首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
许烨霜  马磊  沈水龙 《岩土力学》2011,32(Z1):578-0582
20世纪90年代上海中心城区的地面沉降在地下水开采量没有增加的情况下出现了新一轮的增长。与此同时,上海进行了大规模的城市化建设。通过对中心城区地面沉降量与工程建设进行相关性分析发现,近年来中心城区的地面沉降量与工程建设具有相关性。目前城市化建设引起地面沉降的现象已受到关注,但尚缺乏对城市化进程引起地面沉降机制的系统研究。针对上海市城市化进程引起地面沉降的因素进行分析探讨,城市化进程引起的沉降包括建筑物荷载及交通荷载等外荷载引起的沉降,基坑开挖、降水及隧道施工等工程施工引起的土体压缩,以及隧道渗漏,周边地区对地下水补给量的减小,地下构筑物挡水效应等引起的地下水位持续下降而诱发的沉降  相似文献   

2.
Underground structures that penetrate into aquifers can cause groundwater-level drawdown and land subsidence. Numerical analyses, based on a three-dimensional (3-D) groundwater flow model incorporated with a 1-D consolidation model, have been conducted to assess the behaviour of seepage and effect on subsidence by considering underground structures in the multi-aquifer?Caquitard system of Shanghai, China. Two extreme scenarios were examined: (1) distributed underground structures, and (2) concentrated underground structures around the heavily urbanized area. In the first scenario, the aquifer with underground structures was substituted with another material that possessed a lower hydraulic conductivity, established using the effective-medium theory; when the ratio of the volume of the underground structures to that of selected aquifer layers??(1) low-pressure partially-confined aquifer (Aq02), (2) the first confined aquifer (AqI), and (3) the second confined aquifer (AqII)??increases by 10?%, subsidence increases by about 3, 3 and 32?%, respectively. In the second scenario, part of the aquifer material was directly replaced by the structure material (very low hydraulic conductivity). In this situation, when the ratio of the volume of the underground structure to the volume of aquifers Aq02, AqI or AqII increases by 10?%, subsidence increases by about 5, 8 or 20?%, respectively.  相似文献   

3.
深厚强透水含水层超大基坑降水群井效应研究   总被引:1,自引:0,他引:1  
基坑减压降水的幅度与群井效应密切相关。某超大面积基坑,含水层组厚40m,中下部透水性强,采用非完整井降水。对水文地质条件概化,建立了地下水三维非稳定流数值模型,对均匀布置群井、不均匀布置群井、分块开挖降水、不同的井结构、布设回灌井等工况,进行了渗流场模拟。研究表明,强透水性含水层超大面积基坑降水的群井效应极为明显;井位角密中疏布置,可实现降深调平,避免降深不足和超降;基坑分块降水,可减少坑外降深;短滤管井结构可减少基坑总涌水量和坑外降深;强透水性含水层可灌性强,回灌对减少坑外水位下降有较明显的效果。模拟结果与现场监测较为一致。研究成果可为类似工程地下水控制设计提供参考。  相似文献   

4.
Analysis of urbanisation-induced land subsidence in Shanghai   总被引:2,自引:1,他引:1  
Since 1980, land subsidence has accelerated and groundwater levels have decreased in the centre of Shanghai, although the net withdrawn volume of groundwater has not increased. Theoretical analysis of the monitored data shows that the decrease in the groundwater level is the primary reason for the observed land subsidence. Meanwhile, the net withdrawn volume of groundwater in the urban centre of Shanghai has not increased during this period. Many underground structures have been constructed in the multi-aquifer-aquitard system of Shanghai since 1980. This paper discusses the factors related to the development of land subsidence during the process of urbanisation in Shanghai during the past 30?years. These factors include additional load during and after structure construction, the cut-off and/or partial cut-off effect of underground structures in aquifers, the decrease in the groundwater level due to leakage of underground structures and the reduction in recharge of groundwater from the surroundings.  相似文献   

5.
通过采用单位面积河流在单位水头差作用下的渗漏量来表征河流渗漏能力,建立渗流井取水理想模型,分别计算了在不同河流渗漏能力和含水层渗透性能条件下,竖井降深对渗流井出水量的影响。建立渗流井取水非稳定流模型,计算了在前期稳定竖井降深不同条件下,河流断流后渗流井出水量衰减过程及竖井降深发展过程。提出渗流井合理竖井降深应根据河流与地下水是否脱节以及含水层渗透性能,在岸边渗流井中部及一侧各布设一个观测孔,根据观测孔水位进行确定。对于含水层渗透性能较强地区,渗流井竖井降深应使得渗流井范围内地下水位与河流脱节,但高于辐射孔顶面;对于含水层渗透性能较差地区,渗流井竖井降深应使得侧部观测孔水位接近河床底面或刚出现脱节。  相似文献   

6.
渗漏污染是建干岩溶地区赤泥堆场的主要环境工程地质问题。解决这一问题的关键是通过查明地下水的渗流特性,从而确定其渗漏通道。试验研究表明,堆场内各水点之间、堆场与外部各水点存在一定的水力联系,其流速受季节影响,在枯水期较为缓慢;地下水流向主要取决于地下暗河的走向;堆场区地下水流向总体是自堆场向北流向右江,局部地下水的流向受构造和岩溶裂隙控制;岩溶管道是渗流的主要通道。因此,存在因赤泥渗流污染居民生产与生活水源地的可能,污染物的扩散途径主要是岩溶通道。  相似文献   

7.
Property economics favours the vertical development of cities but flow of groundwater can be affected by the use of underground space in them. This review article presents the state of the art regarding the impact of disturbances caused by underground structures (tunnels, basements of buildings, deep foundations, etc.) on the groundwater flow in urban aquifers. The structures built in the underground levels of urban areas are presented and organised in terms of their impact on flow: obstacle to the flow or disturbance of the groundwater budget of the flow system. These two types of disturbance are described in relation to the structure area and the urban area. The work reviewed shows, on one hand, the individual impacts of different urban underground structures, and on the other, their cumulative impacts on flow, using real case studies. Lastly, the works are placed in perspective regarding the integration of underground structures with the aim of operational management of an urban aquifer. The literature presents deterministic numerical modelling as a tool capable of contributing to this aim, in that it helps to quantify the effect of an underground infrastructure project on groundwater flow, which is crucial for decision-making processes. It can also be an operational decision-aid tool for choosing construction techniques or for formulating strategies to manage the water resource.  相似文献   

8.
Underground structures have been shown to have a great influence on subsoil resources in urban aquifers. A methodology to assess the actual and the potential state of the groundwater flow in an urban area is proposed. The study develops a three-dimensional modeling approach to understand the cumulative impacts of underground infrastructures on urban groundwater flow, using a case in the city of Lyon (France). All known underground structures were integrated in the numerical model. Several simulations were run: the actual state of groundwater flow, the potential state of groundwater flow (without underground structures), an intermediate state (without impervious structures), and a transient simulation of the actual state of groundwater flow. The results show that underground structures fragment groundwater flow systems leading to a modification of the aquifer regime. For the case studied, the flow systems are shown to be stable over time with a transient simulation. Structures with drainage systems are shown to have a major impact on flow systems. The barrier effect of impervious structures was negligible because of the small hydraulic gradient of the area. The study demonstrates that the definition of a potential urban groundwater flow and the depiction of urban flow systems, which involves understanding the impact of underground structures, are important issues with respect to urban underground planning.  相似文献   

9.
我国北方煤田上覆地下水系统含水层以砂岩为主,是矿井主要充水水源。除浅部、露头区外,上覆砂岩地下水系统总体上构成非径流型蓄水构造,弹性贮存是其地下水主要赋存状态,压力传导、局部渗流为地下水动力学模式,矿井涌水主要为承压含水层弹性释放。非充填开采,煤层上覆地层周期性冒裂形成冒裂二元结构体,其自身释水(弹性、重力)与其外侧含水层断面弹性释水叠加形成矿井涌水。冒裂二元结构体释水随冒裂周期发生,时间短暂。外侧含水层断面释水可用非稳定流定降深沟(渠)流方程描述,进而获得外侧含水层断面释水单宽流量。外侧含水层释水断面随冒裂周期性延展累积,迭代更新,矿井涌水流量随之变化。在研究、刻画外侧含水层释水断面延展、迭代时空规律基础上,给出含水层断面释水流量预测方法、公式,与冒裂二元结构体自身周期性释水流量叠加,获新的矿井涌水量预测方法—非稳定释水-断面流法。  相似文献   

10.
文章从一维地下水运动和渗透力学的角度,分析比较潜水位上升与承压水位下降对岩溶地区透—阻型盖层中阻水层渗透稳定性的影响,重点讨论了承压水位下降速度(降速)与下降深度(降深)对阻水层中渗透坡降的影响,结果表明:地下水位变化(潜水位上升或承压水位下降)产生的非稳定渗流不利于岩溶洞穴开口上方阻水层的稳定,承压水位的下降对岩溶开口附近处阻水层中渗透力的影响远大于潜水位的变化;在承压层水位最大降深确定的条件下,承压水位下降速度愈快,岩溶开口附近处阻水层中向下渗透力愈大。因此,在覆盖型岩溶地区抽取地下水时,为了减缓或避免覆盖型塌陷的发生,应同时控制好最大降深和最大开采速度。   相似文献   

11.
In terms of controlling groundwater in deep foundation pit projects, the usual methods include increasing the curtain depth, reducing the amount of pumped groundwater, and implementing integrated control, in order to reduce the drawdown and land subsidence outside pits. In dewatering design for confined water, factors including drawdown requirements, the thickness of aquifers, the depth of dewatering wells and the depth of cutoff curtains have to be considered comprehensively and numerical simulations are generally conducted for calculation and analysis. Longyang Road Station on Shanghai Metro Line 18 is taken as the case study subject in this paper, a groundwater seepage model is developed according to the on-site engineering geological conditions and hydrogeological conditions, the excavation depth of the foundation pit as well as the design depth of the enclosure, hydrogeological parameters are determined via the pumping test, and the foundation pit dewatering is simulated by means of the three-dimensional finite difference method, which produces numerical results that consistent with real monitoring data as to the groundwater table. Besides, the drawdown and the land subsidence both inside and outside the pit caused by foundation pit dewatering are calculated and analyzed for various curtain depths. This study reveals that the drawdown and the land subsidence change faster near the curtain with the increase in the curtain depth, and the gradient of drawdown and land subsidence changes dwindles beyond certain depths. In this project, the curtain depth of 47/49 m is adopted, and a drawdown-land subsidence verification test is completed given hanging curtains before the excavation. The result turns out that the real measurements basically match the calculation results from the numerical simulation, and by increasing the depth of curtains, the land subsidence resulting from dewatering is effectively controlled.  相似文献   

12.
上海地区地下水系统及地下水资源特征   总被引:6,自引:2,他引:4  
长江(陆上和水下)三角洲地下水系统是一个完整的系统,上海地区地下水系统是长江三角洲系统的一部分(或子系统)。上海地区地下水开采量的获取,主要是通过其东部、南部边界的长江水下三角洲的同层古埋藏地下水的补给,由于长江水下三角洲分布广阔,这种补给在一定的时限内是有保证的   相似文献   

13.
In terms of controlling groundwater in deep foundation pit projects, the usual methods include increasing the curtain depth, reducing the amount of pumped groundwater, and implementing integrated control, in order to reduce the drawdown and land subsidence outside pits. In dewatering design for confined water, factors including drawdown requirements, the thickness of aquifers, the depth of dewatering wells and the depth of cutoff curtains have to be considered comprehensively and numerical simulations are generally conducted for calculation and analysis. Longyang Road Station on Shanghai Metro Line 18 is taken as the case study subject in this paper, a groundwater seepage model is developed according to the on-site engineering geological conditions and hydrogeological conditions, the excavation depth of the foundation pit as well as the design depth of the enclosure, hydrogeological parameters are determined via the pumping test, and the foundation pit dewatering is simulated by means of the three-dimensional finite difference method, which produces numerical results that consistent with real monitoring data as to the groundwater table. Besides, the drawdown and the land subsidence both inside and outside the pit caused by foundation pit dewatering are calculated and analyzed for various curtain depths. This study reveals that the drawdown and the land subsidence change faster near the curtain with the increase in the curtain depth, and the gradient of drawdown and land subsidence changes dwindles beyond certain depths. In this project, the curtain depth of 47/49 m is adopted, and a drawdown-land subsidence verification test is completed given hanging curtains before the excavation. The result turns out that the real measurements basically match the calculation results from the numerical simulation, and by increasing the depth of curtains, the land subsidence resulting from dewatering is effectively controlled.  相似文献   

14.
叶锋  曹洪  董志良 《岩土力学》2010,31(10):3324-3328
城区渗流场中地下阻水结构物众多,由于结构物的角点为奇异点,而且结构物的尺寸跟整个城区渗流场的尺寸相比非常小,这导致现有的计算方法难以对城区渗流场进行模拟分析。针对城区渗流场的这些特点,通过引进流体力学的复势、偶极子等理论,采用抽注水井对结构物进行模拟。通过控制井流量的大小,以形成强弱程度不同的阻水效果,而单元尺寸可以以井点间距为尺度,用较少的节点和单元即可对地下结构物进行处理,达到简化计算的目的。抽注水井法是一种简化的模拟算法,它忽略了结构物附近局部区域流场失真的情况,强调在宏观上与真实流场接近。  相似文献   

15.
The lithology of the studied aquifers has an important effect on their hydrogeologic setting. Moreover, the structural patterns have their imprint on the geologic setting and consequently the hydrogeologic conditions of the area. Lake Nasser recharges the groundwater in the study area by large amount of water increasing the groundwater level. A comparison of the depth to water in the same wells at two different periods (1998 and 2014 ) shows that the depth to water increases with average rise 11.1 m during 16 years. The constructed water table map shows that the groundwater flow is mainly towards the northwest direction reflecting recharge from Lake Nasser. The hydraulic parameters of the Abu Aggag and Sabaya sandstone aquifers are determined in the present work from pumping tests. The transmissivity of the studied aquifers reflects the moderate to high potentiality. The groundwater salinity of the studied aquifers is fresh water and varies from 353 to 983 ppm (part per million) and suitable for all purposes. It increases due to the west direction coinciding with groundwater flow direction. The main result of the present study shows that the seepage water from Lake Nasser attains 17 mcm/year.  相似文献   

16.
Large amounts of groundwater are discharged during underground mining operations. As a result, the drawdown of groundwater, known as aquifer dewatering, is common in mining areas. Because of variability in permeability between different media in mines, mine drainage occurs primarily as non-continuous flow. However, calculations of mine water yield are usually made based on the continuous flow theory, and therefore often produce erroneous results. This study predicts the water yield of a mine using the module MODFLOW and incorporating the non-continuous flow theory into the calculation. Using this method, the predicted water yield of a mine was approximately 50 % lower than that predicted using the continuous flow theory. The model also demonstrates that the rate of mine drainage varies over time; there is initially a decrease in the rate of drainage which gradually approaches a constant value. Double level flow occurs when there is non-continuous flow in continuous media, which can effectively minimize the influence of mine drainage on upper aquifers and relieve the conflict between groundwater supply and drainage in the mining area.  相似文献   

17.
为了定量研究与评价含水层之间地下水水力联系程度,首次提出了水力联系系数C(hydraulic connection coefficient)的概念。将水力联系系数C定义为观测孔目的含水层水位降深与该观测孔位置抽水含水层水位降深的比值。通过水力联系系数,可定量评价某含水层水平上同层之间和垂向上不同含水层之间的水力联系程度。依据鄂尔多斯盆地白垩系洛河组各含水层段的水力联系系数C值,将含水层之间水力联系分为5个等级。其中,0.000 0 ≤ C<0.062 5,0.062 5 ≤ C<0.125 0,0.125 0 ≤ C<0.250 0,0.250 0 ≤ C<0.500 0,C ≥ 0.500 0,分别代表水力联系等级为极弱、弱、中等、强、极强。以高家堡井田钻孔抽(放)水试验数据为例,采用水力联系系数和观测孔水位响应时间两个指标定量评价了区内巨厚层状非均质洛河组含水层内部水力联系。结果表明:洛河组中上段水平同层之间的水力联系系数分别为0.373 0、0.413 8,观测孔水位响应时间较短(约为5 min),水力联系强;洛河组下段水平同层之间水力联系系数分别为0.440 1、0.491 1,观测孔水位响应时间较短(为9~20 min),水力联系强;洛河组中上段与下段垂向水力联系系数分别为0.000 2、0.007 2、0.089 7,观测孔水位响应时间较长(大于60 min),水力联系极弱至弱。  相似文献   

18.
Remote sensing data can be integrated with analyses of topography, structural geology, hydrogeology and geophysics. The integration gives premises for the delineation of zones of potential groundwater resources in strongly fractured and karstified deep aquifers in the uplifted Meo Vac Highland, northern Vietnam. Remote sensing analysis outlines geological faults with hydrogeological significance. These faults are combined with a derived lineament density map, interpreted analysis of surface flow direction and existing hydrogeological data, resulting in indications of groundwater flow direction. An analysis of the SPOT 5 band ratio 4/1, together with indications of surface-flow direction in low terrains, results in a determination of underground cavern passages. The delineated zones of potential groundwater resources are verified by detailed hydrogeological field surveys and geophysical measurements. Remote sensing analysis is shown to effectively contribute to the investigation of groundwater resources for a hydrogeologically complex area.  相似文献   

19.
Shanghai Administrative Region (SAR) is located on the deltaic deposit of the Yangtze River. The bed rock under SAR is generally buried in the depth of 200 m to 300 m except for several massifs, where the bed rock is exposed to the ground surface. The Quaternary deposit in Shanghai is soft sediment. The variation of palaeoclimate influenced the sea level and resulted in a very complicated sedimentary environment. The Quaternary deposit in SAR is composed of an alternated multi-aquifer-aquitard system (MAAS). The groundwater system is composed of one artesian aquifer and five confined aquifer layers with very high groundwater pressure head. The MAAS was formed mainly within the warm geological era updated to 2.6 million years ago. Between two aquifers, there is an aquitard which is composed of soft clayey soil formed mainly within the cold era. The aquitards are composed of very soft clayey silt with very high compressibility and humus content. The humus material was transformed into methane gas under a long-term geological process. With the development of economy, the infrastructures were (or are being) constructed in the top shallow soft clayey deposit, aquifer I and aquifer II. In SAR, the following geohazards occurred or possibly occur during the construction and maintenance of infrastructures: i) quicksand and piping hazards; ii) pumping-induced hazards and recharge-cutoff hazards; iii) long-term settlement due to the seasonal fluctuation of groundwater level; and iv) geohazards of methane gas.  相似文献   

20.
工程措施影响滑坡地下水动态的数值模拟研究   总被引:9,自引:2,他引:7  
大多数滑坡的发生与地下水活动有关 ,地下水的动态变化直接关系到滑坡的稳定性状况。因此 ,在滑坡治理工程中 ,首先需要研究各种影响因素和工程治理措施对坡体地下水位的影响方式 ,从而正确分析滑坡成因机制和制定合理的滑坡治理方案。基于工程滑坡实例研究 ,利用数值模拟 ,揭示了滑坡治理工程中地下排水洞的排水效果 ,分析了地表水集中入渗和设置抗滑桩后地下水渗流场的变化特征。表明数值模拟研究 ,可以有效地揭示工程措施及主要影响因素对滑坡地下水动态的影响方式 ,为滑坡治理奠定必要的基础  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号