首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
青藏高原大气臭氧研究   总被引:3,自引:0,他引:3  
除多 《气象》2001,27(4):3-6
总结了国内外有关青藏高原大气臭氧方面开展的研究工作,并简要地介绍了1996-1999年利用NILUV观测仪器在拉萨地区进行臭氧和紫外辐射观测的初步结论。  相似文献   

2.
Total column ozone (TCO) over the Tibetan Plateau (TP) is lower than that over other regions at the same latitude, particularly in summer. This feature is known as the “TP ozone valley”. This study evaluates long-term changes in TCO and the ozone valley over the TP from 1984 to 2100 using Coupled Model Intercomparison Project Phase 6 (CMIP6). The TP ozone valley consists of two low centers, one is located in the upper troposphere and lower stratosphere (UTLS), and the other is in the middle and upper stratosphere. Overall, the CMIP6 models simulate the low ozone center in the UTLS well and capture the spatial characteristics and seasonal cycle of the TP ozone valley, with spatial correlation coefficients between the modeled TCO and the Multi Sensor Reanalysis version 2 (MSR2) TCO observations greater than 0.8 for all CMIP6 models. Further analysis reveals that models which use fully coupled and online stratospheric chemistry schemes simulate the anticorrelation between the 150 hPa geopotential height and zonal anomaly of TCO over the TP better than models without interactive chemistry schemes. This suggests that coupled chemical-radiative-dynamical processes play a key role in the simulation of the TP ozone valley. Most CMIP6 models underestimate the low center in the middle and upper stratosphere when compared with the Microwave Limb Sounder (MLS) observations. However, the bias in the middle and upper stratospheric ozone simulations has a marginal effect on the simulation of the TP ozone valley. Most CMIP6 models predict the TP ozone valley in summer will deepen in the future.  相似文献   

3.
The summertime ozone valley over the Tibetan Plateau is formed by two influences,the Asian summer monsoon(ASM) and air column variations.Total ozone over the Tibetan Plateau in summer was ~33 Dobson units(DU) lower than zonal mean values over the ocean at the same latitudes during the study period 2005-2009.Satellite observations of ozone profiles show that ozone concentrations over the ASM region have lower values in the upper troposphere and lower stratosphere(UTLS) than over the non-ASM region.This is caused by frequent convective transport of low-ozone air from the lower troposphere to the UTLS region combined with trapping by the South Asian High.This offset contributes to a ~20-DU deficit in the ozone column over the ASM region.In addition,along the same latitude,total ozone changes identically with variations of the terrain height,showing a high correlation with terrain heights over the ASM region,which includes both the Tibetan and Iranian plateaus.This is confirmed by the fact that the Tibetan and Iranian plateaus have very similar vertical distributions of ozone in the UTLS,but they have different terrain heights and different total-column ozone levels.These two factors(lower UTLS ozone and higher terrain height) imply 40 DU in the lower-ozone column,but the Tibetan Plateau ozone column is only ~33 DU lower than that over the non-ASM region.This fact suggests that the lower troposphere has higher ozone concentrations over the ASM region than elsewhere at the same latitude,contributing ~7 DU of total ozone,which is consistent with ozonesonde and satellite observations.  相似文献   

4.
In this study, the TOMS/SBUV (Total Ozone Mapping Spectrometer/Solar Backscatter Ultraviolet Radiometer) data and SAGE (Stratospheric Aerosol and Gas Experiment) II data were employed to calculate the monthly total zonal ozone deviations over the Tibetan Plateau and the 150?C50-hPa zonal ozone variations. The results show that there is a significant correlation between the two, with a correlation coefficient of 0.977. From 150 to 50 hPa, the ozone valley over the Tibetan Plateau (OVTP) becomes the strongest based on the SAGE II data, and the South Asian high (SAH) is the most active according to the 40-yr reanalysis data of the European Centre for Medium-Range Weather Forecasts (ERA40), so a correlation between the SAH and the OVTP may exist. The WACCM3 (Whole Atmosphere Community Climate Model version 3) simulation results show that both SAH and OVTP could still present within 150?C50 hPa with reduced strength even when the height of the Tibetan Plateau was cut down to 1500 m. It is also shown that the seasonal variation of SAH would result in a matched seasonal variation of the OVTP, which suggests a meaningful effect of SAH on the OVTP. Meanwhile, it is found that the atmospheric circulation would impose different effects on the OVTP, depending on the SAH??s evolution stages and movement directions. At 150?C50 hPa, as the SAH approaches the plateau, the SAH zonal (meridional) transport would make the OVTP deeper (shallower), while the vertical transport of ozone produces a deeper (shallower) OVTP at the lower (higher) level; the combined dynamic effects lead to a weakened OVTP. When the SAH stabilizes over the plateau, the zonal (meridional) transport results in a shallower (deeper) OVTP while the vertical transport would create a deeper (shallower) OVTP at the middle (bottom and top) levels; the combined dynamic effects produce a deeper OVTP. As the SAH retreats from the plateau, the OVTP becomes deeper (shallower) under the zonal (meridional) effect or shallower under the vertical effect; the combined dynamic effects contribute to a deeper (shallower) OVTP at the middle (bottom and top) levels. The SAH would have a weak effect on the OVTP over the plateau when positioned over the tropical Pacific.  相似文献   

5.
青藏高原夏季臭氧低谷形成的机理-臭氧输送和化学过程   总被引:6,自引:0,他引:6  
利用三维化学输送模式(OSLO CTM2)模拟青藏高原夏季臭氧低谷。结果表明:在青藏高原夏季臭氧低谷的形成和变化过程中,动力输送过程起着最主要作用,化学过程部分补偿了输送过程引起的臭氧减少。在动力输送过程中,水平输送在5月份是造成臭氧减少的主要原因,可在6月和7月成为使臭氧增加;垂直平流的作用不断增强,在6月和7月成为臭氧减少的主要因素;对流输送的作用在7月份大幅增加,其引起的臭氧减少可以与净的变化相比,其作用也不可忽视。气相的化学过程引起的臭氧增加的量值有时超过了臭氧的净变化的大小,因此它也起着重要作用。  相似文献   

6.
周任君  陈月娟 《大气科学》2007,31(3):479-485
利用NCEP/NCAR再分析资料、GPCP降水资料以及我国160个台站的降水资料, 研究了青藏高原臭氧低值中心偏强年和偏弱年的气候差异。结果表明,5~7月平均的青藏高原臭氧总量变化与我国当年夏季、冬季以及第二年春季的气温和降水等有明显的相关关系:在臭氧低值中心偏强年夏季, 中国绝大部分地区地面气温比多年平均偏高, 长江以南地区降水偏多, 长江以北大部分地区降水偏少, 尤其是长江中下游和黄河中下游之间的地面降水偏少特别明显。在臭氧低值中心偏强年冬季和次年春季, 中国大部分地区冬季风比多年平均弱, 使得绝大部分地区地面气温偏高。臭氧低值中心偏弱年的情况基本上与偏强年相反。因此, 青藏高原上空臭氧低值中心的变化在气候预测中是一个值得重视的因子。  相似文献   

7.
近几十年来全球变暖受到越来越广泛的关注,然而全球变暖从1998年开始趋缓,但青藏高原却呈现加速增暖的趋势。本文基于前人研究,系统回顾了青藏高原气温、积雪、降水和大气热源等四方面在全球变暖背景下的变化,指出高原的加速增温导致了积雪迅速融化,降水明显增多的同时,高原热源却呈现减弱趋势。  相似文献   

8.
Using radiosonde and satellite observations, we investigated the trends of air temperature changes over the Tibetan Plateau (TP) in comparison with those over other regions in the same latitudes from 1979 to 2002. It is shown that Over the TP, the trends of air temperature changes in the upper troposphere to lower stratosphere were out of phase with those in the lower to middle troposphere. Air temperature decreased and a decreasing trend appeared in the upper troposphere to lower stratosphere. The amplitude of the annual or seasonal mean temperature decreases over the TP was larger than that over the whole globe. In the lower to middle troposphere over the TP, temperature increased, and the increasing trend was stronger than that over the non-plateau regions in the same latitudes in the eastern part of China. Meanwhile, an analysis of the satellite observed ozone data in the same period of 1979-2002 shows that over the TP, the total ozone amount declined in all seasons, and the ozone depleted the most compared with the situations in other regions in the same latitudes. It is proposed that the difference between the ozone depletion over the TP and that over other regions in the same latitudes may lead to the difference in air temperature changes. Because of the aggravated depletion of ozone over the TP, less (more) ultraviolet radiation was absorbed in the upper troposphere to lower stratosphere (lower to middle troposphere) over the TP, which favored a stronger cooling in the upper troposphere to lower stratosphere, and an intenser heating in the lower to middle troposphere over the TP. Therefore, the comparatively more depletion of ozone over the TP is possibly a reason for the difference between the air temperature changes over the TP and those over other regions in the same latitudes.  相似文献   

9.
利用1979—2016年ERA-interim逐日再分析资料,定义了青藏高原臭氧谷(Ozone Valley over the Tibetan Plateau,OVTP)极端和普通强(弱)事件,并讨论了其特征。结果表明:1) OVTP极端强事件在夏秋季节多发,10月最多,频率达2. 0%; OVTP普通强事件在春夏季多发,7月最多,频率达1. 7%。OVTP极端弱事件在秋冬季多发,12月最多,频率达3. 8%; OVTP普通弱事件在冬季多发,1月最多,频率达2. 0%。2) OVTP极端强事件出现频率显著增加(0. 004%·a~(-1)),极端弱事件出现频率显著减少(-0. 015%·a~(-1))。OVTP普通事件的变化均不显著。3) OVTP极端强事件的面积和强度均在秋季最大,10月达到最大值,面积为4. 3×10~5km~2,强度为1. 5×10~5t; OVTP普通强事件的面积和强度均在夏季最大,7月达到峰值,面积为1. 7×105km~2,强度为4. 1×10~3t。OVTP极端弱事件的面积和强度在春夏较小,4月达到最小值,面积为3. 2×10~4km~2,强度为1. 1×10~2t; OVTP普通弱事件的面积和强度在春夏秋均较小,4月和10月达到极小值,4月面积为2. 5×10~4km~2,强度为68 t,10月面积为2. 2×10~4km~2,强度为97t。4) OVTP极端和普通强事件的面积(强度)均呈显著增大(增强)趋势,极端强事件的面积达2. 5×10~2km~2·a~(-1),强度达2. 5×10~2t·a~(-1),普通强事件的面积达4. 5×10~2km~2·a~(-1),强度达4. 5 t·a~(-1)。极端和普通弱事件的面积(强度)均呈显著减小(减弱)趋势,极端弱事件的面积达-1. 7×10~4km~2·a~(-1),强度达-7. 0×10~3t·a~(-1),普通弱事件的面积达-2. 3×10~3km~2·a~(-1),强度达-2. 7×102t·a~(-1)。  相似文献   

10.
李斐  李建平  李艳杰  郑菲 《大气科学》2012,36(6):1236-1252
本文利用1951~2008 年NCEP/NCAR 再分析资料, 通过绕流和爬流方程, 将高原附近表层风场分解为绕流分量和爬流分量两部分, 计算出了实际大气中的绕流和爬流运动的强度, 分别探讨它们的气候态特征。结果表明:高原主体年平均绕流场围绕高原地形并在高原西南部(32°N, 75°E)附近产生分支, 分支点下游的高原主体南部和北部分别表现为气旋性和反气旋性流型;年平均的爬流分量场沿喜马拉雅山脉辐散, 高原主体为偏南上坡风, 东北部为偏北上坡风。夏季绕流场为气旋式流型, 中心位于高原中部(35°N, 90°E)附近;秋季绕流场围绕高原地形边缘基本为一个反气旋流型。夏季, 高原主体偏南风爬流与偏北风爬流在高原南北中线附近辐合, 除夏季外, 沿高原南侧喜马拉雅山脉为爬流辐散区。高原主体和高原附近的关键区内, 绕流和爬流存在不同的季节循环特征。从绕流和爬流分解公式出发, 本文详细探讨了表面流场的绕流和爬流运动各分量对地形高度及地形梯度的依赖性:经向绕流与纬向绕流比值、经向爬流与纬向爬流分量比值为仅依赖于地形高度的定常值。年平均的绕流及爬流矢量强度随着所处地形高度的升高而逐步增强;从区域分布的角度而言, 高原附近绕流强于爬流的区域范围较广, 绕流占主导地位。地形纯动力强迫产生的爬流运动与观测资料中高原附近的垂直运动具有很高的位置对应关系, 但冬季和夏季均存在强度上的差异。  相似文献   

11.
未来百年夏季青藏高原臭氧变化趋势及可能机制   总被引:1,自引:0,他引:1       下载免费PDF全文
利用全大气气候通用模式(WACCM3)对政府间气候变化专门委员会排放情景特别报告中2001年到2099年A1B、A2、B1三种排放情景进行了模拟,分析了三种排放情景下青藏高原地区未来百年臭氧总量在夏季(6—8月)的变化趋势及引起该变化的可能机制。结果表明:在三种排放情景下未来百年夏季高原区臭氧总量均呈现增长趋势,其中A2情景下臭氧增长最快,B1情景下增长最慢,但相对于同纬度其他地区,高原区的臭氧总量增长较慢,即高原区臭氧谷加深。高原区高空污染物的减少以及局域Hadley环流的减弱是未来高原区臭氧总量增加的原因;而南亚高压的增强,以及与之相对应的辐散增强则可能是高原区臭氧谷继续加深的原因。  相似文献   

12.
1998年青藏高原臭氧低值中心异常及其背景环流场的分析   总被引:3,自引:1,他引:3  
采用TOMS和SAGE II臭氧卫星观测资料,对1998年青藏高原臭氧低值中心异常变化的过程和垂直结构进行了分析。为了探讨1998年这个低值中心出现异常的原因,利用NCEP/NCAR再分析资料,通过1998年高原附近上空位势场和位温的变化,分析了1998年臭氧低值中心异常期间高原上空对流层上层到平流层下层的流场和垂直运动的变化特征。结果表明,1998年11月,青藏高原上空对流顶比正常年份高,无论是对流层上层还是平流层下层,上升运动都比正常年份强。同时高原上空南亚高压也比正常年份强,于是使得1998年高原上空的强臭氧低值中心一直维持到11月。  相似文献   

13.
利用瓦里关大气本底站甲烷观测数据对美国Aqua卫星的AIRS观测结果进行对比分析,并分析研究了2003~2012年青藏高原对流层大气甲烷的时空分布特征,结果表明:1)AIRS观测结果与近地面观测资料变化趋势一致,存在显著的正相关关系,突变时间比较一致,可以用于青藏高原区域的甲烷浓度特征分析。2)青藏高原对流层甲烷浓度在空间分布上存在显著的西北—东南走向的低值带及其南北侧存在4个固定的高值中心,分别位于阿里、那曲、山南和玉树。3)青藏高原甲烷浓度呈现显著随高度而降低的趋势,年平均甲烷浓度分别为1.810ppm(1 ppm=10-6)、1.797 ppm和1.781 ppm。在对流层中层和中上层,甲烷浓度基本呈现低值带最低、南北侧均高的山谷型分布特征。在对流层层顶,以低值带为分界线,呈现明显的南高北低特征。4)青藏高原甲烷浓度随时间呈缓慢上升趋势,平均速度为0.0018 ppm/a,夏季上升最快,秋季上升最慢。5)青藏高原甲烷存在明显的单峰型季节变化特征,夏秋季高,冬春季低,与东部地区冬、夏双峰型特征不同,随着高度上升季节变化更为明显。  相似文献   

14.
利用MLS卫星资料和ERA-Interim再分析资料,比较了青藏高原和北美夏季臭氧谷的垂直结构和形成机制。结果如下:青藏高原夏季臭氧谷在垂直方向上存在两个低值中心,一个中心位于对流层顶附近,强度约为-15 DU,形成原因主要为水平幅散,另一个中心位于上平流层,强度约为-1 DU,形成原因可能为光化学反应参与的氯自由基的催化损耗。北美夏季臭氧谷仅存在一个低值中心,位于对流层顶附近,该中心强度约为-5 DU,其形成的主要原因是水平辐散。  相似文献   

15.
基于欧洲中尺度气象预报中心(ECMWF)提供的ERA-Interim地表温度,利用经验正交函数(EOF)等方法,分析了青藏高原四季地表温度的时空变化特征.结果发现:青藏高原春、夏、冬季地表温度变化以整体型为主,并且大部地区地表温度呈现升高的趋势;秋季地表温度略有下降趋势,并且以东部和西部地表温度的反向型异常变化最为显著.此外还发现,青藏高原不同季节地表温度的异常变化具有一定的联系,其中整体型变化可以持续3个季节.  相似文献   

16.
气溶胶对青藏高原气候变化影响的数值模拟分析   总被引:1,自引:0,他引:1  
利用美国大气研究中心(NCAR)提供的2组数值试验结果对比,分析了只考虑温室气体增加(1%CO2试验)和综合考虑大气温室气体与气溶胶持续增加(50yrs试验)条件下,青藏高原地区地表温度、积雪深度及其他气候要素的变化,并在此基础上探讨了大气气溶胶含量变化对高原气候变化的可能影响.分析结果表明:只考虑大气CO2含量每年增加1%的变化时,青藏高原相对邻近地区地表温度显著增加,春、夏、秋及冬季地表温度线性增温率均表现出随着海拔高度升高而增强.例如,在海拔1.5~2 km,3~3.5 km和4.5~5 km范围内对应的冬季增温趋势分别为0.29 ℃/10 a,0.36 ℃/10 a和0.50 ℃/10 a.在温室气体引起的高原增暖过程中地表积雪深度普遍降低,且高海拔地区的积雪减少愈加明显.当综合考虑气溶胶和温室气体含量共同增加时,青藏高原地表增暖相对偏弱,春、夏和秋季增温也随海拔高度上升而加强,但冬季地面增温幅度随海拔上升反而下降,海拔1.5~2 km,3~3.5km和4.5~5 km范围内对应的冬季增温趋势分别为0.02 ℃/10 a,-0.03 ℃/10 a和-0.13 ℃/10 a.对比分析发现,大气气溶胶增加造成青藏高原冬季增温不明显甚至出现变冷趋势,地面积雪也随之增多,这可能歪曲了青藏高原地区气候变暖对海拔高度的依赖性.  相似文献   

17.
王美蓉  郭栋  钟珊珊 《气象》2019,45(12):1718-1726
大气热源是高原气象学的理论要点,研究其计算方法及其适用性,对加深高原气象学的认识,开拓"高原气象学"课程学生的视野,都具有重要意义。然而,精确计算大气热源仍是个挑战。本文详细介绍了大气热源两种计算方法,即正算法和倒算法,并基于站点观测、卫星辐射资料(ISCCP和SRB)及4套再分析资料(NCEP/NCAR、NCEP/DOE、ERA-Interim和JRA55),比较了不同资料计算所得夏季高原热源多尺度变率的差异。结果显示利用正算法时,辐射资料的选择需慎重;而在利用倒算法时,再分析资料的选择则需根据热源的研究尺度而定,不同再分析资料差异颇大。就长期趋势变化而言,再分析结果Q_1-JRA55最接近观测;而在年际尺度上,Q_1-ERAI与Q_1-JRA55两套结果能近似重复观测计算所得热源变率;在季节内尺度上,多套再分析资料差异性缩小,均可细致刻画高原夏季热源变化周期,在高原地区均有较好的适用性。  相似文献   

18.
青藏高原区域气候变化及其差异性研究   总被引:31,自引:0,他引:31       下载免费PDF全文
利用1961—2007年青藏高原66个气象台站气温和降水量资料,通过典型气候分区,系统研究了近47年来青藏高原气温、降水量等气候因子时空演变规律,揭示了青藏高原不同区域气候变化的差异性。研究表明:近47年来,青藏高原的气候呈现出显著增暖趋势,年平均气温以0.37℃/10a的速率上升,气候变暖在夜间要较日间明显。冬季较其他季节明显,2月气温由冷向暖的转变最为显著,8月最不显著,且在某些区域有变冷迹象;高原边缘地区气候变暖要明显于高原腹地,青海北部区特别是柴达木盆地是青藏高原气候变化的敏感区。降水量总体表现出增多态势,气候倾向率达9.1mm/10a,但区域性差异较为明显,藏东南川西区是青藏高原降水量增多最显著的地区;12月至次年5月即冬春季整个青藏高原降水量随着气候变暖而增多,7月和9月黄河上游区1987年后干旱化趋势明显。  相似文献   

19.
Features of ozone mini-hole events over the Tibetan Plateau   总被引:2,自引:0,他引:2  
Based on TOMS total ozone data and SCIAMACHY ozone profile data, climatology of the ozone minihole events over the Tibetan Plateau and ozone vertical structure variations during an ozone mini-hole event in December 2003 are analyzed. The analyses show that before 1990 ozone mini-hole events only occurred in November–December of 1987 but that the number of events increases after 1990. These events only occur from October through February, with maximum occurrence frequency in December. During the event in Dec...  相似文献   

20.
青藏高原上中尺度对流系统(MCS)的数值模拟   总被引:4,自引:0,他引:4  
A mesoscale convective system (MCS) developing over the Qinghai-Xizang Plateau on 26 July 1995 issimulated using the fifth version of the Penn State-NCAR nonhydrostatic mesoscale model (MM5). Theresults obtained are inspiring and are as follows. (1) The model simulates well the largescale conditionsin which the MCS concerned is embedded, which are the well-known anticyclonic Qinghai-Xizang PlateauHigh in the upper layers and the strong thermal forcing in the lower layers. In particular, the modelcaptures the meso-α scale cyclonic vortex associated with the MCS, which can be analyzed in the 500 hPaobservational winds; and to some degree, the model reproduces even its meso-β scale substructure similarto satellite images, reflected in the model-simulated 400 hPa rainwater. On the other hand, there aresome distinct deficiencies in the simulation; for example, the simulated MCS occurs with a lag of 3 hoursand a westward deviation of 3-5° longitude. (2) The structure and evolution of the meso-α scale vortexassociated with the MCS are undescribable for upper-air sounding data. The vortex is confined to thelower troposphere under 450 hPa over the plateau and shrinks its extent with height, with a diameter of4° longitude at 500 hPa. It is within the updraft area, but with an upper-level anticyclone and downdraftover it. The vortex originates over the plateau, and does not form until the mature stage of the MCS. Itlasts for 3-6 hours. In its processes of both formation and decay, the change in geopotential height fieldis prior to that in the wind field. It follows that the vortex is closely associated with the thermal effectsover the plateau. (3) A series of sensitivity experiments are conducted to investigate the impact of varioussurface thermal forcings and other physical processes on the MCS over the plateau. The results indicatethat under the background conditions of the upper-level Qinghai-Xizang High, the MCS involved is mainlydominated by the low-level thermal forcing. The simulation described here is a good indication that itmay be possible to reproduce the MCS over the plateau under certain large-scale conditions and with theincorporation of proper thermal physics in the lower layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号