首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Waterlogging is one of the most serious hazards in China. Old-style residences in cities are prone to be damaged by waterlogging hazards. This paper describes our exposure assessment of old-style residences in Shanghai during rainstorm waterlogging. Two rainstorm scenarios of 20-year and 50-year return periods were simulated with the rainstorm simulation model from Shanghai Flood Risk Information Center. Each old-style residence was ranked according to its degree of exposure indicated by the inundation depth of that residence. An exposure assessment model was then built to integrate three ranks of exposure in order to reflect the total exposure features of a district and to compare disaster situation among different districts. Our research results reveal that Hongkou District and Huangpu District are the regions most necessary for the government to carry out safety defense in old-style residences, while rainstorms bring little effect on old-style residences in the districts of Putuo, Luwan, Changning, Zhabei, and Jing’an. These results provide important information for Shanghai Municipal Government to improve waterlogging management, and the method of exposure assessment can also be applied in other cities to provide guidance regarding flood risk control.  相似文献   

2.
Rui-Song Quan 《Natural Hazards》2014,73(3):1569-1585
With the acceleration of the urbanization process, waterlogging problems in coastal cities are becoming more and more serious due to climate change. However, up until now, the common procedures and programs for rainstorm waterlogging risk assessment in coastal cities still have not formed. Considering a series of impact factors of rainstorm waterlogging in coastal city, the present study established a paradigm for rainstorm waterlogging risk assessment through the combination of hydrological modeling and GIS spatial analysis, and took the residence in central urban area of Shanghai as an example. First, the simplified urban waterlogging model was applied to simulate the depth and extent of rainstorm waterlogging under six hypothetic scenarios. Second, the residence exposed to rainstorm waterlogging was extracted and analyzed supported by spatial analysis module of ArcGIS. Then, stage-damage curves were applied to analyze the loss rate of structure and contents of residential building. Finally, the waterlogging loss maps of residence in different scenarios, the annual average loss, and the risk curve were taken as the expression of waterlogging risk. The results show that the inundated water depth, vulnerability, and losses of residence all increase as the intensity of rainstorm increases. The old-style residence is most vulnerable to rainstorm waterlogging, followed by the new-style residence, and villa is less vulnerable to rainstorm waterlogging. The annual average loss of residence in Shanghai central urban area was about CNY 22.25 million. The results also indicate high risk in Yangpu and Putuo districts, Xuhui, Hongkou, Changning and Zhabei districts come under medium-risk zone, and Jing’an, Luwan and Huangpu districts come under low-risk zone. These results provide important information for the local government, and the methodology can be applied in other cities to provide guidance on waterlogging risk governance.  相似文献   

3.
Yong Shi 《Natural Hazards》2012,62(2):677-689
Due to special geographical location and climate, the waterlogging has always been one of the most serious hazards in Shanghai. Residences in the inner city are prone to be damaged by waterlogging hazards. This paper describes the risk analysis of rainstorm waterlogging on residences in Shanghai. First, a rainstorm scenario of 50-year return period was simulated with the rainstorm simulation model from Shanghai Flood Risk Information Center. Each residence was ranked according to its degree of exposure indicated by the inundation depth of that residence, and an exposure analysis model was then built. It is found from the exposure analysis that residences in the sub-districts like Linfen Road, Pengpu Village, Gonghe New Village, Hongqiao Road, Xianxia Road, Xinhua Road, and Zhenru Town are at high-exposure level. Whereas residences in other sub-districts like Gaojing Town, Siping Road, Huaihai Road, Yuyuan, Waitan, Caojiadu, Nanjing East Road, etc. are at low-exposure level. Second, given the characteristics of residences in waterlogging, the vulnerability of residences was expressed as the proportion of old-style residences to total residences. The results show that residences in Yuyuan, Xiaodongmen, Waitan, Nanjing East Road, Laoximen, Zhapu Road, North Station, and Tilanqiao are the most vulnerable ones, while there is no vulnerability in Fenglin Road, Kongjiang Road, Liangcheng New Village, Quyang Road, Siping Road, and Xianxia Road due to the absence of old-style residences. Finally, a model has been built from a systematic perspective and then waterlogging risk analysis was quantified by multiplying the exposure value with vulnerability value of residences. The results reveal that Laoximen, Tilanqiao, Dinghai Road, North Station, Tianping Road, Hongmei Road, Hunan Road, and Xiaodongmen are at high-risk level. The systemic risk model is a simple tool that can be used to assess the relative risk of waterlogging in different regions and the results of risk analysis are applicable to prevention and mitigation of waterlogging for Shanghai Municipal Government.  相似文献   

4.
Depth to water, net recharge, aquifer media, soil media, topography, impact of the vadose zone media, and hydraulic conductivity of the aquifer (DRASTIC) model based on a geographic information system (GIS) is the most widely adopted model for the evaluation of groundwater vulnerability. However, the model had its own disadvantages in various aspects. In this work, several methods and the technologies have been introduced to improve on the traditional model. The type of the aquifer was replaced by the thickness of the aquifer, and the index of topography was removed. The indexes of the exploitation of the groundwater and the type of land use that reflected the special vulnerability were added to the system. Furthermore, considering the wideness of the study area, the fixed weights in the DRASTIC model were not suitable. An analytic hierarchy process (AHP) method and an entropy weight (Ew) method were introduced to calculate the weights of parameters. Then, the Spearman Rho correlation coefficients between IVI and the Nemerow synthetical pollution index (NI) of the groundwater quality were significantly improved, after the four steps of modification. The level differences with little gaps between Nemerow comprehensive pollution indexes and groundwater vulnerability occupied the proportion of the area from 75.68 to 84.04%, and finally, a single-parameter sensitivity analysis for the two models was used to compute the effective weights of these parameters. By comparison, the DRMSICEL model seems to perform better than the DRASTIC model in the study area. And the results show discrepancies between the vulnerability indices and groundwater quality as indicated by existence of vulnerable areas with bad water quality and vice versa.  相似文献   

5.
In this study, the future landslide population amount risk (LPAR) is assessed based on integrated machine learning models (MLMs) and scenario simulation techniques in Shuicheng County, China. Firstly, multiple MLMs were selected and hyperparameters were optimized, and the generated 11 models were cross-integrated to select the best model to calculate landslide susceptibility; by calculating precipitation for different extreme precipitation recurrence periods and combining the susceptibility results to assess the landslide hazard. Using the town as the basic unit, the exposure and vulnerability of the future landslide population under different Shared Socioeconomic Pathways (SSPs) scenarios in each town were assessed, and then combined with the hazard to estimate the LPAR in 2050. The results showed that the integrated model with the optimized random forest model as the combination strategy had the best comprehensive performance in susceptibility assessment. The distribution of hazard classes is similar to susceptibility, and with an increase in precipitation, the low-hazard area and high-hazard decrease and shift to medium-hazard and very high-hazard classes. The high-risk areas for future landslide populations in Shuicheng County are mainly concentrated in the three southwestern towns with high vulnerability, whereas the northern towns of Baohua and Qinglin are at the lowest risk class. The LPAR increased with the intensity of extreme precipitation. The LPAR differs significantly among the SSPs scenarios, with the lowest in the “fossil-fueled development (SSP5)” scenario and the highest in the “regional rivalry (SSP3)” scenario. In summary, the landslide susceptibility model based on integrated machine learning proposed in this study has a high predictive capability. The results of future LPAR assessment can provide theoretical guidance for relevant departments to cope with future socioeconomic development challenges and make corresponding disaster prevention and mitigation plans to prevent landslide risks from a developmental perspective.  相似文献   

6.
Based on the analysis and calculation of the hazard intensity of typhoon rainstorms and floods as well as the vulnerability of flood receptors and the possibility of great losses, risk scenarios are proposed and presented in Wenzhou City, Zhejiang Province, China, using the Pearson-III model and ArcGIS spatial analyst tools. Results indicate that the elements of risk scenarios include time–space scenarios, disaster scenarios, and man-made scenarios. Ten-year and 100-year typhoon rainstorms and flood hazard areas are mainly concentrated in the coastal areas of Wenzhou City. The average rainfall across a 100-year frequency is 450 mm. The extreme water depth of a 100-year flood is 600 mm. High-vulnerability areas are located in Yueqing, Pingyang, Cangnan, and Wencheng counties. The average loss rate of a 100-year flood is more than 50%. The greatest possible loss of floods shows an obvious concentration-diffusion situation. There is an area of about 20–25% flood loss of 6–24 million Yuan RMB/km2 in the Lucheng, Longwan and Ouhai districts. The average loss of a 100-year flood is 12 million Yuan RMB/km2, and extreme loss reaches 49.33 million Yuan RMB/km2. The classification of risk scenario may be used for the choice of risk response priorities. For the next 50 years, the 10-year typhoon rainstorm-flood disaster is the biggest risk scenario faced by most regions of Wenzhou City. For the Yueqing, Ruian, and Ouhai districts, it is best to cope with a 100-year disaster risk scenario and the accompanying losses.  相似文献   

7.
Carbon Capture and Storage (CCS) is one of the effective means to deal with global warming, and saline aquifer storage is considered to be the most promising storage method. Junggar Basin, located in the northern part of Xinjiang and with a large distribution area of saline aquifer, is an effective carbon storage site. Based on well logging data and 2D seismic data, a 3D heterogeneous geological model of the Cretaceous Donggou Formation reservoir near D7 well was constructed, and dynamic simulations under two scenarios of single-well injection and multi-well injection were carried out to explore the storage potential and CO2 storage mechanism of deep saline aquifer with real geological conditions in this study. The results show that within 100 km2 of the saline aquifer of Donggou Formation in the vicinity of D7 well, the theoretical static CO2 storage is 71.967 × 106 tons (P50), and the maximum dynamic CO2 storage is 145.295 × 106 tons (Case2). The heterogeneity of saline aquifer has a great influence on the spatial distribution of CO2 in the reservoir. The multi-well injection scenario is conducive to the efficient utilization of reservoir space and safer for storage. Based on the results from theoretical static calculation and the dynamic simulation, the effective coefficient of CO2 storage in deep saline aquifer in the eastern part of Xinjiang is recommended to be 4.9%. This study can be applied to the engineering practice of CO2 sequestration in the deep saline aquifer in Xinjiang.  相似文献   

8.
With the quick development of urbanization, the urban environmental problem has broken out in rural towns. In this study, a reasonable review of the research progress in the field of urban ecosystem health was addressed. Based on the analysis of the structure-function characteristics of the compound ecosystem, the connotation of the township ecosystem health was determined. Then ecosystem health of eleven towns of Tongzhou District was evaluated. This was accomplished by first constructing an index system including three layers which were criterion, factor and index. The criterion layer contained five elements including vigor, organization structure, resilience, ecosystem service function and population health. The indicators amounted in the aggregate to twenty-two. Then the health assessment of the study area was carried out using the fuzzy synthesis evaluation method. The evaluation results were analyzed by GIS techniques. Comprehensive analysis for integral health has shown that eight towns are in sub-healthy conditions, and the other three towns of Songzhuang, Xiji and Yongledian are healthy.  相似文献   

9.
10.
Waterlogging induced by torrential rain or typhoon in urban areas due to rapid urban development and land cover changes has been a global hotspot and a potential risk affecting urban habitant lifelines and safety. This paper analyzed the impact of land use/cover change on the surface runoff and evaluated the waterlogging risk caused by precipitation with different intensities in Pudong New Area, Shanghai. A simplified urban waterlogging model has been built for the inundated water depth simulation through the combination of both SCS model and GIS spatial analysis with the consideration of underlying surface characters in urban area. Based on the simulated depth results, waterlogging risk ranks were further established to evaluate waterlogging risk of Pudong New Area under different conditions considering social survey results. The results show that the land use structure and pattern change increases surface runoff depth. Under the assumption of a daily maximum precipitation at 200 mm, the surface runoff depth increased by 13.19 mm from 1994 to 2006 due to urbanization. On the whole, Heqing, Huaxia tourism area, Chuansha, Tangzhen and Jichang Town have high waterlogging risk rank, Gaoqiao, Donggou, urban district, Jinqiao, Caolu, Sanlin and Beicai Town have medium waterlogging risk rank, and Zhangjiang, Gaodong and Huamu Town have low waterlogging risk rank. These results provide important information for the local government, and the method of waterlogging risk assessment can also be applied in other cities to provide guidance on waterlogging risk control.  相似文献   

11.
12.
Parthasarathy  Anitha  Natesan  Usha 《Natural Hazards》2015,75(2):1713-1729
Natural Hazards - Assessment of vulnerability is essential for identifying and recognizing the coastal livelihood, socio-economic and ecological security status. However, coastal vulnerability...  相似文献   

13.
Groundwater in karstic aquifers can be dangerously sensitive to contamination. In this paper, DRASTIC assessment was modified and applied, for the first time, to address the intrinsic vulnerability for karst aquifers. The theoretical weights of two of DRASTIC’s parameters (aquifer media and hydraulic conductivity) were modified through sensitivity analysis. Two tests of sensitivity analyses were carried out: the map removal and the single parameter sensitivity analyses. The modified assessment was applied for the karst aquifers underlying Ramallah District (Palestine) as a case study. The aquifer vulnerability map indicated that the case study area is under low, moderate and high vulnerability of groundwater to contamination. The vulnerability index can assist in the implementation of groundwater management strategies to prevent degradation of groundwater quality. The modified DRASTIC assessment has proven to be effective because it is relatively straightforward, use data that are commonly available or estimated and produces an end product that is easily interpreted.  相似文献   

14.
Freitas  Gabriel  Díaz  Ismael  Bessonart  Martín  da Costa  Edwin  Achkar  Marcel 《GeoJournal》2021,86(3):1155-1171

Floods are natural processes that constitute a hazard to society when associated to improper land use. Anthropic activities in floodplains are a factor of vulnerability that converts a natural hazard into a threat factor, eventually leading to disaster. Nowadays, natural and social complex processes demand integrated assessments in order to improve their understanding, helping decision making over sustainable use of territory, as well as integrating society’s activity in ecosystems and potentials, restrictions and benefits that society obtain from them. In this context, the objective of this work was to build a composite vulnerability model for a floodplain under urban influence, using an integrated assessment approach. This model was based on three dimensions; threat, fragility and an ecosystem services provision. These dimensions were calculated using both primary and secondary information, and weights by specialists. Main results show that the area presents high vulnerability with an increasing gradient towards high and urbanized areas, associated with an important number and relevant ecosystem services. Also, a spatial heterogeneity of the three dimensions emerged, making evident this area’s complexity and the need of integrated assessments to approach it. The composite vulnerability model proposed presents an elevated potential for natural and social processes analysis in floodplains, which is crucial for these territory management. Moreover, these integrated dimensions could contribute to decision making in different levels, as well as generating important supplies for environmental management and land planning.

  相似文献   

15.
In Taiwan, the hillside is about 70 % of total area. These areas also have steep topography and geological vulnerability. When an event of torrential rain comes during a typhoon, the landslide disasters usually occur at these areas due to the long duration and high intensity of rainfall. Therefore, a design which considers the potential landslide has become an important issue in Taiwan. In this study, a temporal characteristic of landslide fragility curve (LFC) was developed, based on the geomorphological and vegetation factors using landslides at the Chen-Yu-Lan watershed in Taiwan, during Typhoon Sinlaku (September 2008) and Typhoon Morakot (August 2009). This study addressed an effective landslide hazard assessment process, linking together the post-landslide damage and post-rainfall data for LFC model. The Kriging method was used to interpolate the rainfall indices (R 0, R, I) for numerical analysis. Remote sensing data from SPOT images were applied to analyze the landslide ratio and vegetation conditions. The 40-m digital elevation model was used for slope variation analysis in the watershed, and the maximum likelihood estimate was conducted to determine the mean and standard deviation parameters of the proposed empirical LFC model. This empirical model can express the probability of exceeding a damage state for a certain classification (or conditions) of landslides by considering a specific hazard index for a given event. Finally, the vulnerability functions can be used to assess the loss from landslides, and, in the future, to manage the risk of debris flow in the watershed.  相似文献   

16.
17.
借鉴区域地质灾害敏感性评价的各种方法,给出了基于二元统计的地质灾害敏感性评价方法,并在雅安市雨城区地质灾害敏感性评价中进行了试验.本方法主要有以下优点:操作简单、数据容易准备、效率高、评价合理准确、适用于各种精度(比例尺),有着较好的推广应用价值.  相似文献   

18.
19.
Natural Hazards - Guinea-Bissau's coasts are considered highly vulnerable to coastal hazards, and this vulnerability is expected to increase under future climate change scenarios. Multi-hazards...  相似文献   

20.
Suburban areas have become rapid development zones during China’s current urbanization. Generally, these areas are also regional precipitation centers that are prone to flood disasters. Therefore, it is important to assess the flood risk in suburban areas. In this study, flood risk was defined as the product of hazard and vulnerability based on disaster risk theory. A risk assessment index system was established, and the analytic hierarchy process method was used to determine the index weight. The Fangshan District in Beijing, China, which is an example of a typical suburban area undergoing rapid urbanization, was selected for this study. Six factors were considered in relation to hazard, and three factors were considered for vulnerability. Each indicator was discretized, standardized, weighted, and then combined to obtain the final flood risk map in a geographical information system environment. The results showed that the high and very high risk zones in the Fangshan District were primarily concentrated on Yingfeng Street, Xingcheng Street, Xincheng Street, and Chengguanzhen Street. The comparison to an actual flood disaster suggested that the method was effective and practical. The method can quantitatively reflect the relative magnitude and spatial distribution patterns of flood risk in a region. The method can be applied easily to most suburban areas in China for land use planning and flood risk management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号