首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
For interrill erosion, raindrop‐induced detachment and transport of sediment by rainfall‐disturbed sheet flow are the predominant processes, while detachment by sheet flow and transport by raindrop impact are negligible. In general, interrill subprocesses are inter‐actively affected by rainfall, soil and surface properties. The objective of this work was to study the relationships among interrill runoff and sediment loss and some selected para‐meters, for cultivated soils in central Greece, and also the development of a formula for predicting single storm sediment delivery. Runoff and soil loss measurement field experiments have been conducted for a 3·5‐year period, under natural storms. The soils studied were developed on Tertiary calcareous materials and Quaternary alluvial deposits and were textured from sandy loam to clay. The second group of soils showed greater susceptibility to sealing and erosion than the first group. Single storm sediment loss was mainly affected by rain and runoff erosivity, being significantly correlated with rain kinetic energy (r = 0·64***), its maximum 30‐minute intensity (r = 0·64***) and runoff amount (r = 0·56***). Runoff had the greatest correlation with rain kinetic energy (r = 0·64***). A complementary effect on soil loss was detected between rain kinetic energy and its maximum 30‐minute intensity. The same was true for rain kinetic energy and topsoil aggregate instability, on surface seal formation and thus on infiltration characteristics and overland flow rate. Empirical analysis showed that the following formula can be used for the successful prediction of sediment delivery (Di): Di = 0·638βEI30tan(θ) (R2 = 0·893***), where β is a topsoil aggregate instability index, E the rain kinetic energy, I30 the maximum 30‐minute rain intensity and θ the slope angle. It describes soil erodibility using a topsoil aggregate instability index, which can be determined easily by a simple laboratory technique, and runoff through the product of this index and rain kinetic energy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The universal soil loss equation (USLE) is the most frequently applied erosion prediction model and it is also implemented as an official decision‐making instrument for agricultural regulations. The USLE itself has been already validated using different approaches. Additional errors, however, arise from input data and interpolation procedures that become necessary for field‐specific predictions on a national scale for administrative purposes. In this study, predicted event soil loss using the official prediction system in Bavaria (Germany) was validated by comparison with aerial photo erosion classifications of 8100 fields. Values for the USLE factors were mainly taken from the official Bavarian high‐resolution (5 × 5 m2) erosion cadastre. As series of erosion events were examined, the cover and management factor was replaced by the soil loss ratio. The event erosivity factor was calculated from high‐resolution (1 × 1 km2, 5 min), rain gauge‐adjusted radar rain data (RADOLAN). Aerial photo erosion interpretation worked sufficiently well and average erosion predictions and visual classifications correlated closely. This was also true for data broken down to individual factors and different crops. There was no reason to assume a general invalidity of the USLE and the official parametrization procedures. Event predictions mainly suffered from errors in the assumed crop stage period and tillage practices, which do not reflect interannual and farm‐specific variation. In addition, the resolution of radar data (1 km2) did not seem to be sufficient to predict short‐term erosion on individual fields given the strong spatial gradients within individual rains. The quality of the input data clearly determined prediction quality. Differences between USLE predictions and observations are most likely caused by parametrization weaknesses but not by a failure of the model itself. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
The presence of non‐erodible roughness elements on erodible surfaces has the effect of absorbing part of the wind shear stress and thus protecting the erodible surface from wind erosion. This paper examines the shear stress distribution over roughness arrays of varying density, representing the progress of erosion on a bed of erodible and non‐erodible particles. Three‐dimensional numerical simulations, simulating wind flow over a bed of particles covered by roughness elements, were conducted in order to investigate the effect of roughness elements on the shear stress near the surface. The results of these simulations confirm that the erosion of soil by wind is strongly attenuated by the presence of roughness elements on the surface and depends on the geometric properties of the roughness elements. Based on the new numerical results obtained, a refinement of existing theoretical approaches is developed to describe the dependence of the friction velocity upon roughness frontal area and real exposed cover rate. The new formulation proposed will allow a more accurate evaluation of shear stress partitioning as a function of topographic changes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A new stochastic method of detachment rate estimation was used in erosion modelling. This method was based on calculating the probability of driving forces exceeding resistance forces in the interaction of oscillating flow and structured soil. Knowledge of the probability density functions for flow velocity, soil cohesion, aggregate size and soil integrity makes it possible to calculate theoretically the erosion rate of cohesive soil for any combination of these stochastic variables. The proposed theory explains the variability in relationships between rate of detachment and flow velocity. With flow velocity, detachment rate increases more rapidly for more integrated soil with higher cohesion and larger aggregates. This theory also shows the great difference between soil erosion type for relatively high and relatively low flow velocities, and explains rather high errors, even with detailed models, in the calculation of low soil erosion rate. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Physical modelling experiments have been carried out in a cold room to test on a small scale, the effects of water supply during the thaw of an experimental slope with permafrost. Permafrost was maintained at depth and a thin active layer was frozen and thawed from the surface. Data from the experiments relate to two different conditions, first with moderate rainfall, and second with heavy rainfall during the thaw period. When moderate rainfall is applied during thaw phases, the experimental slope is slightly degraded. At the scale of the experiment, erosion processes involve frost jacking of the coarse blocks, frost creep and gelifluction that induce slow and gradual down slope displacements of the active layer, but also small landslides leading to large but slow mass movements with short displacements. Changes in experimental slope morphology are marked by the initiation of a small‐scale drainage network and the development of a little crest line which shows a progressive upslope migration. With such boundary conditions, there is not enough water supply to evacuate downslope the whole of the eroded material and a topographic smoothing is observed. When heavy rainfall is applied during thaw periods, rapid mass wasting (small mud‐flows and debris flows) become prominent. Slope failures are largely controlled by the water saturation of the active layer and by the occurrence of steeper slopes. At the scale of the experiment, rates of erosion and maximum incision increase by about 100% leading to significant slope degradation with marked and specific scars comparable to gullying. These morphological changes are dependant on both the size and the frequency of catastrophic events. These experiments provide detailed data that could improve the knowledge of the physical parameters that control the initiation, at a small‐scale, of erosion processes on periglacial slopes with a thin active layer and/or with thin cover of mobilizable slope deposits. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
8.
The present study is focused on the analysis of the mean wall friction velocity on a surface including roughness elements exposed to a turbulent boundary layer. These roughness elements represent non‐erodible particles over an erodible surface of an agglomeration of granular material on industrial sites. A first study has proposed a formulation that describes the evolution of the friction velocity as a function of geometrical parameters and cover rate with different uniform roughness distributions. The present simulations deal with non‐uniform distributions of particles with a random sampling of diameters, heights, positions and arrangements. The evolution (relative to geometrical parameters of the roughness elements) of the friction velocity for several non‐uniform distributions of roughness elements was analysed by the equation proposed in the literature and compared to the results obtained with the numerical simulations. This comparison showed very good agreement. Thus, the formulation developed for uniform particles was found also to be valid for a larger spectrum of particles noted on industrial sites. The present work aims also to investigate in detail the fluid mechanics over several roughness particles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
10.
11.
12.
Stone forest (‘Shilin’ in Chinese) is a unique karst landform with a complex evolution process. Based mainly on the characteristics and interrelationships of sub‐soil, soil and sub‐aerial erosion in Lunan karst area, the authors develop a triplex erosion model to describe the evolution of stone forest, and apply it to examine the current development stage and the prospect of the Lunan Stone Forest. The study shows that sub‐soil corrosion, a basic driving force for the vertical scope of a stone forest, usually occurs within 10 m below ground surface but is observed to be most active within the top 2 m, which constitutes the best development zone for stone forest. Under modern climatic conditions, the tip of the stone pillars in Lunan karst area is lowering at a rate of 10·4 mm ka?1, whereas the base of the stone pillars is deepening at 26·17 mm ka?1. Therefore, the height of stone pillars is increasing at a rate of 15·77 mm ka?1. Considering that soil erosion in the study area is as high as 650 mm ka?1, the visible height of the stone forest is actually increasing at a rate of 639·6 mm ka?1. However, the best evolution time for Lunan Stone Forest has already passed despite the fact that it is still growing taller at the present time. This is because the soil layer, which plays an extremely significant role in the heightening of stone pillars, is rapidly thinning at a rate of 623·83 mm ka?1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
14.
15.
16.
High sediment concentrations in runoff are a characteristic feature of the Chinese Loess Plateau, and are probably caused by factors such as the occurrence of erodible materials on steep slopes, the characteristics of the loess and the harsh climate that results in low plant cover. When sediment concentration increases, fluid density increases, viscosity increases and settling velocity decreases. These effects become increasingly important with increasing concentration and can result in flow behaviour that is quite different from that of clear water flow. Although the net effect of these changes on the flow is not always apparent, erosion models that deal with high sediment concentrations should consider such effects and could include corrections for some of these effects. A case study in a small catchment on the Loess Plateau indicated that sediment concentrations were considerable, and literature data suggested that for such sediment concentrations, corrections for settling velocity, fluid density and viscosity are needed. Furthermore, a number of corrections are necessary to be able to compare field measurements with results of soil erosion models: sediment volume should be subtracted from runoff volume and a density correction is needed to use data from a pressure transducer. For flumes that were used to measure discharge from smaller areas inside the catchment, the measured water level should be corrected by subtracting the sediment level in the flume from the water level, while the sediment volume should also be subtracted from the discharge. Finally, measured concentration should be corrected to give concentration expressed as grams per litre of clear water, since soil erosion models express sediment concentration in this way. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
The overarching objective of this research was to provide an improved understanding of the role of land use and associated management practices on long‐term water‐driven soil erosion in small agricultural watersheds by coupling the established, physically based, distributed parameter Water Erosion Prediction Project (WEPP) model with long‐term hydrologic, land use and soil data. A key step towards achieving this objective was the development of a detailed methodology for model calibration using physical ranges of key governing parameters such as effective hydraulic conductivity, critical hydraulic shear stress and rill/inter‐rill erodibilities. The physical ranges for these governing parameters were obtained based on in situ observations within the South Amana Sub‐Watershed (SASW) (~26 km2) of the Clear Creek, IA watershed where detailed documentation of the different land uses was available for a period of nearly 100 years. A quasi validation of the calibrated model was conducted through long‐term field estimates of water and sediment discharge at the outlet of SASW and also by comparing the results with data reported in the literature for other Iowa watersheds exhibiting similar biogeochemical properties. Once WEPP was verified, ‘thought experiments’ were conducted to test our hypothesis that land use and associated management practices may be the major control of long‐term erosion in small agricultural watersheds such as SASW. Those experiments were performed using the dominant 2‐year crop rotations in the SASW, namely, fall till corn–no till bean (FTC‐NTB), no till bean–spring till corn (NTB‐STC) and no till corn–fall till bean (NTC‐FTB), which comprised approximately 90% of the total acreage in SASW. Results of this study showed that for all crop rotations, a strong correspondence existed between soil erosion rates and high‐magnitude precipitation events during the period of mid‐April and late July, as expected. The magnitude of this correspondence, however, was strongly affected by the crop rotation characteristics, such as canopy/residue cover provided by the crop, and the type and associated timing of tillage. Tillage type (i.e. primary and secondary tillages) affected the roughness of the soil surface and resulted in increases of the rill/inter‐rill erodibilities up to 35% and 300%, respectively. Particularly, the NTC‐FTB crop rotation, being the most intense land use in terms of tillage operations, caused the highest average annual erosion rate within the SASW, yielding quadrupled erosion rates comparatively to NTB‐STC. The impacts of tillage operation were further exacerbated by the timing of the operations in relation to precipitation events. Timing of operations affected the ‘life‐time’ of residue cover and as a result, the degree of protection that residue cover offers against the water action on the soil surface. In the case of NTC‐FTB crop rotation, dense corn residue stayed on the ground for only 40 days, whereas for the other two rotations, corn residue provided a protective layer for nearly 7 months, lessening thus the degree of soil erosion. The cumulative effects of tillage type and timing in conjunction with canopy/residue cover led to the conclusion that land management practices can significantly amplify or deamplify the impact of precipitation on long‐term soil erosion in small agricultural watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号