首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Manning equation is one of the most widely used formulae for calculating the velocity of shallow overland flow in hydrological and erosion models. Precise estimation of the Manning's friction coefficient (n) is critical to determining overland flow and soil erosion processes. Few studies have been conducted to quantify the effects of sediment load on Manning's n on steep slopes. This study was conducted to investigate the potential effects of sediment load on Manning's n in a flume with a fixed bed, under wide ranges of hydraulics and sediment loads. Slope gradient varied from 8·7 to 34·2%, unit flow rate from 0·66 to 5·26 × 10?3 m2 s?1, and sediment load from 0 to 6·95 kg m?1 s?1. The Reynolds number ranged from 350 to 5899. Results showed that Manning's n varied in both sediment‐free and sediment‐laden flows ranging from 0·012 to 0·055. The apparent Manning's coefficients of sediment‐laden flow were much greater than those of sediment‐free flow. The mean Manning coefficient of sediment‐laden flow was 51·27% greater than the mean value of sediment‐free flow. For sediment‐laden flow, Manning's n could be estimated with a power function of unit flow discharge and sediment content. Further studies are needed to quantify the potential effects of sediment load on the Manning's n on erodible beds and in fields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Effects of sediment load on hydraulics of overland flow on steep slopes   总被引:6,自引:0,他引:6  
Eroded sediment may have significant effects on the hydraulics of overland flow, but few studies have been performed to quantify these effects on steep slopes. This study investigated the potential effects of sediment load on Reynolds number, Froude number, flow depth, mean velocity, Darcy–Weisbach friction coefficient, shear stress, stream power, and unit stream power of overland flow in a sand‐glued hydraulic flume under a wide range of hydraulic conditions and sediment loads. Slope gradients were varied from 8·7 to 34·2%, unit flow rates from 0·66 to 5·26×10?3 m2 s?1, and sediment loads from 0 to 6·95 kg m?1 s?1. Both Reynolds number (Re) and Froude number (Fr) decreased as sediment load increased, implying a decrease in flow turbulence. This inverse relationship should be considered in modeling soil erosion processes. Flow depth increased as sediment load increased with a mean value of 1·227 mm, caused by an increase in volume of sediment‐laden flow (contribution 62·4%) and a decrease in mean flow velocity (contribution 37·6%). The mean flow velocity decreased by up to 0·071 m s?1 as sediment load increased. The Darcy–Weisbach friction coefficient (f) increased with sediment load, showing that the total energy consumption increased with sediment load. The effects of sediment load on f depended on flow discharge: as flow discharge increased, the influence of sediment load on f decreased due to increased flow depth and reduced relative roughness. Flow shear stress and stream power increased with sediment load, on average, by 80·5% and 60·2%, respectively; however, unit stream power decreased by an average of 11·1% as sediment load increased. Further studies are needed to extend and apply the insights obtained under these controlled conditions to real‐world overland flow conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Prediction of concentrated flow width in ephemeral gully channels   总被引:3,自引:0,他引:3  
Empirical prediction equations of the form W = aQb have been reported for rills and rivers, but not for ephemeral gullies. In this study six experimental data sets are used to establish a relationship between channel width (W, m) and flow discharge (Q, m3 s?1) for ephemeral gullies formed on cropland. The resulting regression equation (W = 2·51 Q0·412; R2 = 0·72; n = 67) predicts observed channel width reasonably well. Owing to logistic limitations related to the respective experimental set ups, only relatively small runoff discharges (i.e. Q < 0·02 m3s?1) were covered. Using field data, where measured ephemeral gully channel width was attributed to a calculated peak runoff discharge on sealed cropland, the application field of the regression equation was extended towards larger discharges (i.e. 5 × 10?4m3s?1 < Q < 0·1 m3s?1). Comparing WQ relationships for concentrated flow channels revealed that the discharge exponent (b) varies from 0·3 for rills over 0·4 for gullies to 0·5 for rivers. This shift in b may be the result of: (i) differences in flow shear stress distribution over the wetted perimeter between rills, gullies and rivers, (ii) a decrease in probability of a channel formed in soil material with uniform erosion resistance from rills over gullies to rivers and (iii) a decrease in average surface slope from rills over gullies to rivers. The proposed WQ equation for ephemeral gullies is valid for (sealed) cropland with no significant change in erosion resistance with depth. Two examples illustrate limitations of the WQ approach. In a first example, vertical erosion is hindered by a frozen subsoil. The second example relates to a typical summer situation where the soil moisture profile of an agricultural field makes the top 0·02 m five times more erodible than the underlying soil material. For both cases observed W values are larger than those predicted by the established channel width equation for concentrated flow on cropland. For the frozen soils the equation W = 3·17 Q0·368 (R2 = 0·78; n = 617) was established, but for the summer soils no equation could be established. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Wang  Chunlin  Yu  Guirui  Zhou  Guoyi  Yan  Junhua  Zhang  Leiming  Wang  Xu  Tang  Xuli  Sun  Xiaomin 《中国科学:地球科学(英文版)》2006,49(2):127-138

The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0 μmol−1·m−2·s−1) flux data during windy conditions (u* > 0.2 m·s−1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem C02 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol−1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m−2·s−1. Indistinctive seasonal variation of α or Amax was consistent with weak seasonal dynamics of leaf area index (LAf) in such a lower subtropical evergreen mixed forest, (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m−2mon−1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated WEE was estimated as −43.2±29.6 gC·m−2·mon−1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as −563.0 and −441.2 gC·m−2·a−1 respectively, accounting for about 32% of GPP.

  相似文献   

5.
The objective of this study was to analyse changes in stream flow patterns with reference to dynamics in land cover/use in a typical watershed, the Chemoga, in northwestern highland Ethiopia. The results show that, between 1960 and 1999, total annual stream flow decreased at a rate of 1 · 7 mm year−1, whereas the annual rainfall decreased only at a rate of 0 · 29 mm year−1. The decrease in the stream flow was more pronounced during the dry season (October to May), for which a statistically significant decline (0 · 6 mm year−1) was observed while the corresponding rainfall showed no discernible trend. The wet season (June to September) rainfall and stream flow did not show any trends. Extreme low flows analysed at monthly and daily time steps reconfirmed that low flows declined with time, the changes being highly significant statistically. Between 1960 and 1999, the monthly rainfall and stream flow amounts of February (month of lowest long‐term mean flow) declined by 55% and 94% respectively. Similarly, minimum daily flows recorded during the three driest months (December to February) showed statistically highly significant declines over the same period. It declined from 0 · 6 m3 s−1 to 0 · 2 m3 s−1 in December, from 0 · 4 m3 s−1 to 0 · 1 m3 s−1 in January and from 0 · 4 m3 s−1 to 0 · 02 m3 s−1 in February (1 · 0 m3 s−1 = 0 · 24 mm day−1 in the Chemoga watershed). In contrast, extreme high flows analysed at monthly (for August) and daily (July to September) time steps did not reveal discernible trends. The observed adverse changes in the stream flow have partly resulted from changes in land cover/use and/or degradation of the watershed that involved destruction of natural vegetative covers, expansion of croplands, overgrazing and increased area under eucalypt plantations. The other contributory factor has been the increased dry‐season water abstraction to be expected from the increased human and livestock populations in the area. Given the significance of the stream flow as the only source of water to the local people, a set of measures aimed at reducing magnitudes of surface runoff generation and increasing groundwater recharge are required to sustain the water resource and maintain a balanced dry‐season flow in the watershed. Generally, an integrated watershed management approach, whereby the whole of the watershed can be holistically viewed and managed, would be desirable. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Z. Shi  H. J. Zhou 《水文研究》2004,18(15):2877-2892
Theoretical and experimental studies were undertaken to gain insight into physical parameters controlling the flocculation and settling properties of mud flocs in the Changjiang Estuary, China. The Rouse equation is applied to vertical profiles of suspended sediment concentration to determine the bulk mean settling velocity (ws) of sediment suspended in the Changjiang Estuary. Both in situ point‐sampled and acoustically measured profiles of suspended mud concentrations were fit selectively. The calculated settling velocities ws mainly ranged from 0·4 to 4·1 mm s?1 for the point‐sampled data set, and from 1·0 to 3·0 mm s?1 for the acoustically measured data set. Furthermore, the settling velocities of mud flocs increased with mean concentration (C?) of mud flocs in suspension and were proportional to increasing bottom shear stress (τb) of tidal flow. The best equation for the field settling velocity of mud flocs in the Changjiang Estuary can be expressed by the power law: ws = mC?n (m, 1·14–2·37; n, 0·84–1·03). It is suggested that C? and τb were the dominant physical parameters controlling the flocculation and ws of mud flocs in suspension. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Headcut erosion is associated with major hydraulic changes induced by the gully head of concentrated flow. However, the variation in the hydraulic characteristics of the headcut erosion process is still not clear in the gully region of the Loess Plateau. A series of rainfall combined scouring experiments (flow discharges ranging from 3.6 to 7.2 m3 hr−1, with 0.8 mm min−1 rainfall intensity) were conducted on experimental plots to clarify the variation in the hydraulic parameters induced by gully head and erosion processes under different flow discharges. The results showed that concentrated flows in the catchment area and gully bed were turbulent (Reynolds number ranging from 1,876 to 6,693) and transformed between supercritical and subcritical (Froude number ranging from 0.96 to 3.73). The hydraulic parameters, such as the flow velocity, Reynolds number, shear stress, stream power, Darcy–Weisbach friction factor, and unit stream power in the catchment area were 0.45–0.59 m s−1, 2086–6693, 1.96–5.33 Pa, 0.89–2.86 W m−2, 0.08–0.16, and 0.023–0.031 m s−1, respectively. When the concentrated flows dropped from the gully head, the hydraulic parameters in the gully bed decreased by 3.39–26.07%, 1.49–29.99%, 65.19–67.14%, 67.25–74.96%, 28.53–61.31%, and 67.82–77.14%, respectively, which contributed to the flow energy consumption at the gully head. As flow discharge increased, Reynolds number, shear stress, and stream power increased, while flow velocity, Froude number, unit stream power, and Darcy–Weisbach friction factor did not. The flow energy consumption at the gully head was 9.66–10.13, 13.25–13.74, 15.68–16.41, and 19.28–20.25 J s−1, respectively, under different flow discharges and accounted for 60.58–68.50% of the flow energy consumption of the experimental plots. Generally, the sediment discharges increased rapidly at the initial stage, then increased slowly, and finally reached a steady state condition, which showed a significant declining logarithmic trend with experimental duration (P<.01) and increased with increasing flow discharge. Accordingly, the flow energy consumption was significantly correlated with the sediment yield. These findings could improve our understanding of the hydraulic properties and flow energy characteristics of headcut erosion.  相似文献   

8.
. Kaste  P. J. Dillon 《水文研究》2003,17(12):2393-2407
In‐lake retention of inorganic nitrogen species (nitrate and ammonium) was estimated from mass balances in five acid‐sensitive lakes in southern Norway and eight in southern Ontario, Canada, to evaluate an empirical in‐lake N retention (RN) model. This model is included in the First‐order Acidity Balance (FAB) model, which currently is used for calculation of critical acid loads and exceedances in many countries. To estimate in‐lake RN, the FAB model uses a recommended mass transfer coefficient (SN) of 5 m year−1, which mainly is derived from NO3 mass balances in Canadian lakes. To date, the in‐lake RN model has not been evaluated for large parts of Europe. At the Norwegian study sites receiving the highest N deposition (>120 meq m−2 year−1) the net in‐lake retention of inorganic N (TIN) exceeded the corresponding terrestrial retention by a factor of 1·1–2·6. Despite differences in N loading and hydrology at the Norwegian and Canadian sites, both the mean mass transfer coefficients for NO3 (SNO3; 6·5 versus 5·6 m year−1) and TIN (STIN; 7·9 versus 7·0 m year−1) were of comparable magnitude. Both mean values and ranges of SNO3 suggest that the default SN value presently recommended for FAB model applications seems valid over a large range in N inputs and areal water loads (qs). However, owing to the relatively few data available for lakes with high qs values (15–150 m year−1), it is recommended that more lakes within this range be included in future studies to obtain a more precise prediction of in‐lake N retention over a wide qs gradient. Also, when considering that the FAB model treats all inorganic N leaching from a catchment as NO3, it seems reasonable to use a default STIN value instead of just SNO3 when estimating in‐lake RN. In that case, the in‐lake RN presently calculated by the FAB model might be slightly underestimated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
In several empirical and modelling studies on river hydraulics, dispersion was negatively correlated to surface roughness. In this study, it was aimed to investigate the influence of surface roughness on longitudinal dispersion under controlled conditions. In artificial flow channels with a length of 104 m, tracer experiments with variations in channel bed material were performed. By use of measured tracer breakthrough curves, average flow velocity, mean longitudinal dispersion, and mean longitudinal dispersivity were calculated. Longitudinal dispersion coefficients ranged from 0·018 m2 s?1 in channels with smooth bed surface up to 0·209 m2 s?1 in channels with coarse gravel as bed material. Longitudinal dispersion was linearly related to mean flow velocity. Accordingly, longitudinal dispersivities ranged between 0·152 ± 0·017 m in channels with smooth bed surface and 0·584 ± 0·015 m in identical channels with a coarse gravel substrate. Grain size and surface roughness of the channel bed were found to correlate positively to longitudinal dispersion. This finding contradicts several existing relations between surface roughness and dispersion. Future studies should include further variation in surface roughness to derive a better‐founded empirical equation forecasting longitudinal dispersion from surface roughness. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The effects of wind-driven rain (WDR) on sand detachment were studied under various raindrop obliquities. Results suggested a significant reduction in compressive stress on sand surfaces for a two-dimensional experimental set-up in a wind tunnel. During experiments, sand particles in splash cups were exposed to both wind-free rain (WFR) and WDR driven by horizontal winds of 6.4, 8.9 and 12.8 m s−1 and rainfall intensities of 50, 60, 75 and 90-mm h−1 to assess the sand detachment rate (D, in g m−2 s−1). The effects of sand moisture state (dry and wet) on the detachment of different-sized particles (0.20–0.50 and 0.50–2.00 mm, respectively) were also tested. Factorial analysis of variance showed that shear and compressive stress components evaluated by horizontal and vertical kinetic energy flux terms (KEx and KEy, respectively, in J m−2 s−1) along with their vector sum (KEr, in J m−2 s−1) explained the variation in D. Neither sand size nor sand moisture was statistically significant alone although binary interactions of KEr, KEx and KEy with the sand size and three-way interaction of KEx, sand size and moisture were statistically significant. These results can be explained by size-dependent variation in sand compressibility and surface friction related to the total stress field developed by a given partition of shear and compressive stresses of wind-driven oblique raindrops (KEx/KEy). Further analysis of the variation of the unit sand detachment rate (Du = D/KEr = g J−1) with rain inclination (α, in degrees) better revealed the effect of WDR obliquity on Du that further changed with sand size class and moisture state. Finally, the difference in the resulting stress field differentiable by the oblique raindrop trajectories of the experiment over sand surface significantly affected the non-cohesive particle detachment rates, to some extent interacted with size-dependent compressibility and interface shear strength of sand grains.  相似文献   

11.
To elucidate splash erosion processes under natural rainfall conditions, temporal variations in splash detachment were observed using a piezoelectric saltation sensor (H11B; Sensit Co., Portland, ND, USA). Preliminary laboratory tests of Sensit suggested that they were suitable for field observations. Field observations were conducted between July and September 2006 in 21‐ and 36‐year‐old Japanese cypress (Chamaecyparis obtusa) plantations with mean stand heights of 9·2 m and 17·4 m, respectively. Splash detachment (in g m?2) was measured seven times using splash cups, and raindrop kinetic energy (in J m?2 mm?1) in both stands was measured using laser drop‐sizing (LD) gauges. Sensit was installed to record saltation counts, which were converted to temporal data of splash detachment (splash rate; in g m?2 10 min?1) using the relationship between splash detachment and saltation counts. Surface runoff was monitored using runoff plots of 0·5 m width and 2·0 m length to obtain temporal data of flow depth (in millimeters). Both total splash detachment and raindrop kinetic energy were larger in the older stand. Increased splash rates per unit throughfall were found in both stands after rainless durations longer than approximately one day in both stands. However, a lower splash rate was found in the 21‐year stand after rainfall events. During extreme rainstorms, the 21‐year stand showed a low runoff rate and a decline in the splash rate, while the 36‐year stand showed a higher splash rate and increased flow depth. The piezoelectric sensor proved to be a useful means to elucidate splash erosion processes in field conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
This paper describes the design, operation and performance of a field‐portable ‘drip‐type’ simulator and erosion measurement system. The system was constructed specifically for soil erosion research in the humid tropics and has been used extensively in Malaysian Borneo. The simulator is capable of producing replicable storms of up to 200 mm h?1 intensity and 20–30 minutes duration with a drop‐size distribution close to that of natural storms of such intensity (D50 of simulated rainfall is 4·15 mm at 200 mm h?1 and 3·65 mm at 160 mm h?1, D50 measured during natural rainfall = 3·25 mm). The simulator is portable and simply constructed and operates without a motor or electronics, thus making it particularly useful in remote, mountainous areas. The erosion measurement system allows assessment of: (1) rainsplash detachment and net downslope transport from the erosion plot; (2) slopewash (erosion transported by overland flow); and (3) infiltration capacity and overland flow. The performance of the simulator–erosion system compared with previous systems is assessed with reference to experiments carried out in primary and regenerating tropical rainforest at Danum Valley (Malaysian Borneo). The system was found to compare favourably with previous field simulators, producing a total storm kinetic energy of 727 J m?2 (over a 20‐minute storm event) and a kinetic energy rate of 0·61 J m?2 s?1, approximately half that experienced on the ground during a natural rainfall event of similar intensity, despite the shorter distance to the ground. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Various physical and biological properties affect solute transport patterns in streams. We measured hydraulic characteristics of Payne Creek, a low‐gradient upper Coastal Plain stream, using tracer experiments and parameter estimation with OTIS‐P (one‐dimensional transport with inflow and storage with parameter optimization). The primary objective of this study was to estimate the effects of varying discharge, season, and litter accumulation on hydraulic parameters. Channel area A ranged from 0·081 to 0·371 m2 and transient storage area As ranged from 0·027 to 0·111 m2. Dispersion D ranged from 1·5 to 11·1 m2 min−1 and exchange coefficient α ranged from 0·009 to 0·038 min−1. Channel area and dispersion were positively correlated to discharge Q, whereas storage area and exchange coefficient were not. Relative storage size As/A ranged from 0·17 to 0·59, and was higher during fall than other seasons under a similar Q. The fraction of median travel time due to transient storage ranged from 8·8 to 34·5% and was significantly correlated with Q through a negative power function. Both metrics indicated that transient storage was a significant component affecting solute transport in Payne Creek, especially during the fall. Comparison between the measured channel area Ac and A suggested that surface storage was dominant in Payne Creek. During fall, accumulation of leaf litter resulted in larger A and As and lower velocity and D than during other seasons with similar discharge. Seasonal changes in discharge and organic matter accumulation, and dynamic channel morphology affected the magnitude of transient storage and overall hydraulic characteristics of Payne Creek. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
It is important to evaluate the impacts of grasses on soil erosion process so as to use them effectively to control soil and water losses on the Loess Plateau. Laboratory-simulated rainfall experiments were conducted to investigate the runoff and sediment processes on sloped loess surfaces with and without the aboveground parts of grasses and moss (GAM: grass and moss; NGAM: no grass and moss) under slope gradients of 5°, 10°, 15°, 20°, 25° and 30°. The results show that runoff from GAM and NGAM plots increased up to a slope gradient of 10° and decreased thereafter, whereas the runoff coefficients increased with gradient. The average runoff rates and runoff coefficients of NGAM plots were less than those of GAM plots except for the 5° slope. This behaviour may be due to the reduction in water infiltration under moss. The difference between GAM and NGAM plots in average runoff rates varied from 1·4 to 8%. At the same gradients, NGAM plots yielded significantly (α = 0·05) more sediment than GAM plots. Average sediment deliveries for different slopes varied from 0·119 to 3·794 g m−2 min−1 from GAM plots, and from 0·765 to 16·128 g m−2 min−1 from NGAM plots. Sediment yields from GAM plots were reduced by 45 to 85%, compared with those from the NGAM plots. Plots at 30° yielded significantly higher sediments than at the other gradients. Total sediments S increased with slope gradients G in a linear form, i.e. S = 9·25G − 39·6 with R2 = 0·77*, for the GAM plots, and in an exponential model, i.e. S = 40·4 exp(0·1042G) with R2 = 0·93**, for the NGAM plots. In all cases, sediment deliveries decreased with time, and reached a relative steady state at a rainfall duration of 14 min. Compared with NGAM plots, the final percentage reductions in sediment delivery from GAM plots were higher than those at the initial time of rainfall at all slopes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Seventy field experiments were conducted in seven rills located on a semiarid rangeland hillslope underlain by gravelly soils at Walnut Gulch, Arizona. The rills, which are characterized by wide, shallow cross-sections and gravel-covered beds, have mean at-a-station hydraulic geometry exponents of b = 0·33, f = 0·34 and m = 0·33. Although the differences between these values and typical values of b = 0·30, f = 0·40 and m = 0·30 for cropland rills are not statistically significant, they are thought to be real, as cropland rills often have more rectangular cross-sections and steeper sides than the rangeland rills under study. For rills formed in silty loamy soils, Govers developed an empirical relation between mean flow velocity and discharge. Emphasizing the generality of this relation, he suggested that it may be used as a simple means of routing runoff through rills. He also noted that this relation appeared to be unaffected by either slope or soil materials. The present data represent rills underlain by coarser and somewhat more varied gravel-rich soils. These data do not conform to Govers' relation, and a multiple regression analysis reveals that slope and soil materials, either directly or indirectly through bed roughness, exert almost as much influence on flow velocity as does discharge. Three alternative methods are developed for predicting flow velocity in the rills under study. All three methods give good results with the largest root mean square deviation being 3·115 cm s−1.  相似文献   

16.
Experiments with the 10 m Flood Channel Facility at HR Wallingford, UK, indicate a fundamental dependency of the overbank deposition pattern of channel suspended sediments on channel planform. Two experiments (100 and 140 l s?1) in a 1·95 m wide straight channel showed deposition concentrated in a berm along the channel bank. Little sediment was transferred further onto the floodplain. For the larger flow, the berm formed further from the channel. A single experiment (103 l s?1) with a 1·31 m wide meandering channel showed deposition across the entire floodplain tongue between successive meanders. Maximum deposition occurred on the downstream side of the meander, just past the bend apex. These generalized flume results complement the real‐world but site‐specific data of field studies. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Partitioning resistance to overland flow on rough mobile beds   总被引:1,自引:0,他引:1  
For overland flows transporting predominantly bed load over rough mobile beds without rainfall, resistance to flow f may be divided into four components: surface resistance fs, form resistance ff, wave resistance fw, and bed‐mobility resistance fm. In this study it is assumed that f = fs + ff + fw + fm, and an equation is developed for each component. The equations for fs and ff are borrowed from the literature, while those for fw and fm are developed from two series of flume experiments in which the beds are covered with various concentrations of large‐scale roughness elements. The first series consists of 65 experiments on fixed beds, while the second series contains 194 experiments on mobile beds. All experiments were performed on the same slope (S = 0·114) and with the same size of sediment (D = 0·00074 m). The equations for fw and fm are derived by a combination of dimensional analysis and regression analysis. The analyses reveal that the major controls of fw and fm are the Froude number F and the concentration of the roughness elements Cr. When the equations for fw and fm are summed, the Cr terms cancel out, leaving fw+m = 0·63F?2. An equation is developed that predicts total f, and the contributions of fs, ff, fw and fm to f are computed from the series 1 and 2 experiments. An analysis of the first series reveals that in clear‐water flows over fixed beds, fw accounts for 52 per cent of f. A similar analysis of the second series indicates that in sediment‐laden flows over mobile beds fw comprises 37 per cent and fm 32 per cent of f, so that together fw and fm account for almost 70 per cent of f. Finally, regression analyses indicate that where F > 0·5, fw and fm each vary with F?2 and fw/fm = 1·18. The equation developed here for predicting total f applies only to the range of hydraulic, sediment, and bed roughness conditions represented by the experimental data. With additional data from a broader range of conditions the same methodology as employed here could be used to develop a more general equation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The vector physics of wind‐driven rain (WDR) differs from that of wind‐free rain, and the interrill soil detachment equations in the Water Erosion Prediction Project (WEPP) model were not originally developed to deal with this phenomenon. This article provides an evaluation of the performance of the interrill component of the WEPP model for WDR events. The interrill delivery rates were measured in the wind tunnel facility of the International Center for Eremology (ICE), Ghent University, Belgium with an experimental setup to study different raindrop impact velocity vectors. Synchronized wind and rain simulations with wind velocities of 6, 10 and 14 m s–1 were applied to a test surface placed on windward and leeward slopes of 7, 15 and 20%. Since both rainfall intensity and raindrop impact velocity varied greatly depending on differences in the horizontal wind velocity under WDRs, the resultant kinetic energy flux (KEr, in J m–2 s–1) was initially used in place of the WEPP model intensity term in order to incorporate the effect of wind on impact velocity and frequency of raindrops. However, our results showed only minor improvement in the model predictions. For all research data, the model Coefficients of Determination (r2) were 0·63 and 0·71, when using the WEPP and the KEr approaches, respectively. Alternately, integrating the angle of rain incidence into the model by vectorally partitioning normal kinetic energy flux (KErn, in J m–2 s–1) from the KEr greatly improved the model's ability to estimate the interrill sediment delivery rates (r2 = 0·91). This finding suggested that along with the fall trajectory of wind‐driven raindrops with a given frequency, raindrop velocity and direction at the point of impact onto the soil surface provided sufficient physical information to improve WEPP sediment delivery rate predictions under WDR. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This article introduces the SVG (salt‐velocity gauge), a novel automated technique for measuring flow velocity by means of salt tracing. SVG allows a high measuring rate (up to one every 2 seconds), short control section length (down to 10 cm), high accuracy (+[sol ]?1·5 cm s?1), and unbiased calculation of the mean velocity in experimental conditions with turbulent, supercritical flow. A few cubic centimetres of saturated salt solution (NaCl) are injected into the flow at regular time intervals using a programmable solenoid valve. The tracer successively passes two conductivity probes placed a short distance downstream. The transformation of the signal between the two probes is modelled as a one‐dimensional diffusion wave equation. Model calibration gives an estimation of the mean velocity and the diffusion for each salt plume. Two implementations of the SVG technique are described. The first was an outdoors simulated rainfall experiment in Senegal (conductivity probes at 40 cm apart, 8 Hz measurement rate, salt injections at 10 second intervals). Mean velocity was estimated to range between 0·1 and 0·3 m s?1. The second was a laboratory‐based flume experiment (conductivity probes at 10 cm apart, 32 Hz, salt injections at 2 second intervals). Another SVG with probes at 34 cm apart was used for comparison. An acoustic Doppler velocimeter (ADV) was also used to give an independent assessment of velocity. Using the 10 cm salt gauge, estimated mean velocity ranged from 0·6 to 0·9 m s?1 with a standard deviation of 1·5 cm s?1. Comparisons between ADV, 10 cm SVG and 34 cm SVG were consistent and demonstrated that the salt‐tracing results were unbiased and independent of distance between probes. Most peaks were modelled with r2 > 90 per cent. The SVG technology offers an alternative to the dye‐tracing technique, which has been severely criticized in the literature because of the wide interval of recommended values for the correction factor α to be applied to the timings. This article demonstrates that a fixed value of α is inappropriate, since the correction factor varies with velocity, diffusion and the length of the control section. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The study concerns sand deposition within a regular array of vertical cylinders placed in the path of a sand-laden wind. Twelve wind tunnel experiments using three preselected shear velocities (28·78, 32·86 and 45·1 cm s−1), with associated rates of sand feed (0·3, 2·0 and 3·8 g cm−1 s−1), and four roughness element concentrations (λ = 0·046, 0·092, 0·184 and 0·369) were carried out to evaluate the factors that affect sand deposition and sand flux in the presence of immobile rough elements. The measurements showed that as the concentration of non-erodible elements increased, the percentage reduction in the initial sand flux increased and a particularly sharp reduction occurred when λ ≥ 0·18. The pattern of reduction was found to be qred = qeq (d/H) [Δy/(Δyd)](0·68 −3·5λ) when λ ≤ 0·18, and qred = qeq(d/H)[Δy/(Δyd)](0·025) when λ > 0·18, where qeq is the equilibrium rate of sand transport arriving at the best bed, d is the diameter of the cylinder, H is the height of the cylinder, and Δy is the width of unit area associated with a cylinder. The experimenal results also showed that the sand flux downstream of the array started to increase immediately upon the commencement of burial of the array's cylinders. Thus the sand deposition and sand flux along an array consisting of regularly distributed, non-erodible elements were shown to be neither uniform nor steady. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号