of Si/Al ordering evolution. Si in orthoclase occupiesT 2m,T2o andT1m, and the high-temperature Na-feldspar (monalbite and anorthoclase) coincides in29Si,27Al NMR and IR spectra. Moreover, all the high-temperature Na-feldspars and sanidine have the same27Al NMR and IR spectra. Project supported by the Foundation of Laboratory of Magnetic Resonance and Atom and Molecular Physics, Wuhan Institute of Physics, Chinese Academy of Sciences.  相似文献   

8.
Hudson River sediment microcosms from Piles Creek (PC), Piermont Marsh (PM), and Iona Island (II) were amended with ∼100 mM nitrate or sulfate to stimulate anaerobic bioremediation. Nitrate and sulfate decreased over two years of field incubation and the fraction of these losses due to diffusion to the water column was predicted using Fick’s law. Apparent diffusion (Dapp) values of 1-4 × 10−10 m2 s−1 predicted the majority of loss/gain from/to the sediments by 700 d, but not at all times. Effective diffusion (Deff) values predicted by the porosity function (Deff = Dmol ε4/3) were larger than those observed in the field, and field data indicates a cube power relationship: Deff = Dmol ε3. Dapp greatly increased in surficial layers at PM and PC in year two, suggesting that bioadvection caused by bioturbating organisms had occurred. The effects of bioturbation on transport to/from the sediments are modeled, and results can be applied to various sediment treatment scenarios such as capping.  相似文献   

9.
Tholeiitic basalt glasses from the FAMOUS area of the Mid-Atlantic Ridge are among the most primitive basaltic liquids reported from the ocean basins. One of the more primitive of these[Mg/(Mg+Fe2+) = 0.68;Ni= 232ppm;TiO2 = 0.61] glasses (572-1-1) was selected for an experimental investigation. This study found olivine to be the liquidus phase from 1 atm to 10.5 kbar where it is replaced by clinopyroxene. The sequence of appearance of phases at 1 atm pressure is olivine (1268°C), plagioclase (1235°C) and clinopyroxene (1135°C). The sample is multiply saturated at 10.5 kbar with olivine (Fo88), clinopyroxene (Wo32En60Fs9), and orthopyroxene (Wo5En83Fs12). From the 1-atm data we have measured (FeO/MgO) olivine/(FeO*/MgO) liquid (K′D) for olivine-melt pairs equilibrated at 12 temperatures in the range 1268–1205°C.K′D varies from 0.30 at 1205°C to 0.27 at 1268°C. Analysis of high-pressure olivine melt pairs indicates a systematic increase inK′D with pressure.Evaluation of the 1-atm experiments reveals that fractionation of olivine followed by olivine + plagioclase can generate much of the variation in major element chemistry observed in the FAMOUS basalt glasses. However, it cannot account for the entire spectrum of glass compositions — particularly with respect to TiO2 and Na2O. The variations in these components are such as to require different primary liquids.Comparison of clinopyroxene microphenocrysts/xenocrysts found in oceanic tholeiites with experimental clinopyroxenes reveal that the majority of those in the tholeiites may have crystallized from the magma at pressures greater than ~ 10 kbar and are not accidental xenocrysts. Clinopyroxene fractionation at high pressures may be a viable mechanism for fractionating basaltic magmas.The major and minor element mineral/meltK′d's from our experiments have been used to model the source region residual mineralogy for given percentages of partial melting. These data suggest that ~20% partial melting of a lherzolite source containing 0–10% clinopyroxene can generate the major and minor element concentrations in the parental magmas of the Project FAMOUS basalt glasses.  相似文献   

10.
Oxygen self diffusion rates were determined in quartz samples exchanged with18O-enriched CO2 between 745 and 900°C and various pressures, and the diffusion profiles were measured using an ion microprobe. The activation energy (Q) and preexponential factor (D0) at P(CO2) = P(tot) = 100 bar, for diffusion parallel to the c-axis are 159 ( ± 13) kJ/g atom and 2.10 (+0.75/ −0.55) × 10−8 cm2/s. This rate is approximately 100 times slower than that obtained from hydrothermal experiments and 100 times faster than a previous 1-bar quartz-O2 exchange experiment. The oxygen diffusion rate measured at 0.6 bar, 888°C, and at 900°C in vacuum is in agreement with the previous 1-bar exchange experiments with18O2. The effect of higher CO2 pressures is small. At 900°C, the diffusion rate exchanged with CO2 is = 2.35 × 10−15 cm2/s at 100 bar, 2.24 × 10−15 cm2/s at 3.45 kbar and 8.13 × 10−15 cm2/s at 7.2 kbar.There is probably a diffusing species, other than oxygen, that enhances the oxygen diffusion rate in these quartz-CO2 systems, relative to that occurring at very low pressures or in a vacuum. The effect of this diffusing species, however, is not as strong as that associated with H2O. Preserved oxygen isotope fractionations between coexisting minerals in a slowly cooled, high-grade metamorphic terrane will vary depending upon whether a water-rich phase was present or not. Closure temperatures will be approximately 100°C higher in rocks where no water-rich phase was present during cooling. The measured fractionations between coexisting minerals in metamorphic rocks may potentially be used as a sensor of water presence during retrogression.  相似文献   

11.
Sixteen sets of apatite/liquid partition coefficients (Dap/liq) for the rare earth elements (REE; La, Sm, Dy, Lu) and six values for Sr were experimentally determined in natural systems ranging from basanite to granite. The apatite + melt (glass) assemblages were obtained from starting glasses artificially enriched in REE, Sr and fluorapatite components; these were run under dry and hydrous conditions of 7.5–20 kbar and 950–1120°C in a solid-media, piston-cylinder apparatus. An SEM-equipped electron microprobe was used for subsequent measurement of REE and Sr concentrations in coexisting apatites and quenched glasses. The resulting partition coefficient patterns resemble previously determined apatite phenocryst/groundmass concentration ratios in the following respects: (1) the rare earth patterns are uniformly concave downward (i.e., the middle REE are more compatible in apatite than the light and heavy REE); (2) DREEap/liq is much higher for silicic melts than for basic ones; and (3) strontium (and therefore Eu2+) is less concentrated by apatite than are the trivalent REE. The effects of both temperature and melt composition on DREEap/liq are systematic and pronounced. At 950°C, for example, a change in melt SiO2 content from 50 to 68 wt.% causes the average REE partition coefficient to increase from ~7 to ~30. A 130°C increase in temperature, on the other hand, results in a two-fold decrease in DREEap/liq. Partitioning of Sr is insenstitive to changes in melt composition and temperature, and neither the Sr nor the REE partition coefficients appear to be affected by variations in pressure or H2O content of the melt.The experimentally determined partition coefficients can be used not only in trace element modelling, but also to distinguish apatite phenocrysts from xenocrysts in rocks. Reported apatite megacryst/host basalt REE concentration ratios [12], for example, are considerably higher than the equilibrium partition coefficients, which suggest that in this particular case the apatite is actually xenocrystic.A reversal experiment incorporated in our study yielded diffusion profiles of REE in apatite, from which we extracted a REEαCa interdiffusion coefficient of 2–4×10?14 cm2/s at 1120°C. Extrapolated downward to crustal temperatures, this low value suggests that complete REE equilibrium between felsic partial melts and residual apatite is rarely established.  相似文献   

12.
The influence of atmospheric solar radiation absorption on the photodetachment, dissociative photodetachment, and photodissociation rate coefficients (photodestruction rate coefficients) of O?, Cl?, O2 ?, O3 ?, OH?, NO2 ?, NO3 ?, O4 ?, OH?(H2O), CO3 ?, CO4 ?, ONOO?, HCO3 ?, CO3 ?(H2O), NO3 ?(H2O), O2 +(H2O), O4 +, N4 +, NO+(H2O), NO+(H2O)2, H+(H2O) n for n = 2–4, NO+(N2), and NO+(CO2) at D-region altitudes of the ionosphere is studied. A numerical one-dimensional time-dependent neutral atmospheric composition model has been developed to estimate this influence. The model simulations are carried out for the geomagnetically quiet time period of 15 October 1998 at moderate solar activity over the Boulder ozonesonde. If the solar zenith angle is not more than 90° then the strongest influence of atmospheric solar radiation absorption on photodestruction of ions is found for photodissociation of CO4 ? ions when CO3 ? ions are formed. It follows from the calculations that decreases in the photodestruction rate coefficients of ions under consideration caused by this influence are less than 2 % at 70 km altitude and above this altitude if the solar zenith angle does not exceed 90°.  相似文献   

13.
We present an inventory of B, Cl and Li concentrations in (a) key minerals from a set of ultramafic samples featuring the main evolutionary stages encountered by the subducted oceanic mantle, and in (b) fluid inclusions produced during high-pressure breakdown of antigorite serpentinite. Samples correspond to (i) nonsubducted serpentinites (Northern Apennine and Alpine ophiolites), (ii) high-pressure olivine-bearing antigorite serpentinites (Western Alps and Betic Cordillera), (iii) high-pressure olivine-orthopyroxene rocks recording the subduction breakdown of antigorite serpentinites (Betic Cordillera). Two main dehydration episodes are recorded by the sample suite: partial serpentinite dewatering during formation of metamorphic olivine, followed by full breakdown of antigorite serpentine to olivine+orthopyroxene+fluid. Ion probe and laser ablation ICP-MS (LA ICP-MS) analyses of Cl, B and Li in the rock-forming minerals indicate that the hydrous mantle is an important carrier of light elements. The estimated bulk-rock B and Cl concentrations progressively decrease from oceanic serpentinites (46.7 ppm B and 729 ppm Cl) to antigorite serpentinites (20 ppm B and 221 ppm Cl) to olivine-orthopyroxene rocks (9.4 ppm B and 45 ppm Cl). This suggests release of oceanic Cl and B in subduction fluids, apparently without inputs from external sources. Lithium is less abundant in oceanic serpentinites (1.3 ppm) and the initial concentrations are still preserved in high-pressure antigorite serpentinites. Higher Li contents in olivine, Ti-clinohumite of the olivine-orthopyroxene rocks (4.9 ppm bulk rock Li), as well as in the coexisting fluid inclusions, suggest that their budget may not be uniquely related to recycling of oceanic Li, but may require input from external sources.Laser ablation ICP-MS analyses of fluid inclusions in the olivine-orthopyroxene rocks enabled an estimate of the Li and B concentrations in the antigorite breakdown fluid. The inclusion compositions were quantified using a range of salinity values (0.4-2 wt.% NaClequiv) as internal standards, yielding maximum average fluid/rockDB∼5 and fluid/rockDLi∼3.5. We also performed model calculations to estimate the B and Cl loss during the two dehydration episodes of serpentinite subduction. The first event is characterized by high fluid/rock partition coefficients for Cl (∼100) and B (∼60) and by formation of a fluid with salinity of 4-8 wt.% NaClequiv. The antigorite breakdown produces less saline fluids (0.4-2 wt.% NaClequiv) and is characterized by lower partition coefficients for Cl (25-60) and B (12-30). Our calculations indicate that the salinity of the subduction fluids decreases with increasing depths. fluid/rockDB/fluid/rockDCl<1 (∼0.5) indicates that Cl preferentially partitions into the evolved fluids relative to B and that the B/Cl of fluids progressively increases with increasing depths and temperatures.Despite light element release in fluids, appreciable B, Cl and Li are still retained in chlorite, olivine and Ti-clinohumite beyond the antigorite stability field. This permits a bulk storage of about 10 ppm B, 45 ppm Cl and 5 ppm Li, i.e., concentrations much higher than in mantle reservoirs. Chlorite is the Cl repository and its stability controls the Cl and H2O budget beyond the antigorite stability; B and Li are bound in olivine and clinohumite. The subducted oceanic mantle thus retains light elements beyond the depths of arc magma sources, potentially introducing anomalies in the upper mantle.  相似文献   

14.
Diffusion coefficients for Si, Ti, Al, Na, K, Ca, Mg and Fe between pairs of glasses of basaltic, rhyolitic or phonolitic compositions have been determinated experimentally. This method involves the heating of coaxial cylinders of paired glasses under atmospheric conditions, over a range of temperatures from 900 to 1300°C, followed by microprobe analysis determination of the concentration gradients across the interface.The measured diffusivities are similar for all cations and range from 10?13 cm2/s at 900°C to 5 × 10?9 cm2/s at 1300°C. Depending mainly on the composition contrast, the diffusion is characterized by asymmetrical concentration profiles. This peculiar feature increases with temperature and chemical gradients across the contact surface of the glasses and leads to higher diffusion coefficients (D) in the more “basic” glass of a given pair. In the case of the rhyolite-basalt couple, this variation increases by a factor of about 10 at 1300°C. Diffusion dependence on temperature follows an Arrhenius equation which gives activation energies ranging from 65 to 85 kcal/mole. Assuming a constant and overall D for the two glasses we have attempted to apply our results to some geological examples such as exchanges between molten enclaves and liquids of contrasting composition.  相似文献   

15.
Photochemistry of Ions at D-region Altitudes of the Ionosphere: A Review   总被引:2,自引:2,他引:0  
The current state of knowledge of the D-region ion photochemistry is reviewed. Equations determining production rates of electrons and positive ions by photoionization of atmospheric neutral species are presented and briefly discussed. Considerable attention is given to the progress in the chemistry of O+(4S), O+(2D), O+(2P), N+, N2 +, O2 +, NO+, N4 +, O4 +, NO+(N2), NO+(CO2), NO+(CO2)2, NO+(H2O) n for n = 1–3, NO+(H2O)(N2), NO+(H2O)2(N2), NO+(H2O)(CO2), NO+(H2O)2(CO2), O2 +(H2O), H3O+(OH), H+(H2O) n for n = 1–8, O?, O2 ?, O3 ?, O4 ?, OH?, CO3 ?, CO4 ?, NO2 ?, NO3 ?, ONOO?, Cl?, Cl?(H2O), Cl?(CO2), HCO3 ?, CO3 ?(H2O), CO3 ?(H2O)2, NO3 ?(H2O), NO3 ?(H2O)2, OH?(H2O), and OH?(H2O)2 ions. The analysis of the D-region rocket ion mass spectrometer measurements shows that, among these ions, O2 +, NO+, NO+(H2O), and H+(H2O) n for n = 1–7 can make the main contribution to the total positive ion number density, and O?, O2 ?, Cl?, OH?(H2O), CO3 ?, HCO3 ?, NO3 ?, ONOO?, CO4 ?, NO3 ?(H2O), NO3 ?(H2O)2, and 35Cl?(CO2) ions can be responsible for the main contribution to the total negative ion number density. Photodetachment of electrons from O?, Cl?, O2 ?, O3 ?, OH?, NO2 ?, and NO3 ?, dissociative electron photodetachment of O4 ? and OH?(H2O), and photodissociation of O3 ?, O4 ?, CO3 ?, CO4 ?, ONOO?, HCO3 ?, CO3 ?(H2O), NO3 ?(H2O), O2 +(H2O), O4 +, N4 +, NO+(H2O), NO+(H2O)2, H+(H2O) n for n = 2–4, NO+(N2), and NO+(CO2) are studied, and the photodetachment and photodissociation rate coefficients are calculated using the current state of knowledge on the cross sections of these processes and fluxes of solar radiation.  相似文献   

16.
Infrared and X-ray radiation data indicate that the effect of pressure on Na-Al-Si-O quenched melt is to change the coordination number of trivalent aluminum ions from four to six. This conclusion is based upon an observed decrease in the intensity of the infrared vibration involving a “bridging” oxygen in the polymer structure and a shift in both Al Kα (7 × 10?4Å) and Al Kβ (20 × 10?4Å) radiation. The amount of AlIV or AlVI seems to be a continuous function of the pressure at which the melt was formed and is thus independent of the coordination change effected at high pressure in solids crystallized from the NaAlSi2O6 composition used in this study. The importance of the continuous shift of coordination number of aluminum ions in silicate melts at high pressure is discussed. The change in coordination of Al would also be expected in natural silicate melts (magmas) at high pressures.  相似文献   

17.
Based on the DMSP F6 and F7 satellite observations, the characteristics of precipitating particles in different auroral precipitation regions of the dayside sector have been studied depending on the solar wind plasma density. Under quiet geomagnetic conditions (|AL| < 100 nT and B z > 0), a considerable increase in the fluxes of precipitating ions is observed in the zones of structured auroral oval precipitation (AOP) and soft diffuse precipitation (SDP). A decrease in the mean energy of precipitating ions is observed simultaneously with the flux growth in these regions. The global pattern of variations in the fluxes of precipitating ions, which shows the regions of effective penetration of solar wind particles into the magnetosphere at a change in the solar wind density from 2 to 20 cm?3, has been constructed. The maximal flux variation (ΔJ i = 1.8 · 107 cm?2 s?1, i.e., 3.5% of an increase in the solar wind particle flux) is observed in the SDP region on the dayside of the Earth. The dependence of precipitating ion fluxes in the low-latitude boundary layer (LLBL), dayside polar cusp, and mantle on the solar wind density at positive and negative values of the IMF B z component has been studied. In the cusp region, an increase in the precipitating ion flux is approximately 17% of an increase in the solar wind density. The IMF southward turning does not result in an appreciable increase in the ion precipitation fluxes either in the cusp or in the mantle. This fact can indicate that the reconnection of the geomagnetic field with southward IMF is not the most effective mechanism for penetration of solar wind particles into these regions.  相似文献   

18.
Magnetic properties and crystal structure parameters of synthetic solid solutions Fe3O4Fe3TiO4, Fe2O4MgFe2O4 and Fe3O4Mg2TiO4 have been studied. Basic regularities in the behaviour of saturation magnetisation (Is), Curie temperature (TC) and cubic lattice parameter a during the substitution of Ti and Mg ions for Fe ions have been found. As the concentration of Ti ions increases, Is reduces from 70 Gs·cm3 g?1 to 0, TC changes from 580 to 130°C and a from 8.391 to 8.520 Å. Growth of the Mg concentration leads to changes in Is to 19.8 Gs·cm3, g?1, TC, to 440°C and a, to 8.360 Å. The full Fe ions substitution gives “a”=8.440 A?.Chemical compositions of the samples, in which the valency variation of Fe ions at oxidation leads to an increase in susceptibility and TC, have been determined.  相似文献   

19.
High-temperature experiments on ferromagnesian compositions have been hampered by the rapid absorption of up to 95% of the original iron by platinum and 40% by silver-palladium capsules. Molybdenum or iron capsule materials can decrease or alleviate iron loss, but restrict oxygen fugacities to values near the iron-wustite buffer. Because Co2+ is stable at fO2 =HM and because the solubility of Co in platinum in this range of fO2 is ~0.05% at temperatures to 1350°C, its use as an analogue for Fe2+ is possible. In addition, experiments simulating various Fe2+ ratios can be easily performed by choosing appropriate Co2+/Fe3+ ratios. The cobalt phases produced possess brilliant and distinctive colors which are valuable aids in optical identification of minute phases. The cobalt analogue hypothesis was tested with atmospheric pressure experiments in air on the cobalt analogue of the 1921 Kilauea basalt at three simulated Fe2+/Fe3+ ratios. The results were compared with those of R.E.T. Hill (1969) for the natural 1921 basalt. The phase relations were the same, with the cobalt system stability fields systematically shifted by about +50°C. Microprobe analysis of olivines and the coexisting glasses indicate that the distribution of Co2+ between olivine and melt is independent of temperature and liquid composition. Although the analogue liquid composition differs from the equilibrium composition of the natural system, it may be corrected be employing distribution coefficients (KD = 0.61 for the Co system; KD = 0.33 for the Fe system) to closely approximate what the natural system would yield if iron loss did not occur.  相似文献   

20.
The temperature dependence of water diffusivity in rhyolite melts over the range 650–950°C and [PT(H2O] = 700 bars is evaluated from water concentration-distance profiles measured in glass with an ion microprobe. Diffusivities are exponentially dependent on concentration over this temperature range and vary from about 10?8 cm2/s at 650°C to about 10?7 cm2/s at 950°C at 2 wt.% water. Water solubility also varies with temperature at a rate of ?0.14 wt. per 100°C increase. The avtivation energy (Ea) appears to be constant at 19 ± 1kal/mole for 1, 2,and 3 wt.% H2O. Comparison of these data with results for cation diffusion indicates that this value is a minimum Ea for diffusion of any species in a rhyolite melt.Compensation plots of log10D0 (the frequency factor) versus Ea indicate that hydrous rhyolite melts follow the same trend as anhydrous basalts. D0 increases for H2O and Ca2+ [1] as Ea decreases. This suggests that these molecules may diffuse by different mechanisms than do monovalent cations, and that hydration of the melt affects diffusion of Ca2+ and H2O differently than it does monovalent cation diffusion. The results imply that dramatic increases in cation diffusivities by hydration [1] may occur with additions of less than 1 wt.% H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号