首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seismic response of light secondary systems in a building is dependent on the response of the primary structural system to the seismic ground motion with the result that very high accelerations can be induced in such secondary systems. This response can be reduced through the use of aseismic base isolation which is a design strategy whereby the entire building can be decoupled from the damaging horizontal components of seismic ground motion by the use of some form of isolation system. The paper presents a theoretical analysis of the response of light equipment in isolated structures and a parallel experimental programme both of which show that the use of base isolation can not only attenuate the response of the primary structural system but also reduce the response of secondary systems. Thus, the design of equipment and piping in a base-isolated building is very much simpler than that for a conventionally founded structure: inelastic response and equipment-structure interaction need not be considered and multiple support response analysis is rendered unnecessary. Although an isolation system with linear elastic bearings can reduce the acceleration of the structure, it may be accompanied by large relative displacements between the structure and the ground. A system using lead-rubber hysteretic bearings, having a force-displacement relation which is approximately a bilinear loop, can reduce these displacements. A parallel experimental programme was carried out to investigate the response of light equipment in structures isolated using lead-rubber bearings. The experimental results show that these bearings can dissipate energy and limit the displacement and acceleration of the structure but are less effective in reducing the accelerations in the internal equipment. The results of both the analysis and the tests show that base isolation is a very effective method for the seismic protection of light equipment items in buildings.  相似文献   

2.
本文以某六层砌体橡胶隔震支座与摩擦滑移支座的并联复合隔震结构为例,运用有限元分析程序,对该建筑的一般抗震结构和并联复合隔震结构分别进行了地震作用下的有限元时程分析,结果显示:并联复合隔震结构能够降低上部结构的地震反应,提高建筑物的抗震能力,有明显的隔震、减震效果.  相似文献   

3.
Seismic isolation or “aseismic base isolation” is an earthquake protection strategy that aims to uncouple the motion of a structure from the ground shaking and thereby reduce structural forces. A most effective and successful seismic protection technology, seismic isolation, is by now a mature and viable alternative to traditional capacity design and has been implemented in numerous bridges, buildings, and other special structures worldwide. This paper records the origins and early developments (up to the early 1990s) of seismic isolation.  相似文献   

4.
模型化方法对钢筋混凝土框架地震反应的影响分析   总被引:1,自引:0,他引:1  
结构非线性动力分析平台OpenSees具备丰富的材料、单元、模型化方法等分析选项和强大的求解功能。在OpenSees平台,对按我国规范设计的八度区二级和九度区一级典型钢筋混凝土框架结构进行了一系列罕遇烈度地震作用下的非线性动力反应分析。通过对分析结果的对比、判断,并结合各种模型化方法对结构地震反应的影响方式进行解释,从顶点侧移、层间侧移角、基底剪力、框架塑性铰分布等方面揭示了不同单元力学模型以及箍筋、板筋对结构整体、局部地震反应的影响规律。  相似文献   

5.
Structural design code provisions worldwide prescribe relatively small seismic force reduction factors for seismically base‐isolated structures, making their response to design‐level earthquake excitation essentially elastic. This paper uses the method of dimensional analysis to prove that; in most cases, this is not a conservative design approach but a necessity that emerges from the dynamics of base‐isolated structures. It is shown that allowing typical base‐isolated structures to yield results in large displacement ductility demands for the structure. This phenomenon is caused by the change in the nature of the ground motion excitation as it is transmitted to the structure through the seismic base isolation system as well as by the change in the distribution of displacements between the structure and the isolation bearings caused by yielding of the isolated structure. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A modern base isolation system is proposed for the aseismic control of structures. It is composed of steel-Teflon Flat Sliding Bearings, to support the gravity loads while allowing large horizontal displacements, and simply connected Shape Memory Alloy (SMA) truss elements, to provide the necessary horizontal stiffness as well as a proper restoring capability. The system is referred to as Smart Restorable Sliding Base Isolation System (SRSBIS). Depending on the arrangement of the auxiliary SMA elements, SRSBIS can exhibit a geometric nonlinearity in addition to the nonlinearity of materials. In this paper, the dynamic characteristics of SRSBIS are first examined in terms of the force-displacement behavior, effective period of vibration, and equivalent damping. After that, the earthquake response of buildings equipped with SRSBIS, designed in accordance with a direct displacement-based approach, is evaluated through extensive nonlinear time-history analyses. The effects of the design parameters on the system behavior are then investigated within a comprehensive parametric study and the seismic performances of SRSBIS are finally compared to those of similar practical isolation systems. Based on the results, it is shown that SRSBIS can be suitably used for the seismic protection of structures.  相似文献   

7.
组合基础隔震在建筑工程中的应用   总被引:3,自引:1,他引:2  
隔震作为一种新的抗震技术,已广泛应用于新建和加固的建筑工程,同时,许多新型式的支座得到了开发和应用。组合基础隔震是一种新的隔震设计思想,能充分应用不同类型隔震支座的特性,有效降低上部结构地震反应。本文介绍了组合基础隔震在某一工程中的应用,工程中使用的支座包括普通橡胶隔震支座、铅芯橡胶隔震支座和弹性滑板支座三种类型,对全部使用支座进行了常规检测,结构计算采用等效线性法、能量包络法和时程反应分析等方法,计算结果表明:组合基础隔震能有效降低上部结构的反应,隔震层的变形控制在安全范围之内。  相似文献   

8.
This paper investigates the application of the sliding mode control (SMC) strategies for reducing the dynamic responses of the building structures with base‐isolation hybrid protective system. It focuses on the use of reaching law method, a most attractive controller design approach of the SMC theory, for the development of control algorithms. By using the constant plus proportional rate reaching law and the power rate reaching law, two kinds of hybrid control methods are presented. The compound equation of motion of the base‐isolation hybrid building structures, which is suitable for numerical analysis, has been constructed. The simulation results are obtained for an eight‐storey shear building equipped with base‐isolation hybrid protective system under seismic excitations. It is observed that both the constant plus proportional rate reaching law and the power rate reaching law hybrid control method presented in this paper are quite effective. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
This paper concerns the seismic response of structures isolated at the base by means of High Damping Rubber Bearings (HDRB). The analysis is performed by using a stochastic approach, and a Gaussian zero mean filtered non‐stationary stochastic process is used in order to model the seismic acceleration acting at the base of the structure. More precisely, the generalized Kanai–Tajimi model is adopted to describe the non‐stationary amplitude and frequency characteristics of the seismic motion. The hysteretic differential Bouc–Wen model (BWM) is adopted in order to take into account the non‐linear constitutive behaviour both of the base isolation device and of the structure. Moreover, the stochastic linearization method in the time domain is adopted to estimate the statistical moments of the non‐linear system response in the state space. The non‐linear differential equation of the response covariance matrix is then solved by using an iterative procedure which updates the coefficients of the equivalent linear system at each step and searches for the solution of the response covariance matrix equation. After the system response variance is estimated, a sensitivity analysis is carried out. The final aim of the research is to assess the real capacity of base isolation devices in order to protect the structures from seismic actions, by avoiding a non‐linear response, with associated large plastic displacements and, therefore, by limiting related damage phenomena in structural and non‐structural elements. In order to attain this objective the stochastic response of a non‐linear n‐dof shear‐type base‐isolated building is analysed; the constitutive law both of the structure and of the base devices is described, as previously reported, by adopting the BWM and by using appropriate parameters for this model, able to suitably characterize an ordinary building and the base isolators considered in the study. The protection level offered to the structure by the base isolators is then assessed by evaluating the reduction both of the displacement response and the hysteretic dissipated energy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
根据基础隔震理论,在钢筋沥青隔震礅的基础上,提出一种新型钢结构隔震礅,设计和制作了缩尺房屋模型,并对其进行振动台试验。通过对隔震结构模型的动力特性、地震响应及能量平衡分析,绘制试验过程中的加速度及能量时程曲线,研究钢隔震礅应用于低层框架结构的减震耗能能力。大量工程实例可以看出该隔震礅隔震效果显著,制作简单、价格低廉、耐久性好,适于在广大村镇地区低层框架结构中推广使用。试验表明:隔震结构模型在不同的地震作用下,加速度折减系数处在0.24~0.51之间,且结构的阻尼耗能在振动台试验中占总输入能量的60%~70%,对结构耗能起主导作用,说明该基础隔震装置不仅具有较好的减震耗能特性能,对于控制隔震层的位移也有好的效果。  相似文献   

11.
对并联复合隔震结构的地震反应性能进行了分析。通过有限元软件模拟并联复合隔震结构试验确定了软件分析所需的一些参数,利用这些参数建立了并联复合隔震结构工程模型,并对其进行了时程分析。结果表明,复合隔震结构的基底剪力和位移在不同结构特征、不同场地类别和不同地震烈度下反应不敏感,说明其在设计与应用时非常有利。  相似文献   

12.
高层建筑结构的抗震可靠度分析与优化设计   总被引:12,自引:4,他引:12  
本文根据我们在文献2中给出的等效随机地震静力作用模型,紧密结合规范和利用我们在文献6中提出的结构体系可靠度分析的最弱失效模式法,提出了结构构件和体系“小震不坏”和“大震不倒”及结构体系在设计基准期内的抗震可靠度分析方法;重新校准了结构构件的目标可靠度指标;综合考虑结构造价和损失期望,提出了结构体系抗震目标可靠度的优化决策方法;分别给出了满足构件抗震目标可靠指标与同时满足构件和体系抗震目标可靠指标的  相似文献   

13.
The seismic response analysis of a base-isolated liquid storage tank on a half-space was examined using a coupling method that combines the finite elements and boundary elements. The coupled dynamic system that considers the base isolation system and soil–structure interaction effect is formulated in time domain to evaluate accurately the seismic response of a liquid storage tank. Finite elements for a structure and boundary elements for liquid are coupled using equilibrium and compatibility conditions. The base isolation system is modeled using the biaxial hysteretic element. The homogeneous half-space is idealized using the simple spring-dashpot model with frequency-independent coefficients. Some numerical examples are presented to demonstrate accuracy and applicability of the developed method.Consequently, a general numerical algorithm that can analyze the dynamic response of base-isolated liquid storage tanks on homogeneous half-space is developed in three-dimensional coordinates and dynamic response analysis is performed in time domain.  相似文献   

14.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
应用叠层橡胶支座进行基础隔震是目前国内外大力推广的一门建筑抗震新技术。但由于对采用隔震技术后建筑物的工程造价是否会增加缺乏具体的经济技术指标,使得建筑开发商对其推广应用一直持保守态度。选择了位于VIII度区的两个典型工程实例(一例为乙类建筑,另一例为丙类建筑),简要分析了同一建筑物采取不同设计方案(不隔震但抗震设防、隔震使实际设防水平提高、隔震后与未隔震建筑保持相同设防水平等三种不同设计方案)对工程造价的影响及差异。分析数据表明,在同等设防烈度下,基础隔震技术的合理应用可以使被隔震建筑的工程造价与同条件只采用抗震设防的建筑工程造价适当降低。  相似文献   

16.
The ability of a recently proposed seismic isolation system, with inherent self‐stopping mechanism, to mitigate or even eliminate seismic pounding of adjacent structures is investigated under severe near‐fault earthquakes. The isolation system is referred to as roll‐in‐cage (RNC) isolator. It is a rolling‐based isolator that provides in one unit the necessary functions of vertical rigid support, horizontal flexibility with enhanced stability, hysteretic energy dissipation, and resistance to minor vibration loads. In addition, the RNC isolator is distinguished by a self‐stopping (buffer) mechanism to limit the bearing displacement under excitations stronger than a design earthquake or at limited seismic gaps, and a linear gravity‐based self‐recentering mechanism to prevent permanent bearing displacement without causing vertical fluctuation of the isolated structure. A previously developed multifeature SAP2000 model of the RNC isolator is improved in this paper to account for the inherent buffer mechanism's damping. Then, the effectiveness of the isolator's buffer mechanism in limiting peak bearing displacements is studied together with its possibly arising negative influence on the isolation efficiency. After that, the study investigates how to alleviate or even eliminate those possibly arising drawbacks, due to the developed RNC isolator's inner pounding as a result of its buffer activation, to achieve efficient seismic isolation with no direct structure‐to‐structure pounding, considering limited seismic gaps with adjacent structures and near‐fault earthquakes. The results show that the RNC isolator could be an efficient solution for aseismic design in near‐fault zones considering limited seismic gaps. Earthquake Engineering and Structural Dynamics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
考虑耦联影响的二次结构体系减震分析   总被引:3,自引:2,他引:1  
建立了基础隔震的主次结构体系耦联运动方程,开发了动力分析程序PS—BASE.FOR,对一典型结构的二次结构绝对加速度反应谱与相对位移反应谱计算分析表明,主体结构隔震或同时增大二次结构阻尼,是取得二次结构较好抗震性能的有效途径,增大主体结构的隔震阻尼对二次结构略有不利影响。  相似文献   

18.
组合梁-方钢管混凝土柱框架结构抗震性能的pushover分析   总被引:3,自引:0,他引:3  
采用考虑组合梁多材料截面引起的正向、负向刚度、强度和承载力不同的截面本构模型,建立了组合梁结构的弹塑性分析模型,对一个15层的钢混凝土组合梁-方钢管混凝土柱框架结构开展了多遇地震、罕遇地震下的pushover分析,为组合框架结构体系的抗震性能分析以及pushover方法在该体系中的应用提供了参考。在此基础上,与钢梁-方钢管混凝土柱框架结构、钢梁-钢筋混凝土柱框架结构进行对比研究,比较了几种结构的动力特性,表明组合梁-方钢管混凝土柱框架结构体系相对于其它两种框架结构体系具有更好的抗震性能。  相似文献   

19.
The coupled lateral-vertical-rocking dynamic response of spring-viscous damper isolated structures is considered. The force-displacement relation of the viscous dampers is described by an experimentally calibrated fractional derivative viscoelasticity model. The equations of motion are derived and reduced to a form for direct solution by the discrete Fourier transform method. The validity and accuracy of the derived solution are demonstrated by comparison with shake table test results. The developed analysis procedure is employed in the seismic analysis of a recently constructed isolated structure. The analytical and experimental results demonstrate that spring-viscous damper isolation systems are capable of providing both effective seismic and vibration isolation.  相似文献   

20.
An experimental test program on a full‐scale model representing a sub‐assemblage of the cloister facade of the Sao Vicente de Fora monastery, retrofitted through base isolation, has been recently carried out at the European Laboratory for Structural Assessment of the Joint Research Centre of the European Commission. In this paper an overview of the laboratory model and the experimental results is provided. In particular, firstly the test model is described, including the geometry and mechanical properties of the masonry specimen and the design of the isolation devices; then the testing method and the sub‐structuring of the isolation system are described and the seismic inputs adopted for the pseudo‐dynamic tests are defined. Finally, the experimental results are discussed and compared to the analogous results obtained on the ‘as is’, fixed‐base sub‐assemblage model. The implications of the test outcomes are emphasized and developments of this research line are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号