首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural Hazards - The probabilistic seismic hazard analysis (PSHA) has been performed for Bangladesh using background seismicity, crustal fault, and subduction zone source models. The latest ground...  相似文献   

2.
作为地震灾害评估的理论基础,地震动力学主要研究与地震活动有关的断裂机制、破裂过程、震源辐射和由此而引起的地震波的传播及地面运动规律。对地震力学、震源辐射和能量释放等经典理论问题进行了系统研究。在此基础上,应用最新的定量地震学研究方法,以逻辑树的形式综合地震、地质和大地测量资料,提供了不同构造环境和断裂机制条件下地震灾害评估的概率分析和确定性分析实例。用于震源分析的典型构造类型包括板内地壳震源层、地壳活动断层及其速率、板块俯冲界面和俯冲板片。由于输入模型中不确定因素的存在,如输入参数的随机性和科学分析方法本身的不确定性,对分析结果的不确定性需审慎对待。通常对不同的模型或参量,包括地面衰减模型,进行加权平均可较为合理地减小结果的偏差:概率分析和确定性分析方法的结合亦为可取之有效途径。  相似文献   

3.
Northeast India is one of the most highly seismically active regions in the world with more than seven earthquakes on an average per year of magnitude 5.0 and above. Reliable seismic hazard assessment could provide the necessary design inputs for earthquake resistant design of structures in this region. In this study, deterministic as well as probabilistic methods have been attempted for seismic hazard assessment of Tripura and Mizoram states at bedrock level condition. An updated earthquake catalogue was collected from various national and international seismological agencies for the period from 1731 to 2011. The homogenization, declustering and data completeness analysis of events have been carried out before hazard evaluation. Seismicity parameters have been estimated using G–R relationship for each source zone. Based on the seismicity, tectonic features and fault rupture mechanism, this region was divided into six major subzones. Region specific correlations were used for magnitude conversion for homogenization of earthquake size. Ground motion equations (Atkinson and Boore 2003; Gupta 2010) were validated with the observed PGA (peak ground acceleration) values before use in the hazard evaluation. In this study, the hazard is estimated using linear sources, identified in and around the study area. Results are presented in the form of PGA using both DSHA (deterministic seismic hazard analysis) and PSHA (probabilistic seismic hazard analysis) with 2 and 10% probability of exceedance in 50 years, and spectral acceleration (T = 0. 2 s, 1.0 s) for both the states (2% probability of exceedance in 50 years). The results are important to provide inputs for planning risk reduction strategies, for developing risk acceptance criteria and financial analysis for possible damages in the study area with a comprehensive analysis and higher resolution hazard mapping.  相似文献   

4.
The objective of this study is to evaluate the seismic hazard at the Esfarayen-Bojnurd railway using the probabilistic seismic hazard assessment (PSHA) method. This method was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. Attenuation equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 1.2 × 1.2 km covering the study area, ground acceleration for every node was calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to return periods of 74, 475 and 2475 years.  相似文献   

5.
In order to determine whether slip during an earthquake on the 26th September 1997 propagated to the surface, structural data have been collected along a bedrock fault scarp in Umbria, Italy. These collected data are used to investigate the relationship between the throw associated with a debated surface rupture (observed as a pale unweathered stripe at the base of the bedrock fault scarp) and the strike, dip and slip-vector. Previous studies have suggested that the surface rupture was produced either by primary surface slip or secondary compaction of hangingwall sediments. Some authors favour the latter because sparse surface fault dip measurements do not match nodal plane dips at depth. It is demonstrated herein that the strike, dip and height of the surface rupture, represented by a pale unweathered stripe at the base of the bedrock scarp, shows a systematic relationship with respect to the geometry and kinematics of faulting in the bedrock. The strike and dip co-vary and the throw is greatest where the strike is oblique to the slip-vector azimuth where the highest dip values are recorded. This implies that the throw values vary to accommodate spatial variation in the strike and dip of the fault across fault plane corrugations, a feature that is predicted by theory describing conservation of strain along faults, but not by compaction. Furthermore, published earthquake locations and reported fault dips are consistent with the analysed surface scarps when natural variation for surface dips and uncertainty for nodal plane dips at depth are taken into account. This implies that the fresh stripe is indeed a primary coseismic surface rupture whose slip is connected to the seismogenic fault at depth. We discuss how this knowledge of the locations and geometry of the active faults can be used as an input for seismic hazard assessment.  相似文献   

6.
福建仙游位于福建省东南沿海中部,其周边地区历史地震活动较平静,属于弱震区。但自从该地区的金钟水库于2010年5月下闸蓄水后,库区附近的地震活动性随之增强。为深入了解该地区的地震活动性、地震分布特征以及寻找隐伏断层,利用中国地震局提供的地震初至震相数据,使用双差定位方法对仙游地区近10年发生的地震进行重定位,获得了更为精确的震源位置,并根据重定位结果模拟深部断裂,寻找隐伏断层。结果显示:(1)重定位后的震源位置更加集中,按照发震时间可分为4个活动区,主要沿沙县—南日岛的次级断裂石苍断裂两侧北西向线性分布。(2)重定位后仙游震群的震源深度主要为8~11 km。石苍断裂左侧地震条带震源深度为6~12 km;右侧地震条带呈现明显的分层现象,上层西北侧地震较为分散,东南侧地震分布较紧凑,震源深度同左侧一样为6~12 km,而下层地震较少,震源深度为14~23 km。(3)根据重定位后的震源位置,利用奇异值分解法拟合得到三个深部断层面,其倾向均为南西向,走向为北西向,与石苍断裂和潼关断裂的倾向和走向一致。结合前人研究成果和本研究结果,推测石苍断裂并不是主发震断层,而是其两侧存在的深部断裂(高倾角隐...  相似文献   

7.
The Himalayas has experienced varying rates of earthquake occurrence in the past in its seismo-tectonically distinguished segments which may be attributed to different physical processes of accumulation of stress and its release, and due diligence is required for its inclusion for working out the seismic hazard. The present paper intends to revisit the various earthquake occurrence models applied to Himalayas and examines it in the light of recent damaging earthquakes in Himalayan belt. Due to discordant seismicity of Himalayas, three types of regions have been considered to estimate larger return period events. The regions selected are (1) the North-West Himalayan Fold and Thrust Belt which is seismically very active, (2) the Garhwal Himalaya which has never experienced large earthquake although sufficient stress exists and (3) the Nepal region which is very seismically active region due to unlocked rupture and frequently experienced large earthquake events. The seismicity parameters have been revisited using two earthquake recurrence models namely constant seismicity and constant moment release. For constant moment release model, the strain rates have been derived from global strain rate model and are converted into seismic moment of earthquake events considering the geometry of the finite source and the rates being consumed fully by the contemporary seismicity. Probability of earthquake occurrence with time has been estimated for each region using both models and compared assuming Poissonian distribution. The results show that seismicity for North-West region is observed to be relatively less when estimated using constant seismicity model which implies that either the occupied accumulated stress is not being unconfined in the form of earthquakes or the compiled earthquake catalogue is insufficient. Similar trend has been observed for seismic gap area but with lesser difference reported from both methods. However, for the Nepal region, the estimated seismicity by the two methods has been found to be relatively less when estimated using constant moment release model which implies that in the Nepal region, accumulated strain is releasing in the form of large earthquake occurrence event. The partial release in second event of May 2015 of similar size shows that the physical process is trying to release the energy with large earthquake event. If it would have been in other regions like that of seismic gap region, the fault may not have released the energy and may be inviting even bigger event in future. It is, therefore, necessary to look into the seismicity from strain rates also for its due interpretation in terms of predicting the seismic hazard in various segments of Himalayas.  相似文献   

8.
In conventional seismic hazard analysis, uniform distribution over area and magnitude range is assumed for the evaluation of source seismicity which is not able to capture peculiar characteristic of near-fault ground motion well. For near-field hazard analysis, two important factors need to be considered: (1) rupture directivity effects and (2) occurrence of scenario characteristic ruptures in the nearby sources. This study proposed a simple framework to consider these two effects by modifying the predictions from the conventional ground motion model based on pulse occurrence probability and adjustment of the magnitude frequency distribution to account for the rupture characteristic of the fault. The results of proposed approach are compared with those of deterministic and probabilistic seismic hazard analyses. The results indicate that characteristic earthquake and directivity consideration both have significant effects on seismic hazard analysis estimates. The implemented approach leads to results close to deterministic seismic hazard analysis in the short period ranges (T < 1.0 s) and follows probabilistic seismic hazard analysis results in the long period ranges (T > 1.0 s). Finally, seismic hazard maps based on the proposed method could be developed and compared with other methods.  相似文献   

9.
A simplified tectonic scheme for hazard purposes was recently adopted for northeastern Italy, introducing large generalized seismogenic areas containing systems of complex geometry faults. This scheme considers only major faults with documented seismic activity. In the present analysis, a different tectonic scheme, with linear elements as seismogenic sources, is presented. The assessment of the regional seismic hazard is done with the fault rupture model, its most important advantage being the recognition that the length of fault rupture during an earthquake is an important consideration in probabilistic calculations of seismic hazard. Moreover, some structures with no associated seismicity but with notable neotectonic activity are considered, and their contribution to the results investigated. Important uncertainties such as those in the maximum possible magnitude of future earthquakes, in the location of the fault, in the focal depth, and in the attenuation law are accounted for in the calculations and their influence studied. The results identify a seismic belt running from Lake Garda to Friuli and along the Yugoslav coast and are very similar to those already known for Friuli, with the largest values corresponding to the zone around Gemona. Some slight differences in the shape of the areas of equal acceleration are probably due to the delineation of the seismic sources of the proposed model. For a cautious elaboration, some neotectonic lines without present seismicity were added into the fault model. Their contribution is negligible in the areas of highest acceleration, but increases remarkably in the areas where acceleration is not expected to exceed the medium values.  相似文献   

10.
估计同震滑移向量对于认识和理解破裂方式和破裂过程具有重要意义。2008年汶川大地震在青藏高原东缘龙门山推覆构造带的中央断裂和前山断裂上各形成了一条长250 km和72 km的地表破裂带。地震发生后至今,已经发表了大量有关同震位错沿破裂带分布的论文和报告,但绝大部分都仅仅是破裂的走向位错和垂直位错,极少有同震滑移向量的报道。这不仅是因为野外难以直接测量到水平缩短量(或拉张量),而且还因为这些走滑位错实际上是视走滑位错,部分或全部来自水平缩短或拉张。因此,仅仅根据视走滑同震位错和垂直同震位错估计的同震总滑移量肯定包含了相当大的误差。尝试利用据不同走向参考线测量到的一组(两个以上)视走滑位错来计算水平滑移向量的这一新方法,获得了中央破裂带上的7个水平同震滑移向量,并结合垂直位错量进一步计算了走滑、倾滑和水平缩短三个同震滑移分量以及断层倾角和破裂面上的同震滑移向量,综合出露破裂面的擦痕所指示的滑移向量,并对比根据矩张量解获得的震源深度的滑移向量,得出以下认识:(1)破裂南段的地表滑移向量的方位角明显小于震源深度滑移向量的方位角,表明在破裂从震源向地表传播过程中破裂面上的滑移向量发生了逆时针旋转;(2)滑移方位角向北东方向逐渐增大,表明地平面上水平滑移向量表现出顺时针旋转的趋势,而且在破裂向北东方向传播过程中近地表的走滑分量逐渐减小而倾滑分量逐渐增大;(3)几乎在每一个观测点倾滑分量都大于走滑分量,表明汶川地震的破裂方式在任何地点都是以逆冲运动为主;(4)破裂面倾角在10.4°~64.7°,平均值为41°,与天然破裂露头和探槽揭示的结果基本一致;(5)滑移向量沿破裂带的分布显示,走滑分量中段大而两端小,倾滑分量则相反,中段小两端大。  相似文献   

11.
This article presents the results of deterministic and probabilistic seismic hazard analyses (DSHA and PSHA) of the city of Hamedan and its neighboring regions. This historical city is one of the developing cities located in the west of Iran. For this reason, the DSHA and PSHA approaches have been used for the assessment of seismic hazards and earthquake risk evaluation. To this purpose, analyses have been carried out considering the historic and instrumented earthquakes, geologic and seismotectonic parameters of the region covering a radius of 100?km, keeping Hamedan as the center. Therefore, in this research, we studied the main faults and fault zones in the study area and calculated the length and distance of faults from the center of Hamedan. In the next step, we measured the maximum credible earthquake (MCE) and peak ground acceleration (PGA) using both DSHA and PSHA approaches and utilized the various equations introduced by different researchers for this purpose. The results of DSHA approach show that the MCE-evaluated value is 7.2 Richter, which might be created by Nahavand fault activities in this region. The PGA value of 0.56?g will be obtained from Keshin fault. The results of PSHA approach show that the MCE-evaluated value is 7.6 Richter for a 0.64 probability in a 50-year period. The PGA value of 0.45?g will be obtained from Keshin fault. Seismic hazard parameters have been evaluated considering the available earthquake data using Gutenberg?CRichter relationship method. The ??a?? and ??b?? parameters were estimated 5.53 and 0.68, respectively.  相似文献   

12.
F. Kebede  T. van Eck   《Tectonophysics》1997,270(3-4):221-237
A probabilistic seismic hazard analysis (PSHA) for the Horn of Africa is presented. Our seismicity database consists of a revised and up-to-date regional catalogue compiled from different agencies, checked for completeness with respect to time and homogenized with respect to magnitude (Ms). The seismic source zones are based on our present day knowledge of the regional seismotectonics. Among the results we present regional hazard maps for 0.01 annual probability for intensity and Peak Ground Acceleration (PGA) and hazard curves and response spectra for six economical significant sites within the region. The model uncertainties with respect to seismicity are analysed in a novel approach and form part of a sensitivity analysis that quantifies our PSHA modelling uncertainties.

For 0.01 annual probability we find randomly oriented horizontal PGA that exceed just 0.2 g and MM-scale intensity VIII in the Afar depression and southern Sudan. Uncertainties amount to 20% g PGA in some cases, mainly due to attenuation uncertainties. Intensity uncertainties seldom exceed 0.5 intensity units. Relatively large seismic hazard is found for Djibouti (VIII for 0.01 annual probability), slightly lower for the port of Massawa (between VII and VIII for 0.01 annual probability) and low for the port of Assab (between VI and VII for 0.01 annual probability).  相似文献   


13.
Understanding of seismicity and seismotectonics of Delhi and adjoining areas is essential as these areas lie in the seismic zone IV and are geologically confined to the Delhi Fold Belt (DFB), juxtaposed to the Himalayan Frontal Thrust Fold Belt. Owing to the set-up, seismicity in this area is ascribed to the Himalayan Thrust System and activation of DFB Fault Systems. Considerably improved instrumental seismic monitoring in this area and data analysis had resolved three regions of pronounced seismicity that lie close to Sonepat, Rohtak and western part of the NCT Delhi, attributed to activation of various portions of the fault systems of the DFB. Based on seismic telemetry network data, the seismicity pattern analysis revealed that the Mahendragarh Dehradun Sub-Surface Fault (MDSSF) and Delhi Sargodha Ridge (DSR) are the two major zones of structural importance for the nucleation of seismicity in this region. These revelations were corroborated with the fault plane solution of the earthquakes. The dominant mechanism in nucleation of seismicity in DFB is the thrust with minor strike slip. The seismicity and seismotectonics of Delhi and adjoining areas endemic to activation of DFB is reviewed and presented in this paper.  相似文献   

14.
The 2002 earthquake sequence of October 31 and November 1 (main shocks Mw = 5.7) struck an area of the Molise region in Southern Italy. In this paper we analyzed the co-seismic deformation related to the Molise seismic sequence, inferred from GPS data collected before and after the earthquake, that ruptured a rather deep portion of crust releasing a moderate amount of seismic energy with no surface rupture. The GPS data have been reduced using two different processing strategies and softwares (Bernese and GIPSY) to have an increased control over the result accuracy, since the expected surface displacements induced by the Molise earthquake are in the order of the GPS reliability. The surface deformations obtained from the two approaches are statistically equivalent and show a displacement field consistent with the expected deformation mechanism and with no rupture at the surface. In order to relate this observation with the seismic source, an elastic modeling of fault dislocation rupture has been performed using seismological parameters as constraints to the model input and comparing calculated surface displacements with the observed ones. The sum of the seismic moments (8.9 × 1017 Nm) of the two main events have been used as a constraint for the size and amount of slip on the model fault while its geometry has been constrained using the focal mechanisms and aftershocks locations. Since the two main shocks exhibit the same fault parameters (strike of the plane, dip and co-seismic slip), we modelled a single square fault, size of 15 km × 15 km, assumed to accommodate the whole rupture of both events of the seismic sequence. A vertical E–W trending fault (strike = 266°) has been modeled, with a horizontal slip of 120 mm. Sensitivity tests have been performed to infer the slip distribution at depth. The comparison between GPS observations and displacement vectors predicted by the dislocation model is consistent with a source fault placed between 5 and 20 km of depth with a constant pure right-lateral strike-slip in agreement with fault slip distribution analyses using seismological information. The GPS strain field obtained doesn't require a geodetic moment release larger than the one inferred from the seismological information ruling out significant post-seismic deformation or geodetic deformation released at frequencies not detectable by seismic instruments. The Molise sequence has a critical seismotectonic significance because it occurred in an area where no historical seismicity or seismogenic faults are reported. The focal location of the sequence and the strike-slip kinematics of main shocks allow to distinguish it from the shallower and extensional seismicity of the southern Apennines being more likely related to the decoupling of the southern Adriatic block from the northern one.  相似文献   

15.
Seismic hazard assessment of slow active fault zones is challenging as usually only a few decades of sparse instrumental seismic monitoring is available to characterize seismic activity. Tectonic features linked to the observed seismicity can be mapped by seismic imaging techniques and/or geomorphological and structural evidences. In this study, we investigate a seismic lineament located in the Swiss Alpine foreland, which was discussed in previous work as being related to crustal structures carrying in size the potential of a magnitude M 6 earthquake. New, low-magnitude (?2.0 ≤ ML ≤ 2.5) earthquake data are used to image the spatial and temporal distribution of seismogenic features in the target area. Quantitative and qualitative analyses are applied to the waveform dataset to better constrain earthquakes distribution and source processes. Potential tectonic features responsible for the observed seismicity are modelled based on new reinterpretations of oil industry seismic profiles and recent field data in the study area. The earthquake and tectonic datasets are then integrated in a 3D model. Spatially, the seismicity correlates over 10–15 km with a N–S oriented sub-vertical fault zone imaged in seismic profiles in the Mesozoic cover units above a major decollement on top of the mechanically more rigid basement and seen in outcrops of Tertiary series east of the city of Fribourg. Observed earthquakes cluster at shallow depth (<4 km) in the sedimentary cover. Given the spatial extend of the observed seismicity, we infer the potential of a moderate size earthquake to be generated on the lineament. However, since the existence of along strike structures in the basement cannot be excluded, a maximum M 6 earthquake cannot be ruled out. Thus, the Fribourg Lineament constitutes a non-negligible source of seismic hazard in the Swiss Alpine foreland.  相似文献   

16.
The paper presents a detailed analysis of 1st April 2015 earthquake, whose epicenter (30.16° N, 79.28° E) was located near Simtoli village of Chamoli district, Uttarakhand. The focal depth is refined to 7 km by the grid search technique using moment tensor inversion. The source parameters of the earthquake as estimated by spectral analysis method suggested the source radius of ~1.0 km, seismic moment as 1.99E+23 dyne-cm with moment magnitude (Mw) of 4.8 and stress drop of 69 bar. The fault plane solution inferred using full waveform inversion indicated two nodal planes, the northeast dipping plane having strike 334° and dip 5° and the southwest dipping plane with dip 86° and strike 118°. The parallelism of the nodal plane striking 334° with dip 5° as indicated in depth cross sections of the tectonic elements suggested the north dipping Main Boundary Thrust (MBT) to be the causative fault for this earthquake. Spatio-temporal distribution of earthquakes during the period 1960-2015 showed seismic quiescence during 2006-2010 and migration of seismicity towards south.  相似文献   

17.
本文针对九寨沟7.0级地震的发震构造及震源破裂的构造动力学问题,从地质调查、测试与震源构造动力学理论分析相结合的角度阐明:此次地震发生在处于高法向应力左旋剪切受力状态的岷山隆起带北端与西秦岭地槽褶皱带之南缘文县-玛沁断裂相交汇部位;沿"九寨天堂"-震中-五花海以及上四寨村-中查-比芒一线发育的两条具有构造破裂特征的NW向地裂缝带,是"隐伏状"地震断裂错动造成的地表同震破裂,前者是本次地震的控震构造,后者是NW向断层的次级同震复活及扩展;此次地震的震源断层错动过程受NW331°走向的陡倾角(∠87°)断层节面控制的走滑型剪切破裂,断裂两端的剪切破裂表现出持续扩展趋势;震源构造动力学过程实质上是地壳深部沿NW方向左旋剪断"凸出体";地震断裂带两端破裂扩展的持续发展,将导致地壳"凸出体"逐步剪断贯通。  相似文献   

18.
汶川地震破裂带白沙河段同震水平缩短量的估算   总被引:3,自引:0,他引:3       下载免费PDF全文
同震位移向量由垂直、走滑和水平缩短(或拉张)三分量构成,合理估计各分量是全面认识地震地表变形特征的基础。汶川地震后的现场调查,获得了大量的同震位移数据,但是绝大部分是垂直和走滑两个分量,水平缩短(或拉张)分量十分缺乏,这必然导致我们对汶川地震破裂特征认识的偏差。本文通过对变形的天然地貌面和人工建筑的测量和复原,获得了白沙河破裂段8个观察点水平缩短量数据。同震水平缩短量在白沙河段的分布显示出了其由南西向北东逐渐减小的趋势,它与其他研究获得的垂直和走滑同震位移的分布基本一致。此外,同震水平缩短与同震垂直位移量在该破裂段上的分布,表现为峰、谷互补,可能暗示了地震破裂面倾角沿该破裂段的变化过程: 南段为高角度,中段逐渐转变为低角度,最后在北段再次转为高角度。  相似文献   

19.
Teleseismic and strong motion data are used to derive the source parameters of the September 9, 1998 Castelluccio earthquake (M5.6). Teleseismic body-wave modeling indicates normal faulting (Plane 1: strike = 328°, dip = 50°, rake = −75°; Plane 2: strike = 126°, dip = 42°, rake = −107°) along NW–SE striking planes. Both nodal planes of the computed focal mechanism are tested for their capability of reproducing the mainshock acceleration time histories at three strong motion stations. Synthetic accelerograms are estimated using the stochastic method for finite sources in combination with the H/V ratios technique for the incorporation of the site effect. Our preferred model, which provided the best fit between synthetic and observed waveforms and corresponding Fourier amplitude spectra, consists of a NE-dipping normal fault with dimensions 8 × 7 km. The rupture nucleation point, which is assumed to coincide with the hypocenter location, was confined to the southeasternmost, deepest part of the fault. Our results are in good agreement with the so far released information regarding the aftershock sequence of the examined event, as well as the general seismotectonic knowledge on the broader epicentral area.  相似文献   

20.
Intermediate-depth earthquakes in the Vrancea region occur in response to stress generation due to descending lithosphere beneath the southeastern Carpathians. In this article, tectonic stress and seismicity are analyzed in the region on the basis of a vast body of observations. We show a correlation between the location of intermediate-depth earthquakes and the predicted localization of maximum shear stress in the lithosphere. A probabilistic seismic hazard assessment (PSHA) for the region is presented in terms of various ground motion parameters on the utilization of Fourier amplitude spectra used in engineering practice and risk assessment (peak ground acceleration, response spectra amplitude, and seismic intensity). We review the PSHA carried out in the region, and present new PSHA results for the eastern and southern parts of Romania. Our seismic hazard assessment is based on the information about the features of earthquake ground motion excitation, seismic wave propagation (attenuation), and site effect in the region. Spectral models and characteristics of site-response on earthquake ground motions are obtained from the regional ground motion data including several hundred records of small and large earthquakes. Results of the probabilistic seismic hazard assessment are consistent with the features of observed earthquake effects in the southeastern Carpathians and show that geological factors play an important part in the distribution of the earthquake ground motion parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号