首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glacier and ice sheet retreat exposes freshly deglaciated terrain which often contains small‐scale fragile geomorphological features which could provide insight into subglacial or submarginal processes. Subaerial exposure results in potentially rapid landscape modification or even disappearance of the minor‐relief landforms as wind, weather, water and vegetation impact on the newly exposed surface. Ongoing retreat of many ice masses means there is a growing opportunity to obtain high resolution geospatial data from glacier forelands to aid in the understanding of recent subglacial and submarginal processes. Here we used an unmanned aerial vehicle to capture close‐range aerial photography of the foreland of Isfallsglaciären, a small polythermal glacier situated in Swedish Lapland. An orthophoto and a digital elevation model with ~2 cm horizontal resolution were created from this photography using structure from motion software. These geospatial data was used to create a geomorphological map of the foreland, documenting moraines, fans, channels and flutes. The unprecedented resolution of the data enabled us to derive morphological metrics (length, width and relief) of the smallest flutes, which is not possible with other data products normally used for glacial landform metrics mapping. The map and flute metrics compare well with previous studies, highlighting the potential of this technique for rapidly documenting glacier foreland geomorphology at an unprecedented scale and resolution. The vast majority of flutes were found to have an associated stoss‐side boulder, with the remainder having a likely explanation for boulder absence (burial or erosion). Furthermore, the size of this boulder was found to strongly correlate with the width and relief of the lee‐side flute. This is consistent with the lee‐side cavity infill model of flute formation. Whether this model is applicable to all flutes, or multiple mechanisms are required, awaits further study. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

2.
The analytical expressions for determining the deceleration region of plasma, produced during large-scale geophysical experiments of explosion type, and taking into account the effect of the rarefied ionosphere and geomagnetic field have been obtained. The possibility of the magnetosphere braking by plasma produced by a powerful explosion is analyzed. The simplified set of equations used to analyze the linear and non-linear stages of flute instability of explosive plasma expanding into the magnetic field has been obtained. The mass overflow between flutes and the viscous force is taken into account. The experimental studies of flute instability during laser plasma expansion into the magnetic field are theoretically substantiated. The mechanism explaining the formation of a jet stream and the main jet inclination of 11° with respect to the axis of symmetry has been proposed.  相似文献   

3.
The Halley PACE HF radar has been operated in a new mode to provide very high time (10 s) and space (15 km) resolution measurements of the iono-spheric signatures of the cusp and the low-latitude boundary layer. The first data show that the iono-spheric signature of flux transfer events occur up to 300 km equatorward of regions showing the HF characteristics of the ionospheric cusp. Whilst larger flux transfer events are seen, on average, every 7 min, many much smaller and short-duration events have been identified. On one occasion DMSP data have been used to show that at least four flux transfer events are occurring simultaneously at the edge of the cusp over 2 h of MLT. There is strong, but not conclusive evidence, that reconnection at the magnetopause is both intermittent and patchy. These data also suggest that flux transfer events can be a significant contributor to the cross-polar cap potential.  相似文献   

4.
The 2D morphology of coherent HF radar and optical cusp aurora has been studied for conditions of predominantly southward IMF conditions, which favours low-latitude boundary layer reconnection. Despite the variability in shape of radar cusp Doppler spectra, the spectral width criterion of 220 m s–1 proves to be a robust cusp discriminator. For extended periods of well-developed radar backscatter echoes, the equatorward boundary of the 220 m s–1 spectral width enhancement lines up remarkably well with the equatorward boundary of the optical cusp aurora. The spectral width boundary is however poorly determined during development and fading of radar cusp backscatter. Closer inspection of radar Doppler profile characteristics suggests that a combination of spectral width and shape may advance boundary layer identification by HF radar. For the two December days studied the onset of radar cusp backscatter occurred within pre-existing 630.0 nm cusp auroral activity and appear to be initiated by sunrise, i.e. favourable radio wave propagation conditions had to develop. Better methods are put forward for analysing optical data, and for physical interpretation of HF radar data, and for combining these data, as applied to detection, tracking, and better understanding of dayside aurora. The broader motivation of this work is to develop wider use by the scientific community, of results of these techniques, to accelerate understanding of dynamic high-latitude boundary-processes. The contributions in this work are: (1) improved techniques of analysis of observational data, yielding meaningfully enhanced accuracy for deduced cusp locations; (2) a correspondingly more pronounced validation of correlation of boundary locations derived from the observational data set; and (3) a firmer physical rationale as to why the good correlation observed should theoretically be expected.  相似文献   

5.
The polar cusps have traditionally been described as narrow funnel-shaped regions of magnetospheric magnetic field lines directly connected to magnetosheath ones, allowing the magnetosheath plasma to precipitate into the ionosphere. However, recent middle- to high-altitude observations (i.e., the Interball, Hawkeye, Polar, Image, and Cluster spacecraft) reported the cusps to encompass a broad area near local noon. The present paper focuses on a statistical study of the high-altitude cusp and surrounding magnetosheath regions as well as on some peculiarities of the cusp-magnetosheath transition. For a comparison of high- and low-altitude cusp determination, we present a mapping of two-year Magion-4 (a part of the Interball project) observations of cusp-like plasma along model magnetic field lines (according to the Tsyganenko 96 model) down to the Earth’s surface. The footprint positions show a substantial latitudinal dependence on the dipole tilt angle. The dependence can be fitted by a line with a slope of 0.14° MLAT per 1° of tilt. In contrary to previously reported IMF or solar wind influences on the cusp shape or location, some differences exist: (1) a possible IMF BX dependence of the cusp location, (2) a split cusp for BY≠ 0, and (3) a smaller cusp during periods of higher solar wind dynamic pressure. The conclusions following from the statistical analysis are confirmed by case studies which reveal the physical mechanisms leading to the observed phenomena. Results have shown that (1) reconnection near the cusp does not necessarily lead to observable precipitation, (2) the cusp precipitation in one hemisphere can be supplied from the conjugate hemisphere, and (3) the cusp geometry at a certain time depends on the IMF history.  相似文献   

6.
Recent observations from the CHAMP satellite indicate that neutral density enhancements are common in the northern dayside cusp. The neutral density in this region can be nearly a factor of 2 larger than in adjacent regions of the thermosphere on the poleward and equatorward sides of the cusp. The presence of density enhancements implies that the neutral atmosphere is being heated in the cusp region causing upwelling. A high-resolution model of the global thermosphere is used to study the thermospheric response to heating in the northern dayside cusp. It is found that heating in the cusp results in the creation of a neutral fountain. Specifically, upward drift of the thermosphere within the cusp region is followed at higher altitudes by poleward and equatorward movement out of the cusp region and the gradual subsidence of the neutral gas. Density enhancements of the magnitude observed by the CHAMP satellite occur in the model results for sufficiently strong heating in the cusp. Neutral temperature enhancements also occur and are strongest near the poleward and equatorward boundaries of the cusp region.  相似文献   

7.
The statistical features of the magnetic field and ion flux fluctuations in the boundary regions of the Earth’s magnetosphere have been studied on different timescales based on the Interball satellite measurements. Changes in the form and parameters of the probability density function have been studied for the periods when the satellite was in the solar wind plasma, different magnetosheath regions, and the turbulent boundary layer (TBL) at the polar cusp outer boundary. Variations in the probability density function maximum (P 0) and the kurtosis value as characteristics of the turbulence property evolution on different timescales have been studied. Two asymptotic regimes of P 0, which are characterized by different power laws, have been found. The structural functions of different orders and the types of diffusion processes in different regions, depending on time variations in the generalized diffusion coefficient, have been studied in order to analyze the character of diffusion processes. For the magnetosheath regions, TBL, and polar cusp, it has been found that the diffusion coefficient increases in the course of time (i.e., the regime of superdiffusion has been obtained). In the foreshock region before the main shock, turbulent processes are described by the Kolmogorov model of classical diffusion.  相似文献   

8.
The characteristic U-shaped traces (cusps) in ionograms are associated with the passage of traveling ionospheric disturbances (TIDs), which lead to horizontal electron density gradients in the ionosphere and, therefore, to off-angle reflections in radio sounding. A new form of representation is considered for daily ionospheric sounding data. A compound parabolic layer model is proposed, which allows analytical calculation of ray paths to speed up the “homing-in” of the rays. Changes in the shape of the trace in the ionogram due to varying the TID characteristics are examined. A discussion is given of the possibilities for estimating TID characteristics from digitized vertical sounding ionograms.  相似文献   

9.
This paper gives an overview of Cluster observations in the high-altitude cusp region of the magnetosphere. The low and mid-altitude cusps have been extensively studied previously with a number of low-altitude satellites, but only little is known about the distant part of the magnetospheric cusps. During the spring-time, the trajectory of the Cluster fleet is well placed for dayside, high-altitude magnetosphere investigations due to its highly eccentric polar orbit. Wide coverage of the region has resulted and, depending on the magnetic dipole tilt and the solar wind conditions, the spacecraft are susceptible to encounter: the plasma mantle, the high-altitude cusp, the dayside magnetosphere (i.e. dayside plasma sheet) and the distant exterior cusp diamagnetic cavity. The spacecraft either exit into the magnetosheath through the dayside magnetopause or through the exterior cusp–magnetosheath interface. This paper is based on Cluster observations made during three high-altitude passes. These were chosen because they occurred during different solar wind conditions and different inter-spacecraft separations. In addition, the dynamic nature of the cusp allowed all the aforementioned regions to be sampled with different order, duration and characteristics. The analysis deals with observations of: (1) both spatial and temporal structures at high-altitudes in the cusp and plasma mantle, (2) signatures of possible steady reconnection, flux transfer events (FTE) and plasma transfer events (PTE), (3) intermittent cold (<100 eV) plasma acceleration associated with both plasma penetration and boundary motions, (4) energetic ions (5–40 keV) in the exterior cusp diamagnetic cavity and (5) the global structure of the exterior cusp and its direct interface with the magnetosheath. The analysis is primarily focused on ion and magnetic field measurements. By use of these recent multi-spacecraft Cluster observations we illustrate the current topics under debate pertaining to the solar wind–magnetosphere interaction, for which this region is known to be of major importance.  相似文献   

10.
This paper presents a review of the most interesting observations of low-frequency plasma waves together with plasma particles which were made by the Interball 1, Magion 4 and Prognoz 8 satellites in the outer polar cusp. Accelerated plasma particles, hot electron populations and very strong wave activity, particularly at low frequencies, are observed. A detailed study of the wave spectra together with the distribution function for electrons indicate the correlation between the presence of lower-hybrid waves and the population of the particles with higher energy than in the surrounding space. These experimental facts suggest that strong coupling between waves and particles is responsible for plasma heating. During polar cusp crossings by Interball 1 and Prognoz 8, FFT analysis of the wave form indicates many bursts of ULF emissions in both electric and magnetic components. These waves have highly non-stationary characteristics. To study the dynamics of changes in the spectral characteristics of the waves wavelet analysis has been used. Nonlinear interactions are studied using bispectral methods of analysis. This presentation gives the results of such an analysis for selected cusp crossings at different altitudes. An example of wave activity registered by the STAFF instrument onboard the CLUSTER spacecraft in the polar cusp is also presented.  相似文献   

11.
M. Lockwood 《Annales Geophysicae》1997,15(12):1501-1514
Numerical simulations are presented of the ion distribution functions seen by middle-altitude spacecraft in the low-latitude boundary layer (LLBL) and cusp regions when reconnection is, or has recently been, taking place at the equatorial magnetopause. From the evolution of the distribution function with time elapsed since the field line was opened, both the observed energy/observation-time and pitch-angle/energy dispersions are well reproduced. Distribution functions showing a mixture of magnetosheath and magnetospheric ions, often thought to be a signature of the LLBL, are found on newly opened field lines as a natural consequence of the magnetopause effects on the ions and their flight times. In addition, it is shown that the extent of the source region of the magnetosheath ions that are detected by a satellite is a function of the sensitivity of the ion instrument . If the instrument one-count level is high (and/or solar-wind densities are low), the cusp ion precipitation detected comes from a localised region of the mid-latitude magnetopause (around the magnetic cusp), even though the reconnection takes place at the equatorial magnetopause. However, if the instrument sensitivity is high enough, then ions injected from a large segment of the dayside magnetosphere (in the relevant hemisphere) will be detected in the cusp. Ion precipitation classed as LLBL is shown to arise from the low-latitude magnetopause, irrespective of the instrument sensitivity. Adoption of threshold flux definitions has the same effect as instrument sensitivity in artificially restricting the apparent source region.  相似文献   

12.
Early in 1996, the latest of the European inco-herent-scatter (EISCAT) radars came into operation on the Svalbard islands. The EISCAT Svalbard Radar (ESR) has been built in order to study the ionosphere in the northern polar cap and in particular, the dayside cusp. Conditions in the upper atmosphere in the cusp region are complex, with magnetosheath plasma cascading freely into the atmosphere along open magnetic field lines as a result of magnetic reconnection at the dayside magnetopause. A model has been developed to predict the effects of pulsed reconnection and the subsequent cusp precipitation in the ionosphere. Using this model we have successfully recreated some of the major features seen in photometer and satellite data within the cusp. In this paper, the work is extended to predict the signatures of pulsed reconnection in ESR data when the radar is pointed along the magnetic field. It is expected that enhancements in both electron concentration and electron temperature will be observed. Whether these enhancements are continuous in time or occur as a series of separate events is shown to depend critically on where the open/closed field-line boundary is with respect to the radar. This is shown to be particularly true when reconnection pulses are superposed on a steady background rate.  相似文献   

13.
We report high-resolution observations of the southward-IMF cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) Svalbard radar (ESR), and compare them with observations of dayside auroral luminosity, as seen at a wavelength of 630 nm by a meridian scanning photometer at Ny Ålesund, and of plasma flows, as seen by the CUTLASS (co-operative UK twin location auroral sounding system) Finland HF radar. The optical data reveal a series of poleward-moving transient red-line (630 nm) enhancements, events that have been associated with bursts in the rate of magnetopause reconnection generating new open flux. The combined observations at this time have strong similarities to predictions of the effects of soft electron precipitation modulated by pulsed reconnection, as made by Davis and Lockwood (1996); however, the effects of rapid zonal flow in the ionosphere, caused by the magnetic curvature force on the newly opened field lines, are found to be a significant additional factor. In particular, it is shown how enhanced plasma loss rates induced by the rapid convection can explain two outstanding anomalies of the 630 nm transients, namely how minima in luminosity form between the poleward-moving events and how events can re-brighten as they move poleward. The observations show how cusp/cleft aurora and transient poleward-moving auroral forms appear in the ESR data and the conditions which cause enhanced 630 nm emission in the transients: they are an important first step in enabling the ESR to identify these features away from the winter solstice when supporting auroral observations are not available.  相似文献   

14.
攀西地区重力场特征及地壳密度结构   总被引:3,自引:1,他引:2       下载免费PDF全文
攀西地区位于峨眉山大火成岩省中西部,构造和岩浆特征显著,地震活动强烈.通过对野外重力测量得到的云县—会东和普洱—七甸两条剖面的高精度重力观测数据进行处理和分析,构建了沿剖面的二维地壳密度结构,其中普洱—七甸剖面与孟连—马龙宽角地震剖面部分位置重合.同时结合区域重力异常特征及下地壳视密度填图结果,得到如下初步认识:红河断裂带是南北地震带南段地区重要的构造分界线,断裂带南北向密度结构和莫霍面分布形态存在较大差异,沿走向构造变化.云县—会东剖面上大姚—会东段下地壳底部存在密度较高的壳幔过渡层,结合研究区下地壳底部壳幔过渡层的密度分布特征,认为该过渡层不是攀西裂谷下的"裂谷垫",而是由岩浆底侵作用造成的.  相似文献   

15.
阿尔金断裂带西段磁组构特征及其构造意义   总被引:3,自引:1,他引:2       下载免费PDF全文
变形岩石的磁组构参数Kmax、Kint、Kmin、P、T、F、L、E等可以用来定量地表征构造变形的形状及期次.本文通过对阿尔金断裂带(郭扎错—空喀山口段)中岩石磁组构特征分析,认为该断裂带具多期活动性,变形性状由早到晚依次表现为韧性、韧-脆性及脆性变形,应力机制为剪切以及带有剪切性质的拉伸和压扁,主应力方向为NNE-SSW和近SN向.磁组构特征还表明该断裂带两侧断块相对差异运动在不同地区有所不同,而且它们所经历的构造期次以及各期活动的应力机制、影响程度也有明显区别.此外,磁组构数据显示阿尔金断裂带具有中间变形强、向两侧变形逐渐减弱的准对称特点,其早期变形具有由东往西逐渐减弱的变化规律.由磁组构揭示的应力应变特征与野外露头、显微构造和古应力测量结果一致.  相似文献   

16.
Energetic electrons (e.g., 50 keV) travel along field lines with a high speed of around 20 REs−1. These swift electrons trace out field lines in the magnetosphere in a rather short time, and therefore can provide nearly instantaneous information about the changes in the field configuration in regions of geospace. The energetic electrons in the high latitude boundary regions (including the cusp) have been examined in detail by using Cluster/RAPID data for four consecutive high latitude/cusp crossings between 16 March and 19 March 2001. Energetic electrons with high and stable fluxes were observed in the time interval when the IMF had a predominately positive Bz component. These electrons appeared to be associated with a lower plasma density exhibiting no obvious tailward plasma flow (<20 keV). On the other hand, no electrons or only spike-like electron events have been observed in the cusp region during southward IMF. At that time, the plasma density was as high as that in the magnetosheath and was associated with a clear tailward flow. The fact that no stable energetic electron fluxes were observed during southward IMF indicates that the cusp has an open field line geometry. The observations indicate that both the South and North high latitude magnetospheric boundary regions (including both North and South cusp) can be energetic particle trapping regions. The energetic electron observations provide new ways to investigate the dynamic cusp processes. Finally, trajectory tracing of test particles has been performed using the Tsyganenko 96 model; this demonstrates that energetic particles (both ions and electrons) may be indeed trapped in the high latitude magnetosphere.  相似文献   

17.
The all-sky camera data obtained in Barentsburg (Spitsbergen Archipelago) are compared with specific features of electron and ion precipitations on the DMSP F18 satellite during its flight within the camera field of view on December 15, 2012. Before arriving at the cusp from the mantle side, the satellite detects two outbursts of precipitating particles. The burst of mantle precipitations far from the cusp is observed simultaneously in both ionic and electronic components. In the ionosphere related to the satellite, no auroras are detected, which is likely due to the low intensity of the flux of precipitating electrons and their low energy (80 eV). Near the cusp, a more intensive burst of precipitations of higher-energy electrons (140 eV) is accompanied by an almost complete “locking” of ions. This burst of mantle precipitations is related to the faint luminous structure in the ionosphere. The ion locking is indicative of the accelerating potential difference in the force tube, which is based on the glowing region. The luminous structure is an element of the so-called “polewar moving auroral forms,” which is related in the literature to the reconnection in the daytime magnetopause. The possible relation of the observed phenomena to the reconnected magnetic force tubes, which drift from the cusp in the antisolar direction, is also confirmed by the dispersion of ionic precipitations, i.e., an increase in ion energy as the satellite approaches to the cusp.  相似文献   

18.
Cluster Observations of the CUSP: Magnetic Structure and Dynamics   总被引:1,自引:0,他引:1  
This paper reviews Cluster observations of the high altitude and exterior (outer) cusp, and adjacent regions in terms of new multi-spacecraft analysis and the geometry of the surrounding boundary layers. Several crossings are described in terms of the regions sampled, the boundary dynamics and the electric current signatures observed. A companion paper in this issue focuses on the detailed plasma distributions of the boundary layers. The polar Cluster orbits take the four spacecraft in a changing formation out of the magnetosphere, on the northern leg, and into the magnetosphere, on the southern leg, of the orbits. During February to April the orbits are centred on a few hours of local noon and, on the northern leg, generally pass consecutively through the northern lobe and the cusp at mid- to high-altitudes. Depending upon conditions, the spacecraft often sample the outer cusp region, near the magnetopause, and the dayside and tail boundary layer regions adjacent to the central cusp. On the southern, inbound leg the sequence is reversed. Cluster has therefore sampled the boundaries around the high altitude cusp and nearby magnetopause under a variety of conditions. The instruments onboard provide unprecedented resolution of the plasma and field properties of the region, and the simultaneous, four-spacecraft coverage achieved by Cluster is unique. The spacecraft array forms a nearly regular tetrahedral configuration in the cusp and already the mission has covered this region on multiple spatial scales (100–2000 km). This multi-spacecraft coverage allows spatial and temporal features to be distinguished to a large degree and, in particular, enables the macroscopic properties of the boundary layers to be identified: the orientation, motion and thickness, and the associated current layers. We review the results of this analysis for a number of selected crossings from both the North and South cusp regions. Several key results have been found or have confirmed earlier work: (1) evidence for magnetically defined boundaries at both the outer cusp/magnetosheath interface and the␣inner cusp/lobe or cusp/dayside magnetosphere interface, as would support the existence of a distinct exterior cusp region; (2) evidence for an associated indentation region on the magnetopause across the outer cusp; (3) well defined plasma boundaries at the edges of the mid- to high-altitude cusp “throat”, and well defined magnetic boundaries in the high-altitude “throat”, consistent with a funnel geometry; (4) direct control of the cusp position, and its extent, by the IMF, both in the dawn/dusk and North/South directions. The exterior cusp, in particular, is highly dependent on the external conditions prevailing. The magnetic field geometry is sometimes complex, but often the current layer has a well defined thickness ranging from a few hundred (for the inner cusp boundaries) to 1000 km. Motion of the inner cusp boundaries can occur at speeds up to 60 km/s, but typically 10–20 km/s. These speeds appear to represent global motion of the cusp in some cases, but also could arise from expansion or narrowing in others. The mid- to high-altitude cusp usually contains enhanced ULF wave activity, and the exterior cusp usually is associated with a substantial reduction in field magnitude.  相似文献   

19.
本文基于自己开发的全球三维磁层模型, 模拟研究了IMF(Interplanetary Magnetic Field)北向并且By分量较大(时钟角为60°)时磁层顶三维结构及其重联图像. 结果发现, IMF By为正时, 在北极隙区附近尾-昏侧存在IMF与地磁场之间稳定持续的重联现象;参与重联的地球磁场既有闭合磁力线也有开放磁力线;IMF在北极隙区与地球闭合磁力重联后一端与南磁极相连的磁力线在尾向运动时还可能与北尾瓣的开放磁力线重联而重新闭合, 这种重联与磁力线循环过程不同于同一条IMF磁力线分别在南北半球与地磁场重联的模型. 南极隙区的重联发生在尾-晨侧, 其动力学过程与北极隙区情形类似. 我们的模拟结果表明, IMF By较大时不可能发生IMF同一条磁力线分别在南北极隙区重联的情形, 也不会因此而减少尾瓣的开放磁力线.  相似文献   

20.
闽西南地区位于福建武夷山成矿带西南部,自远古宙以来经历了多期次的构造演化.该区地处东南沿海构造-岩浆-成矿带上,为环太平洋大陆边缘多金属成矿带与南岭多金属成矿带复合部位,是我国重要的多金属矿产地.永定大排多金属矿区作为近年来武夷山成矿带新发现的大型多金属矿,区内叠加作用和控矿作用相对复杂,现有的地质地球物理工作程度不足以满足对该区域成矿规律的深入认识,一些基础地质问题亟待解决.因此,本文在深入收集永定大排矿区地质地球物理资料基础上,综合分析区域成矿背景与成矿构造,在重点区域布设综合地球物理勘探工作,包括1:1万高精度磁测、可控源音频大地电磁剖面及反射地震剖面.基于上述工作:1)开展了研究区航磁数据三维磁化率反演与分布特征分析与大地电磁二维电阻率反演与分布特征分析,开展了地震资料真地表深度偏移成像,获得了更加准确的地震剖面成像结果.2)结合推覆体控矿特征,地震剖面和电阻率剖面、航磁反演结果相互验证和约束,勾画了地下构造形态.地表地质剖面延伸和标定了构造形态的地质内涵,获得了从地表到3000 m深度的构造解释结果.解释结果清晰地显示了与推覆相关的构造、控矿层位以及岩体信息,为三位一体的找矿思路提供了地球物理依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号