首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Abstract

It is generally accepted that the celerity of a discharge wave exceeds that of a floodwave. The discharge wave is the initial wavefront (shown by an increase in stage at a particular site), whereas the floodwave refers to the body of water moving downstream. Yet, few studies have investigated the varying relationship between discharge and suspended sediment concentration as floods propagate downstream. This paper examines the relative velocities of the discharge and sediment waves for natural flood events on the River Severn, UK. Four monitoring stations were established within the upper 35 km reach of the River Severn (drainage basin area 380 km2). Discharge was monitored using fixed structures, and suspended sediment concentrations were monitored at similar locations using Partech IR40C turbidity meters. Results showed discharge wave celerity increased with flood magnitude, but relationships were more complex for sediment wave celerity. Sediment wave celerity was greater than discharge wave celerity, and is attributed to the dominant source of sediment, which is most probably bank erosion.  相似文献   

2.
Redwood Creek, north coastal California, USA, has experienced dramatic changes in channel configuration since the 1950s. A series of large floods (in 1955, 1964, 1972 and 1975) combined with the advent of widespread commercial timber harvest and road building resulted in extensive erosion in the basin and contributed high sediment loads to Redwood Creek. Since 1975, no peak flows have exceeded a 5 year recurrence interval. Twenty years of cross-sectional survey data document the downstream movement of a ‘sediment wave’ in the lower 26 km of this gravel-bedded river at a rate of 800 to 1600 m a−1 during this period of moderately low flows. Higher transit rates are associated with reaches of higher unit stream power. The wave was initially deposited at a site with an abrupt decrease in channel gradient and increase in channel width. The amplitude of the wave has attenuated more than 1 m as it moved downstream, and the duration of the wave increased from eight years upstream to more than 20 years downstream. Channel aggradation and subsequent degradation have been accommodated across the entire channel bed. Channel width has not decreased significantly after initial channel widening from large (>25 year recurrence interval) floods. Three sets of longitudinal surveys of the streambed showed the highest increase in pool depths and frequency in a degrading reach, but even the aggrading reach exhibited some pool development through time. The aggraded channel bed switched from functioning as a sediment sink to a significant sediment source as the channel adjusted to high sediment loads. From 1980 to 1990, sediment eroded from temporary channel storage represented about 25 per cent of the total sediment load and 95 per cent of the bedload exported from the basin.  相似文献   

3.
Suspended sediment dynamics during the period 1964–1985 are examined along the mainstem of Changjiang (Yangtze River). The period represents a basin condition prior to major changes in land management policy and dam building on the river's mainstem. The downstream sediment dynamics reflect basin geology and topography and channel morphology. Sediment exchange within the mainstem was calculated by the development of reach sediment balances that reveal complex temporal and spatial patterns. There is relatively little sediment exchange in the upper, bedrock‐controlled reaches, with systematic increases in the downstream alluvial reaches. Degrading, transfer, and aggrading reaches were identified. Relations between input and output in all reaches were significant but no relation was found between sediment exchange and input/output. Comparison between ‘short‐term’ (22 years) and ‘long‐term’ (52 years) records demonstrates the importance of the record length in studying the suspended sediment dynamics in a large fluvial system. The longer record yielded better correlation and different trends than the shorter record. Sediment transfer (output/input ratio) changes downstream: the dominance of the upstream contributing area in sustaining the appearance of net degradation through most of the river system highlights the importance of reach length on characterisation of suspended sediment dynamics in large fluvial systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
1 INTRODUCTION Increasing attention is being given to sedimentation hazards downstream from reservoirs as dams built during the past century accumulate progressively greater volumes of sediment. The sediment storage both decreases reservoir capacity and operating efficiency of the dam, and creates a 搒ediment-shadow?downstream where sediment-starved flows commonly erode channel boundaries and create long-term channel instabilities. Numerous studies have documented downstream channel change…  相似文献   

5.
This paper explores changes in suspended sediment transport and fine sediment storage at the reach and patch scale associated with the reintroduction of partial large wood (LW) jams in an artificially over‐widened lowland river. The field site incorporates two adjacent reaches: a downstream section where LW jams were reintroduced in 2010 and a reach immediately upstream where no LW was introduced. LW pieces were organized into ‘partial’ jams incorporating several ‘key pieces’ which were later colonized by substantial stands of aquatic and wetland plants. Reach‐scale suspended sediment transport was investigated using arrays of time‐integrated suspended sediment samplers. Patch‐scale suspended sediment transport was explored experimentally using turbidity sensors to track the magnitude and velocity of artificially generated sediment plumes. Fine sediment storage was quantified at both reach and patch scales by repeat surveys of fine sediment depth. The results show that partial LW jams influence fine sediment dynamics at both the patch and reach scale. At the patch‐scale, introduction of LW led to a reduction in the concentration and increase in the time lag of released sediment plumes within the LW, indicating increased diffusion of plumes. This contrasted with higher concentrations and lower time lags in areas adjacent to the LW; indicating more effective advection processes. This led to increased fine sediment storage within the LW compared with areas adjacent to the LW. At the reach‐scale there was a greater increase in fine sediment storage through time within the restored reach relative to the unrestored reach, although the changes in sediment transport responsible for this were not evident from time‐integrated suspended sediment data. The results of the study have been used to develop a conceptual model which may inform restoration design. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
An extensive literature about fluvial sediment waves, slugs or pulses has emerged in the past 20 years. The concept has been useful in many respects, but has been applied to diverse phenomena using a variety of definitions. Moreover, inferred linkages between channel‐bed changes and sediment loads are often not justifiable. This paper reviews concepts of large fluvial sediment waves at scales extending to several tens of kilometres. It points out constraints on the inferences that can be made about sediment loads based on changes in channel‐bed elevation at this scale where channel sediment interacts with storage in floodplain and terrace deposits. The type area of G. K. Gilbert's initial sediment‐wave concept is re‐examined to show that neither wave translation nor dispersion occurred in the simple manner commonly assumed. Channel aggradation and return to graded conditions provide an alternative theory explaining Gilbert's observed bed‐elevation changes. Recognizing the evidence and implications of the former passage of a large‐scale bed wave is essential to the accurate diagnosis of catchment conditions and the adoption of appropriate river restoration goals or methods. Sediment loads, water quality, channel morphologic stability and aquatic ecosystems often reflect changes in sediment storage long after the channel bed has returned to grade. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Sediment delivery from hillslopes to trunk streams represents a significant pathway of mass transfer in the landscape, with a large fraction facilitated by gully systems. The internal gully geomorphic dynamics represent a considerable gap in many landscape and empirical erosion models, therefore a better understanding of these processes over longer timescales (10–104 years) is needed. This study analyses the sediment mass balance and storage dynamics within a headwater gully catchment in central Europe over the last ~12 500 years. Human induced erosion resulted in hillslope erosion rates ~2.3 times higher than under naturally de‐vegetated conditions (during the Younger Dryas), however the total sediment inputs to the gully system (and therefore gully aggradation), were similar. Net gully storage has consistently increased to become the second largest term in the sediment budget after hillslope erosion (storage is ~45% and ~73% of inputs during two separate erosion and aggradation cycles). In terms of the depletion of gully sediment storage, the sediment mass balance shows that export beyond the gully fan was not significant until the last ~500 years, due to reduced gully fan accommodation space. The significance of storage effects on the gully sediment mass balance, particularly the export terms, means that it would be difficult to determine the influences of human impact and/or climatic changes from floodplain or lake sedimentary archives alone and that the sediment budgets of the headwater catchments from which they drain are more likely to provide these mechanistic links. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Extreme rainfall in June 1949 and November 1985 triggered numerous large debris flows on the steep slopes of North Fork Mountain, eastern West Virginia. Detailed mapping at four sites and field observations of several others indicate that the debris flows began in steep hillslope hollows, propagated downslope through the channel system, eroded channel sediment, produced complex distributions of deposits in lower gradient channels, and delivered sediment to floodwaters beyond the debris-flow termini. Based on the distribution of deposits and eroded surfaces, up to four zones were identified with each debris flow: an upper failure zone, a middle transport/erosion zone, a lower deposition zone, and a sediment-laden floodwater zone immediately downstream from the debris-flow terminus. Geomorphic effects of the debris flows in these zones are spatially variable. The initiation of debris flows in the failure zones and passage through the transport/erosion zones are characterized by degradation; 2300 to 17 000 m3 of sediment was eroded from these zones. The total volume of channel erosion in the transport/erosion zones was 1·3 to 1·5 times greater than the total volume of sediment that initially failed, indicating that the debris flows were effective erosion agents as they travelled through the transport/erosion zones. The overall response in the deposition zones was aggradation. However, up to 43 per cent of the sediment delivered to these zones was eroded by floodwaters from joining tributaries immediately after debris-flow deposition. This sediment was incorporated into floodwaters downstream from the debris-flow termini causing considerable erosion and deposition in these channels. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Changxing Shi 《水文研究》2016,30(2):232-244
Using hydrological and sediment data, this study investigated decadal trends in sediment erosion/deposition in the Inner Mongolia reach of the upper Yellow River. The calculated yearly sediment erosion/deposition show that the reach was dominated by aggradation, degradation, and aggradation successively in three periods with the years around 1961 and 1987 as break‐points. By constructing relations between water discharge and sediment load, the contributions of key factors to the changes in sediment erosion/deposition in the reach were quantified. Results show that the sediment retention behind the main stem dams, the increase of natural runoff, and the decrease of sediment inputs from tributaries and upstream watershed were the main factors causing the transition from aggradation during 1955–1961 to degradation during 1962–1987. The reduction of natural runoff, the decrease of sediment retention behind dams, and the rise of sediment supply from tributaries were the key causes of the reversal from degradation in 1962–1987 to aggradation in 1988–2003. Water diversion has played an important role in the long‐term aggradation of the Inner Mongolia reach. The main stem dams had functioned to alleviate siltation after 1961, but their effects on siltation reduction had been gradually diminishing since the 1990s. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Fluvial sediment delivery is the main form of sediment transfer from the land to the sea, but this process is currently undergoing significant variations due to the alteration of catchment and base level controls related to climate change and human activities, especially the widespread construction of dams. Using the lower Wei River as an example and an integrated approach, this study investigates the variation of fluvial sediment delivery, as well as the connectivity under the effects of both controls. Based on hydrological records and channel cross‐section surveys, sediment budgets were constructed for two periods (1960–1970, 1970–1990) after the dam was closed in 1960. In the period 1960–1969, due to the elevated base level (327.2 ± 1.62 m) caused by the dam, the aggradation rate was 0.451 × 108 t yr‐1 in the channel and 0.716 × 108 t yr‐1 on the floodplain, indicating that the positive lateral connectivity between these locations was enhanced. As a consequence, serious sediment storage resulted in a sediment delivery ratio (SDR) that was smaller than that occurring before 1960. In the period 1970–1990, sweeping soil and water conservation (SWC) measures were implemented, resulting in a reduction of the connectivity between the trunk and tributaries, and a decrease of ~31% in the mean sediment input. In addition, together with the base level fluctuation in the range of 327.47 ± 0.49 m, the annual variation in sediment storage was primarily dependent on the water–sediment regime affected by the SWC. The negative lateral connectivity was enhanced between the channel and floodplain via bank erosion. Consequently, the aggradation rate was reduced by 89% on the floodplain and by 96% in the channel. Sediment output continued to decrease primarily due to the SWC practices and climate changes in this period, whereas the SDR increased due to the enhanced longitudinal connectivity between the upstream and downstream. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The process of dam removal establishes the channel morphology that is later adjusted by high-flow events. Generalities about process responses have been hypothesized, but broad applicability and details remain a research need. We completed laboratory experiments focused on understanding how processes occurring immediately after a sediment release upon dam removal or failure affect the downstream channel bed. Flume experiments tested three sediment mixtures at high and low flow rates. We measured changes in impounded sediment volume, downstream bed surface, and rates of deposition and erosion as the downstream bed adjusted. Results quantified the process responses and connected changes in downstream channel morphology to sediment composition, temporal variability in impounded sediment erosion, and spatial and temporal rates of bedload transport. Within gravel and sand sediments, the process response depended on sediment mobility. Dam removals at low flows created partial mobility with sands transporting as ripples over the gravel bed. In total, 37% of the reservoir eroded, and half the eroded sediment remained in the downstream reach. High flows generated full bed mobility, eroding sands and gravels into and through the downstream reach as 38% of the reservoir eroded. Although some sediment deposited, there was net erosion from the reach as a new, narrower channel eroded through the deposit. When silt was part of the sediment, the process response depended on how the flow rate influenced reservoir erosion rates. At low flows, reservoir erosion rates were initially low and the sediment partially exposed. The reduced sediment supply led to downstream bed erosion. Once reservoir erosion rates increased, sediment deposited downstream and a new channel eroded into the deposits. At high flows, eroded sediment temporarily deposited evenly over the downstream channel before eroding both the deposits and channel bed. At low flows, reservoir erosion was 17–18%, while at the high flow it was 31–41%.  相似文献   

12.
A major challenge for geomorphologists is to scale up small‐magnitude processes to produce landscape form, yet existing approaches have been found to be severely limited. New ways to scale erosion and transfer of sediment are thus needed. This paper evaluates the concept of sediment connectivity as a framework for understanding processes involved in sediment transfer across multiple scales. We propose that the concept of sediment connectivity can be used to explain the connected transfer of sediment from a source to a sink in a catchment, and movement of sediment between different zones within a catchment: over hillslopes, between hillslopes and channels, and within channels. Using fluvial systems as an example we explore four scenarios of sediment connectivity which represent end‐members of behaviour from fully linked to fully unlinked hydrological and sediment connectivity. Sediment‐travel distance – when combined with an entrainment parameter reflecting the frequency–magnitude response of the system – maps onto these end‐members, providing a coherent conceptual model for the upscaling of erosion predictions. This conceptual model could be readily expanded to other process domains to provide a more comprehensive underpinning of landscape‐evolution models. Thus, further research on the controls and dynamics of travel distances under different modes of transport is fundamental. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Geomorphological analyses of the morphology, lithostratigraphy and chronology of Holocene alluvial fills in a 2·75 km long piedmont reach of the wandering gravel‐bed River South Tyne at Lambley in Northumberland, northern England, have identified spatial and temporal patterns of late Holocene channel and floodplain development and elucidated the relationship between reach‐ and subreach‐scale channel transformation and terrace formation. Five terraced alluvial fills have been dated to periods sometime between c. 1400 BC –AD 1100, AD 1100–1300, AD 1300–1700, AD 1700–1850 and from AD 1850 to the present. Palaeochannel morphology and lithofacies architecture of alluvial deposits indicate that the past 3000 years has been characterized by episodic channel and floodplain change associated with development and subsequent recovery of subreach‐scale zones of instability which have been fixed in neither time nor space. Cartographic and photographic evidence spanning the past 130 years suggests channel transformation can be accomplished in as little as 50 years. The localized and episodic nature of fluvial adjustment at Lambley points to the operation of subreach‐scale controls of coarse sediment transfers. These include downstream propagation of sediment waves, as well as internal controls imposed by differing valley floor morphology, gradient and boundary materials. However, the preservation of correlated terrace levels indicates that major phases of floodplain construction and entrenchment have been superimposed over locally complex patterns of sediment transfer. Reach‐scale lateral and vertical channel adjustments at Lambley appear to be closely related to climatically driven changes in flood frequency and magnitude, with clusters of extreme floods being particularly important for accomplishing entrenchment and reconfiguring the pattern of localized instability zones. Confinement of flood flows by valley entrenchment, and contamination of catchment river courses by metal‐rich fine sediments following recent historic mining operations, have combined to render the South Tyne at Lambley increasingly sensitive to changes in flood regimes over the past 1000 years. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
夏军强  曹玉芹  周美蓉  刘鑫  邓宇 《湖泊科学》2023,35(6):2144-2154
沙波形态影响水流结构、泥沙输移及动床阻力。本研究采用多波束测深系统首次精细测量了上荆江典型河段的床面地形,采用改进后的沙波形态量化算法统计了各类沙波形态参数,分析了不同水流强度下沙波形态的变化特征。计算结果表明:(1)测量河段小型与大型沙波的平均波高分别为0.16~0.81和0.96~2.31 m,波长分别为13~27和16~41m;沙波尺度相较于水深较小,小型与大型沙波的波高分别不超过水深的0.045和0.150倍;(2)沙波背流面坡度基本不超过14°,小于泥沙水下休止角,其与陡度之间的关系可以用线性方程描述;(3)中洪水流量对沙波形态尺度的塑造作用强于枯水流量,且对浅水区大型沙波形态尺度的塑造作用强于深水区。本研究量化了天然河流的沙波形态,较好地反映了沙波形态特征,能为大型冲积河流沙波形态的量化及特征参数的统计分析提供参考。  相似文献   

15.
We exploit a natural experiment caused by an extreme flood (~500 year recurrence interval) and sediment pulse derived from more than 2500 concurrent landslides to explore the influence of valley‐scale geomorphic controls on sediment slug evolution and the impact of sediment pulse passage and slug deposition and dispersion on channel stability and channel form. Sediment slug movement is a crucial process that shapes gravel‐bed rivers and alluvial valleys and is an important mechanism of downstream bed material transport. Further, increased bed material transport rates during slug deposition can trigger channel responses including increases in lateral mobility, channel width, and alluvial bar dominance. Pre‐ and post‐flood LiDAR and aerial photographs bracketing the 2007 flood on the Chehalis River in south‐western Washington State, USA, document the channel response with high spatial and temporal definition. The sediment slug behaved as a Gilbert Wave, with both channel aggradation and sequestration of large volumes of material in floodplains of headwaters' reaches and reaches where confined valleys enter into broad alluvial valleys. Differences between the valley form of two separate sub‐basins impacted by the pulse highlight the important role channel and channel‐floodplain connectivity play in governing downstream movement of sediment slug material. Finally, channel response to the extreme flood and sediment pulse illustrate the connection between bed material transport and channel form. Specifically, the channel widened, lateral channel mobility increased, and the proportion of the active channel covered by bars increased in all reaches in the study area. The response scaled tightly with the relative amount of bed material sediment transport through individual reaches, indicating that the amount of morphological change caused by the flood was conditioned by the simultaneous introduction of a sediment pulse to the channel network. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The relationship between climate, landscape connectivity and sediment export from mountain ranges is key to understanding the propagation of erosion signals downstream into sedimentary basins. We explore the role of connectivity in modulating the composition of sediment exported from the Frontal Cordillera of the south-central Argentine Andes by comparing three adjacent and apparently similar semi-glaciated catchment-fan systems within the context of an along-strike precipitation gradient. We first identify that the bedrock exposed in the upper, previously glaciated reaches of the cordillera is under-represented in the lithological composition of gravels on each of three alluvial fans. There is little evidence for abrasion or preferential weathering of sediment sourced from the upper cordillera, suggesting that the observed bias can only be explained by sediment storage in these glacially widened and flattened valleys of the upper cordillera (as revealed by channel steepness mapping). A detailed analysis of the morphology of sedimentary deposits within the catchments reveals catchment-wide trends in either main valley incision or aggradation, linked to differences in hillslope–channel connectivity and precipitation. We observe that drier catchments have poor hillslope–channel connectivity and that gravels exported from dry catchments have a lithological composition depleted in clasts sourced from the upper cordillera. Conversely, the catchment with the highest maximum precipitation rate exhibits a high degree of connectivity between its sediment sources and the main river network, leading to the export of a greater proportion of upper cordillera gravel as well as a greater volume of sand. Finally, given a clear spatial correlation between the resistance of bedrock to erosion, mountain range elevation and its covariant, precipitation, we highlight how connectivity in these semi-glaciated landscapes can be preconditioned by the spatial distribution of bedrock lithology. These findings give insight into the extent to which sedimentary archives record source erosion patterns through time.  相似文献   

17.
The relation between morphological change and patterns of variation in bedload transport rate in braided streams was observed by repeated, daily topographic surveys over a 25 day study period in a 60 m reach of the proglacial Sunwapta River, Alberta, Canada. There are two major periods of morphological change, each lasting several days and each involving the complete destruction and reconstruction of bar complexes. Bar complex destruction was caused by redirection of the flow and by downstream extension of the confluence scour zone upstream. Reconstruction involved accretion of unit bars on bar head, flank and tail and in one case was initiated by disection of a large, lobate unit bar. High rates of sediment movement, measured from net scour and fill of the cross-sections, coincided with these morphological changes. Sediment was supplied from both bed and bank erosion, and patterns and distances of transfer were highly variable. Rates of transport estimated by matching upstream erosional volumes with downstream deposition were much greater than those estimated from either a step-length approach or a sediment budget. Measurements of scour and fill and observations of morphological change indicate that step lengths (virtual transport distances) were typically 40–100m during a diurnal discharge cycle. Shorter step lengths occurred when transfer was confined to a single anabranch and longer steps involved channel changes at the scale of the entire reach. Sediment budgeting was used to describe the spatial patterns of sediment transport associated with the morphological changes and to estimate minimum daily reach-averaged transport rates. Mean bedload transport rates correlate with discharge, but with considerable scatter. The largest deviations from the mean relation can be tied to phases of channel incision, bank erosion, scour hole migration, bar deposition and channel filling apparently controlled by changes and fluctuations in sediment supply from upstream, independent of discharge. These are interpreted as field evidence of ‘autopulses’ or ‘macropulses’ in bedload transport, previously observed only in laboratory models of braided streams.  相似文献   

18.
We use field measurements and airborne LiDAR data to quantify the potential effects of valley geometry and large wood on channel erosional and depositional response to a large flood (estimated 150-year recurrence interval) in 2011 along a mountain stream. Topographic data along 3 km of Biscuit Brook in the Catskill Mountains, New York, USA reveal repeated downstream alternations between steep, narrow bedrock reaches and alluvial reaches that retain large wood, with wood loads as high as 1261 m3 ha−1. We hypothesized that, within alluvial reaches, geomorphic response to the flood, in the form of changes in bed elevation, net volume of sediment eroded or aggraded, and grain size, correlates with wood load. We hypothesized that greater wood load corresponds to lower modelled average velocity and less channel-bed erosion during the flood, and finer median bed grain size and a lower gradation coefficient of bed sediment. The results partly support this hypothesis. Wood results in lower reach-average modelled velocity for the 2011 flood, but the magnitude of change in channel-bed elevation after the 2011 flood among alluvial and bedrock reaches does not correlate with wood load. Wood load does correlate with changes in sediment volume and bed substrate, with finer grain size and smaller sediment gradation in reaches with more wood. The proportion of wood in jams is a stronger predictor of bed grain-size characteristics than is total wood load. We also see evidence of a threshold: greater wood load correlates with channel aggradation at wood loads exceeding approximately 200 m3 ha−1. In this mountain stream, abundant large wood in channel reaches with alluvial substrate creates lower velocity that results in finer bed material and, when wood load exceeds a threshold, reach scale increases in aggradation. This suggests that reintroducing small amounts of wood or one logjam for river restoration will have limited geomorphic effects. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of this study is to examine the annual regime of channel scour and fill by monitoring bed‐elevation changes in a reach of Squamish River in southwestern British Columbia, Canada. Sonar surveys of 13 river cross‐sections in a sandy gravel‐bed single‐channel study reach were repeated biweekly over a full hydrologic year (1995/6). The survey results show that bedload movement occurs as waves or pulses forming bedwaves that appear to maintain an overall coherence with movement downstream. These bedwaves propagate downstream by a mode here termed pulse scour and pulse fill, a process distinguished from the conventional mode of scour and fill commonly associated with flood events (here termed local scour and local fill). Bedwave celerity was estimated to be about 15·5 m d−1 corresponding to a bedwave residence time in the study reach of almost one hydrologic year. The total amount of local bed‐elevation change ranged between 0·22 m and 2·41 m during the period of study. Analysis of the bed‐elevation and flow data reveals that, because of the bedwave phenomenon, there is no simple relation between the mean bed‐elevation and discharge nor any strong linear correlation among cross‐sectional behaviour. The bed‐elevation data also suggest that complex changes to the bed within a cross‐section are masked when the bed is viewed in one dimension, although no definitive trends in bed behaviour were found in the two‐dimensional analysis. Although a weak seasonal effect is evident in this study, the bed‐elevation regime is dominated by sediment supply‐driven fluctuations in bedload transport occurring at timescales shorter than the seasonal fluctuation in discharge. The study also indicates that bed‐elevation monitoring on Squamish River, and others like it, for purposes of detecting and measuring aggradation/degradation must take into account very considerable and normal channel‐bed variability operating at timescales from hours to months. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Geomorphic controls on contaminant distribution along an ephemeral stream   总被引:1,自引:0,他引:1  
Sediment‐borne contamination in a watershed can be highly variable as a result of ?uvial processes operating over a range of time scales. This study presents a detailed analysis of the distribution of one contaminant along an ephemeral stream after 55 years of sediment transport, deposition, and exchange by ?ash ?oods. Wastewater containing plutonium was discharged into the Pueblo Canyon watershed from 1945 until 1964, and plutonium concentrations in ?uvial deposits vary over ?ve orders of magnitude. These variations can be attributed to three primary factors: time since contaminant releases, particle‐size sorting, and mixing of sediment from different sources. The highest concentrations occur in ?ne‐grained sediment deposits near the source that date to the period of ef?uent releases, and concentrations are lower in younger deposits, in coarser‐grained deposits, and in deposits farther downstream. The spatial distribution of plutonium is strongly affected by longitudinal variations in the size of sediment deposits of different age. A major aggradation–degradation cycle in the lower canyon overlapped with the period of active ef?uent releases, and a signi?cant portion of the total plutonium inventory is contained within large coarse‐grained deposits below ?ll terraces that post‐date 1945. The spatial pattern of contamination is thus determined by the speci?c geomorphic history of the watershed, in addition to processes of mixing and sorting during transport that occur in all ?uvial systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号