首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This article addresses spatial variability of comtemporary floodplain sedimentation at the event scale. Measurements of overbank deposition were carried out using sediment traps on 11 floodplain sections along the rivers Waal and Meuse in The Netherlands during the high-magnitude flood of December 1993. During the flood, sand sheets were locally deposited behind a natural levee. At distances greater than 50 to 100 m from the river channel the deposits consisted mainly of silt- and clay-sized material. Observed patterns of deposition were related to floodplain topography and sediment transporting mechanisms. Though at several sites patterns were observed that suggest transport by turbulent diffusion, convection seems the dominant transporting mechanism, in particular in sections that are bordered by minor embankments. The average deposition of overbank fines ranged between 1·2 and 4·0 kg m−2 along the river Waal, and between 1·0 and 2·0 kg m−2 along the river Meuse. The estimated total accumulation of overbank fines (not including sand sheets) on the entire river Waal floodplain was 0·24 Mton, which is 19 per cent of the total suspended sediment load transported through the river Waal during the flood. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
It is often believed that extreme but infrequent events are most important in the development of landforms. When evaluating the overall effect of large floods on floodplain sedimentation, quantitative measurements of both high- and low-magnitude events should be considered. To analyse the role of flood magnitude on floodplain sedimentation, we measured overbank sedimentation during floods of different magnitude and duration. The measurements were carried out on two embanked floodplain sections along the rivers Rhine and Meuse in The Netherlands, using sediment traps made of artificial grass. The results showed an increase in total sediment accumulation with flood magnitude, mainly caused by enhanced accumulation of sand. At low floodplain sections the increase in sediment deposition was smaller than expected from the strong increase in suspended sediment transport in the river. Spatial variability in sediment accumulation was found to depend both on flood magnitude and duration. Deposition of sand on natural levees mainly takes place during high-magnitude floods, whilst low floods and slowly receding floods are important for the deposition of silt and clay in low-lying areas, at greater distance from the main channel. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
Both climate change and river rehabilitation projects induce changes in floodplain sedimentation. Notably along the lower River Rhine, the sediment deposition patterns and rates are subject to change. To assess the magnitude of these changes, we developed the MoCSED model, a floodplain sedimentation model within a geographical information system for the lower Rhine River. We based MoCSED on the ‘method of characteristics’ (MoC), a particle tracking method that minimizes numerical dispersion. We implemented the MoCSED model in the PCRaster dynamic modelling language. The model input comprises initial suspended sediment concentrations, water levels, flow velocities, and longitudinal and transverse dispersivities. We used a combination of the Krone and Chen concepts to calculate the subsequent sedimentation (SED routine). We compared the model results with sediment trap data for the Bemmel floodplain along the Dutch Waal River during the 2003 inundation. This comparison showed that MoCSED was able to simulate the pattern of sediment deposition. In addition, the model proved to be an improvement in comparison with a conventional raster‐based floodplain sedimentation model for the lower River Rhine. In future, MoCSED may serve well to study the impact of a changing discharge regime due to climate change and floodplain rehabilitation plans on deposition of sediments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Patterns of overbank sedimentation in the vicinity of, and far removed from, levee breaks that occurred in response to the >100 year, summer 1993 flood in the upper Mississippi River valley are elucidated. Two suites of overbank deposits were associated with the failure of artificial levees within a 70 km long study reach. Circumjacent sand deposits are a component of the levee break complex that develops in the immediate vicinity of a break site. As epitomized by the levee break complex at Sny Island, these features consist of an erosional, scoured and/or stripped zone, together with a horseshoe-shaped, depositional zone. At locales farther removed from the break site, the impact of flooding was exclusively depositional and was attributed to the settling of suspended sediment from the water column. The overall picture was one of modest scour at break sites and minimal suspended deposition (<4 mm) at locales farther removed from the breach. Downriver from the confluence with the Missouri River, suspended sediment deposition was of a similar magnitude to that observed within the study reach and levee break complexes exhibited a similar morphology, but scour at break sites was greatly enhanced and the excavated sand formed extensive deposits on the floodplain surface. The different erosional response was probably engendered by the higher sand content and reduced aggregate cohesion of the floodplain soils downriver from the confluence with the Missouri River. A qualitative comparison serves to highlight the influence that the resistance threshold may have on the sensitivity of floodplains bordering large low-gradient rivers to high magnitude floods. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
A palynological approach was used to estimate overbank deposition rates in a forested catchment affected by logging. The palynological approach uses downcore variations in total fossil pollen and fossil pollen assemblage to calculate rates of overbank deposition and has a distinct advantage over radioisotopic approaches in that it is not limited by radioactive decay. Using this approach, we determined that overbank deposition rates increased over 400 per cent within years of logging events and that the increased rates persisted for less than 4 years. After logging‐induced deposition peaked, overbank deposition decreased over 60 per cent relative to the pre‐logging background values. The decreased deposition rates persisted for over 40 years. The immediate effect of logging in this catchment was to induce mass‐wasting events in hollows that produced rapidly travelling sediment pulses. In the subsequent recovery period, reduced sediment loading occurred as a result of a reduction in the volume of sediment available for transport. The reduction in sediment load led to a reduction in overbank deposition rates until subsequent logging disturbances destabilized and emptied other hollows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   

7.
Slow earth sliding is pervasive along the concave side of Red River meanders that impinge on Lake Agassiz glaciolacustrine deposits. These failures form elongated, low‐angled (c. 6 to 10°) landslide zones along the valleysides. Silty overbank deposits that accumulated during the 1999 spring freshet extend continuously along the landslide zones over hundreds of metres and aggraded the lower slopes over a distance 50 to 80 m from the channel margin. The aggradation is not obviously related to meander curvature or location within a meander. Along seven slope profiles surveyed in 1999 near Letellier, Manitoba, the deposits locally are up to 21 cm thick and generally thin with increasing distance from, and height above, the river. Local deposit thickness relates to distance from the channel, duration of inundation of the landslide surface, mesotopography, and variations in vegetation cover. Immediately adjacent to the river, accumulated overbank deposits are up to 4 m thick. The 1999 overbank deposits also were present along the moderately sloped (c. 23 to 27°) concave banks eroding into the floodplain, but the deposits are thinner (locally up to c. 7 cm thick) and cover a narrower area (10 to 30 m wide) than the deposits within the landslide zones. Concave overbank deposition is part of a sediment reworking process that consists of overbank aggradation on the landslide zones, subsequent gradual downslope displacement from earth sliding, and eventually reworking by the river at the toe of the landslide. The presence of the deposits dampens the outward migration of the meanders and contributes to a low rate of contemporary lateral channel migration. Concave overbank sedimentation occurs along most Red River meanders between at least Emerson and St. Adolphe, Manitoba. © Her Majesty the Queen in right of Canada.  相似文献   

8.
Arsenic-contaminated mine tailings that were discharged into Whitewood Creek at Lead, South Dakota, from 1876 to 1978, were deposited along the floodplains of Whitewood Creek and the Belle Fourche River. The resulting arsenic-contaminated floodplain deposit consists mostly of overbank sediments and filled abandoned meanders along White-wood Creek, and overbank and point-bar sediments along the Belle Fourche River. Arsenic concentrations of the contaminated sediments indicate the degree of dilution of mine tailings by uncontaminated alluvium. About 13 per cent of the 110 × 106 Mg of mine tailings that were discharged at Lead were deposited along the Whitewood Creek floodplain. Deposition of mine tailings near the mouth of Whitewood Creek was augmented by an engineered structure. About 29 per cent of the mine tailings delivered by Whitewood Creek were deposited along the Belle Fourche River floodplain. About 60 per cent of that sediment is contained in overbank deposits. Deposition along a segment of the Belle Fourche River was augmented by rapid channel migration. The proportions of contaminated sediment stored along Whitewood Creek and the Belle Fourche River are consistent with sediment storage along the floodplains of perennial streams in other, similar sized watersheds.  相似文献   

9.
10.
This paper reports on the erosion, transport, and deposition processes associated with an overbank deposit formed by the flooding of the Abu River on July 28, 2013, in Yamaguchi City, Japan. At the study site, river flows overtopped the levee revetment upstream of a meander bend cutting it off and flowing back into the main channel downstream. In this sequential process, it deposited large amounts of sediments, ranging from mud to cobbles, on the floodplain. The surface of paddy fields adjacent to a railway line, located at the center of the affected floodplain, was severely eroded by the flood flows. Overbank deposits composed of both upstream finer sediments and eroded coarser terrestrial sediments are laid down in the affected area. Large amounts of pebbles and cobbles originating from the eroded terrestrial area formed a gravelly pile on top of the sand and gravel sediments derived from the river. This finding indicates that sands and gravels were deposited prior to the formation of the gravelly pile, probably before and during peak flood flows. An inverse grading structure is evident in the lower to middle part of these comparatively thick deposits, most likely due to differences in transport pattern between entrained terrestrial gravels and upstream finer sediments.  相似文献   

11.
Channelization of the severely polluted Odra and Vistula Rivers in Poland induced intensive accumulation of fine‐grained deposits rich in organic matter and heavy metals. These sediments have been identified in vertical profiles in a narrow zone along river banks both in groyne‐created basins and on the floodplain. Grain size, organic matter, zinc (Zn), lead (Pb), copper (Cu) content and cesium‐137 (137Cs) was used for sediment dating and, stratigraphy and chemistry have been diagnostic features for these deposits, named industrial alluvium. In the most polluted river reaches stabilized by bank reinforcements and groynes, 2‐m‐thick slack water groyne deposits are composed of uniform strata of polluted silts with organic matter content over 10%, Zn content over 1000 mg/kg and average Cu and Pb over 100 mg/kg. The average rate of sediment accretion in groynes is higher than on the floodplain and reaches 5 cm/yr. Stratification which appears at higher levels in the groyne fields and on the levees reflects a change from in‐channel to overbank deposition and is typified by dark layers separated by bright, sandy, and less polluted strata. Stratified, 4‐m‐thick, sediment sequences have been found in groyne fields of incised river reaches. The average rate of sediment accretion in these reaches is of the order of 5 cm/yr. In stable and relatively less polluted river reaches, vertical‐accretion organic deposits are finely laminated and the average rate of deposition amounts to a few millimeters per year. Investigations indicate that groyne construction favors conditions for long‐term storage of sediments at channel banks. For this reason, groynes should be considered as structures that efficiently limit sudden release of sediment‐associated heavy metals stored in channels and in floodplains of the historically polluted rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Recent studies of sediment delivery and budgets in the United States indicate that upland erosion rates at a given time may not explain contemporaneous sediment yields from a drainage basin. This suggests temporal discontinuities in sediment delivery associated with hillslope and channel storage processes. Integration of sediment production, storage and transport is essential to understand sediment routing in basins. We analysed each process chronologically using aerial photographs, monitoring data of sediment movement and annual tree-rings, and then compared estimated temporal changes in sediment production from hillslopes, floodplain disturbance areas and sediment transport in river channels. Toeslopes, floodplains and alluvial fans together contained 59 per cent of sediment eroded from uplands over the last 30 years. Monitoring results of riverbed changes showed that the volume of stored sediment on floodplains decreased exponentially with succeeding floods. The age distribution of floodplain deposits reflected the disturbance history of a river channel, and followed an exponential decrease with age. The results of this study may have important implications for sediment control plans for watersheds in steep regions.  相似文献   

13.
The geomorphic evolution of the Jordan River in recent decades indicates that interaction between incision and high-magnitude floods controls sinuosity changes under increasing mouth gradients during base-level fall. The evolution of the river was analyzed based on digital elevation models, remotely sensed imagery, hydrometric data, and a hydraulic model. The response varies along the river. Near the river mouth, where incision rate is high and a deep channel forms, overbank flooding is less likely. There, large floods exert high shear stress within the confined channel, increasing sinuosity. Upstream, near the migrating knickzone channel gradients also increase, incision is more moderate and floods continue to overtop the banks, favoring meander chute cutoffs. The resulting channel has a downstream well-confined meandering segment and an upstream low-sinuosity segment. These new insights regarding spatial differences along an incising channel can improve interpretations of the evolution of ancient planforms and floodplains that responded to base-level decline. © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
For the southern branch of the Rhine–Meuse estuary, The Netherlands, a two-dimensional horizontal suspended sediment transport model was constructed in order to evaluate the complicated water quality management of the area. The data needed to calibrate the model were collected during a special field survey at high river runoff utilizing a number of techniques: (1) turbidity probes were used to obtain suspended sediment concentration profiles; (2) air-borne remote sensing video recordings were applied in order to obtain information concerning the spatial distribution of the suspended sediment concentration; (3) an acoustic probe (ISAC) was used to measure cohesive bed density profiles and (4) an in situ underwater video camera (VIS) was deployed to collect video recordings of the suspended sediment. These VIS data were finally processed to fall velocity and diameter distributions and were mainly used to improve insight into the relevant transport processes, indicating significant erosion of sand from the upstream Rhine branch. For quantitative calibration of the model, the data from the turbidity profiles were used. Sedimentation and erosion were modelled according to Krone and Partheniades. The model results showed a good overall fit to the measurements, with a mean absolute error of 18 per cent (standard fault = 1 per cent), corresponding to concentrations of about 0·020 (upstream) to 0·005 kg m−3 (downstream). The overall correlation between observed and simulated suspended sediment concentrations was 0·85. The remote sensing video recordings were used for a qualitative calibration of the model. The distribution pattern of the suspended sediment on these photos was reproduced quite well by the model. However, a more accurate calibration technique is needed to enable the use of aerial remote sensing as a quantitative calibration method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Q. He  D. E. Walling 《水文研究》1998,12(7):1079-1094
River floodplains have been widely recognized as important sinks for storing suspended sediment and associated contaminants transported by river systems. The grain size composition of floodplain deposits exerts an important influence on contaminant concentrations, and commonly exhibits significant spatial variability in response to the dynamic nature of overbank flow and sediment transport. Information on the spatial variability of the grain size composition of overbank deposits is therefore essential for developing an improved understanding of the processes controlling sediment transport on floodplains, and for investigating the fate of sediment-associated contaminants. Such information is also important for validating existing floodplain sedimentation models. This paper reports the results of a study aimed at investigating the spatial variability of the grain size composition of floodplain sediments at different spatial scales, through analysis of surface sediment samples representative of contemporary floodplain deposits collected from frequently inundated floodplain sites on five British lowland rivers. Significant lateral and downstream variations in the grain size composition of the sediment deposits have been identified in the study reaches. An attempt has been made to relate the observed spatial distribution of the grain size composition of the overbank deposits to the local floodplain geometry and topography. The importance of the particle size characteristics of the suspended sediment transported by the rivers in influencing the spatial variability of the grain size composition of the overbank sediments deposited on these floodplains is also considered. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
A series of pristine block-and-ash flow deposits from the May–June 2006 eruption of Merapi represent an exceptional record of small-volume pyroclastic flows generated by gravitational lava-dome collapses over a period of about two months. The deposits form nine overlapping lobes reaching ~ 7 km from the summit in the Gendol River valley on the volcano's southern flank, which were produced by successive flows generated during and after the major dome-collapse event on June 14. Both, single pulse (post-June 14 events) and multiple-pulse pyroclastic flows generated by sustained dome collapses on June 14 are recognised and three types of deposits, spread over an area of 4.7 km², are distinguished, totalling 13.3 × 106 m3: (1) valley-confined basal avalanche deposits (11.7 × 106 m3) in the Gendol River valley, (2) overbank pyroclastic-flow and associated surge deposits (1.4 × 106 m3), where parts of the basal avalanche spread laterally onto interfluves and were subsequently channeled into the surrounding river valleys and (3) dilute ash-cloud surge deposits (0.2 × 106 m3) along valley margins. Variations in the distribution, surface morphology and lithology of the deposits are related to the source materials involved in individual pyroclastic-flow-forming events and varying modes of transport and deposition of the different flows. Inferred flow velocities of the largest block-and-ash flows generated on June 14 vary from 43.8–13.5 m/s for the basal avalanche and from 62.6–24.2 m/s for the ash-cloud surge. The minimum temperatures range from 400 °C for the basal avalanche to 165 °C for the overlying ash cloud. Due to the potential of being re-channeled into adjacent river valleys and flowing laterally away from the main river channel, the overbank pyroclastic flows are considered the most hazardous part of the block-and-ash flow system. The conditions that lead to their development during flow transport and deposition must be taken into account when assessing future pyroclastic flow hazards at Merapi and similar volcanoes elsewhere.  相似文献   

17.
Six plains cottonwoods along the axis of a meander were excavated to determine if dendrochronology could identify the year and location of germination and date past overbank sedimentation events. Samples from all excavated trees showed clear anatomical changes associated with burial, including increased vessel size, decreased definition of annual ring boundaries, and decreased ring widths. Some of these burial signatures were created by deposition of only a few centimeters of sediment, and most burial events were detected by multiple samples from the same tree. Four of the trees germinated at or near the upper surfaces of bar deposits, while two germinated within thin overbank deposits draped over bar deposits, indicating that germination is closely associated with bars. Dates and inferred thicknesses of overbank sedimentation events are consistent with repeated topographic surveys and data obtained from cesium-137 (137Cs) analyses. However, the record of overbank sedimentation extracted from the trees does not entirely reflect the history of past peak discharges documented by stream gaging, largely because individual trees are progressively less likely to be flooded through time as the river migrates farther away. Germination dates and locations closely track past positions of the river channel. Germination elevations and the elevations of the tops of point bars appear to be decreasing with time as the bend migrates, implying vertical incision by Powder River at a rate of 7.1 ± 4.3 mm/yr. The rate of floodplain growth determined by elevation changes decreases progressively through time, ultimately reaching an apparent plateau after 0.8–1.3 m of vertical accretion. While similar patterns of vertical accretion have previously been interpreted as resulting from decreasing flood probability with increasing floodplain elevation, distance from the channel is also a first-order control on vertical floodplain growth. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
Engineered flood bypasses, or simplified conveyance floodplains, are natural laboratories in which to observe floodplain development and therefore present an opportunity to assess delivery to and sedimentation within a specific class of floodplain. The effects of floods in the Sacramento River basin were investigated by analyzing hydrograph characteristics, estimating event‐based sediment discharges and reach erosion/deposition through its bypass system and observing sedimentation patterns with field data. Sediment routing for a large, iconic flood suggests high rates of sedimentation in major bypasses, which is corroborated by data for one bypass area from sedimentation pads, floodplain cores and sediment removal reporting from a government agency. These indicate a consistent spatial pattern of high sediment accumulation both upstream and downstream of lateral flow diversions and negligible sedimentation in a ‘hydraulic shadow’ directly downstream of a diversion weir. The pads located downstream of the shadow recorded several centimeters of deposition during a moderate flood in 2006, increasing downstream to a peak of ~10 cm thick and thinning rapidly thereafter. Flood deposits in the sediment cores agree with this spatial pattern, containing discrete sedimentation layers (from preceding floods) that increase in thickness with distance downstream of the bypass entrance to several decimeters thick at the peak and then thin downstream. These patterns suggest that a quasi‐natural physical process of levee construction by advective overbank transport and deposition of sediment is operating. The results improve understanding of the evolution of bypass flood control structures, the transport and deposition of sediment within these environments and the evolution of one class of natural levee systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Hydrodynamic river models are applied to design and evaluate measures for purposes such as safety against flooding. The modelling of river processes involves numerous uncertainties, resulting in uncertain model results. Knowledge of the type and magnitude of these uncertainties is crucial for a meaningful interpretation of the model results. Uncertainty in the hydraulic roughness due to bed forms is one of the main contributors to the uncertainty in the modelled water levels. The aim of this study was to quantify the uncertainty in the bed form roughness under design conditions and quantify the effect on the design water levels in the Dutch river Waal. Five roughness models that predict bed form roughness based on measured bed form and flow characteristics were extrapolated to design conditions. The results show that the 95% confidence interval of the predicted Nikuradse roughness values under design conditions ranges from 0.32 to 1.03 m. This uncertainty was propagated through the two‐dimensional hydrodynamic model, WAQUA, by means of a Monte Carlo simulation for an idealized schematization of the Dutch river Waal. The uncertain bed form roughness results in an uncertainty in the design water levels, with a 95% confidence interval of 0.53 m, which is significant for Dutch river management practice. The uncertainty in the bed form roughness was mainly caused by a lack of knowledge about the physical process of bed form evolution that causes roughness. An improved estimation of bed form roughness can significantly reduce the uncertainty in the design water levels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
We investigate the use of quartz optically stimulated luminescence (OSL) dating for determining fluvial overbank sedimentation rates over decades to centuries. For the study we took 11 samples from three cores from an embanked floodplain along the River Waal (Rhine) near Neerijnen (The Netherlands). We propose a measurement protocol for young fluvial quartz based on the single-aliquot regenerative dose procedure. Parameters for the protocol are chosen to isolate the fast OSL component, eliminate an ultrafast OSL component and avoid thermal transfer. The protocol shows excellent dose recovery and recycling ratios. For each sample, a Gaussian is fitted to the lower part of the equivalent dose distribution to obtain an estimate of the burial dose. We discuss the validity of the OSL ages using internal and external controls, and conclude that there is no evidence for large systematic offsets in the OSL ages. OSL based sedimentation rates are between ~3 and 8 mm/a, in line with previous estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号