首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In our previous study (Earthquake Engineering and Structural Dynamics 2003; 32 :2301), we have developed a probabilistic algorithm for active control of structures. In the probabilistic control algorithm, the control force is determined by the probability that the structural energy exceeds a specified target critical energy, and the direction of a control force is determined by the Lyapunov controller design method. In this paper, an experimental verification of the proposed probabilistic control algorithm is presented. A three‐story test structure equipped with an active mass driver (AMD) has been used. The effectiveness of the control algorithm has been examined by exciting the test structure using a sinusoidal signal, a scaled El Centro earthquake and a broadband Gaussian white noise; and, especially, experiments on control have been performed under different conditions to that of system identification in order to prove the stability and robustness of the proposed control algorithm. The experimental results indicate that the probabilistic control algorithm can achieve a significant response reduction under various types of ground excitations even when the modeling error exists. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
在结构动力响应监测中如何准确判断结构损伤状况是工程上的一大难题,本文研究通过小波包能量特征向量提取结构损伤信息来识别结构损伤的方法,并进行实验分析,同时分析噪声对能量值的影响。实验发现:小波包能量特征向量具有识别结构状态的能力,并且不受噪声的影响,相反,对观测信号去噪后不利于能量特征向量的提取。  相似文献   

3.
In this paper, a new system of semi active structural control with active variable stiffness and damping (AVSD) is suggested. This new system amplifies the structural displacement to dissipate more energy, and in turn, effectively reduces the structural response in the case of relatively small story drifts, which occur during earthquakes. A predictive instantaneous optimal control algorithm is established for a SDOF structure equipped with an AVSD system Comparative shaking table tests of a 1/4 scale single story structural model with a full scale control device have been conducted. From the experimental and analytical results, it is shown that when compared to structures without control or with the active variable stiffness control alone, the suggested system exhibits higher efficiency in controlling the structural response, requires less energy input, operates with higher reliability, and can be manufactured at a lower cost and used in a wider range of engineering applications.  相似文献   

4.
结构振动的无能源主动控制   总被引:4,自引:0,他引:4  
本文提出了一种无能源主动控制方案,这种控制方案的优点是不须配备高压油源,可降低控制成本,并地保证控制的可靠性。  相似文献   

5.
The electromagnetic mass damper (EMD) control system, as an innovative active control system to reduce structural vibration, offers many advantages over traditional active mass driver/damper (AMD) control systems. In this paper, studies of several EMD control strategies and bench-scale shaking table tests of a two-story model structure are described. First, two structural models corresponding to uncontrolled and Zeroed cases are developed, and parameters of these models are validated through sinusoidal sweep tests to provide a basis for establishing an accurate mathematical model for further studies. Then, a simplified control strategy for the EMD system based on the pole assignment control algorithm is proposed. Moreover, ideal pole locations are derived and validated through a series of shaking table tests. Finally, three benchmark earthquake ground motions and sinusoidal sweep waves are imposed onto the structure to investigate the effectiveness and feasibility of using this type of innovative active control system for structural vibration control. In addition, the robustness of the EMD system is examined. The test results show that the EMD system is an effective and robust system for the control of structural vibrations.  相似文献   

6.
对损伤部位向量(DLV)法作了简单介绍,并用该方法对钢框架进行了损伤识别和损伤定位。该方法假定结构损伤前后为线性,对结构损伤前后柔度矩阵差进行奇异值分解,将奇异值为零所对应的向量,作为静荷载施加在无损结构的测点位置,则应力为零的单元为可能损伤的单元。对3种不同工况的钢框架进行了振动模态试验,用前3阶模态参数构造框架的柔度矩阵,按照DLV法对其进行了损伤识别,识别结果与已知损伤情况相一致。从测试自由度不完备、噪声和振型质量归一化系数这3个方面对识别效果进行了分析,结果表明:当损伤使结构动力特性有微小改变时,使用该方法不易定位损伤,应结合局部损伤识别方法进行判定;当损伤使结构动力特性有较大改变时,该方法能有效识别损伤的单元。DLV方法概念简单,理论明确,不受结构类型的限制,不需要结构的数学模型和模型缩聚或扩展技术,只需获得结构损伤前后的前几个低阶模态参数,即可识别结构一处或多处损伤,实际应用时可操作性强。  相似文献   

7.
A semi‐active hydraulic damper (SHD) for a semi‐active damper system, which is useful for practical structural control especially for large earthquakes, has been developed. Its maximum damping force is set to 1 or 2 MN, and it is controlled by only 70 W of electric power. An SHD with a maximum damping force of 1 MN was applied to an actual building in 1998. This paper first presents the results of a dynamic loading test to confirm the control performance of the SHD. Next, an analytical model of SHDs (SHD model) is constructed with the same concept for two kinds of SHDs based on the test results. Through simulation analyses of the test results using the proposed SHD model, the dynamic characteristics of the SHD can be well represented within practical conditions. Simulation analyses are also carried out using a simple structure model with the SHD model. It is shown that this SHD model can be used to precisely evaluate the control effect of the semi‐active damper system and is useful in practical SHD design under the applied conditions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
本文在此前一系列有关新型电磁驱动AMD控制系统力学建模、性能试验和控制策略研究的基础上,进行了结构地震响应控制的小型振动台试验研究。首先,针对配置了电磁驱动AMD控制系统的Quanser标准两层剪切型框架结构模型,建立了无控计算模型,通过正弦扫频试验验证了模型参数,从而为结构振动主动控制试验研究提供了准确的被控对象模型;其次,设计了电磁驱动AMD控制系统基于极点配置控制算法的试验控制策略和状态观测器,通过数值分析验证了状态观测器估计结果的准确性;最后,在完成以上各项准备工作的基础上,分别对结构输入了典型Benchm ark标准地震动,进行振动台试验,试验结果表明电磁驱动AMD控制系统对结构的地震响应具有显著的控制效果,验证了该新型系统应用于结构振动控制的有效性和可行性。  相似文献   

9.
Earthquake events are one of the most extraordinarily serious natural calamities, which not only cause heavy casualties and economic losses, but also various secondary disasters. Such events are devastating, and have far-reaching influences. As the main disaster bearing body in earthquake, buildings are often seriously damaged, thus it can be used as an important reference for earthquake damage assessment. Identifying damaged buildings from post-earthquake images quickly and accurately is of real importance, which has guidance meaning to rescue and emergency response. At present, the assessment of earthquake damage is mainly through artificial field investigation, which is time-consuming and cannot meet the urgent requirements of rapid emergency response. Markov Random Field(MRF)combines the neighborhood system of pixels with the prior distribution model to effectively describe the dependence between spatial pixels and pixels, so as to obtain more accurate segmentation results. The support vector machine(SVM)model is a simple and clear mathematical model which has a solid theoretical basis; in addition, it also has unique advantages in solving small sample, nonlinear and high-dimensional pattern recognition problems. Thus, in this paper, a Markov random field-based method for damaged buildings extraction from the single-phase seismic image is proposed. The framework of the proposed method has three components. Firstly, Markov Random Field was used to segment the image; then, the spectral and texture features of the post-earthquake damaged building area are extracted. After that, Support Vector Machine was used to extract the damaged buildings according to the extracted features. In order to evaluate the proposed method, 5 areas in ADS40 earthquake remote sensing image were selected as experimental data, this image covers parts of Wenchuan City, Sichuan Province, where an earthquake had struck in 2008. And in order to verify the applicability of this method to different resolution images, an experimental area was selected from different resolution images obtained by the same equipment. The experimental results show that the proposed method has good performance and could effectively identify the damaged buildings after the earthquake. The average overall accuracy of the selected experimental areas is 93.02%. Compared with the result extracted by the widely used eCognition software, the proposed method is simpler in operation and can improve the extraction accuracy and running time significantly. Therefore, it has significant meaning for both emergency rescue work and accurate disaster information providing after earthquake.  相似文献   

10.
Hybrid simulation is a powerful test method for evaluating the seismic performance of structural systems. This method makes it feasible that only critical components of a structure be experimentally tested. This paper presents a newly proposed integration algorithm for seismic hybrid simulation which is aimed to extend its capabilities to a wide range of systems where existing methods encounter some limitations. In the proposed method, which is termed the variable time step (VTS) integration method, an implicit scheme is employed for hybrid simulation by eliminating the iterative phase on experimental element, the phase which is necessary in regular implicit applications. In order to study the effectiveness of the VTS method, a series of numerical investigations are conducted which show the successfulness of the VTS method in obtaining accurate, stable and converged responses. Then, in a comparative approach, the improved accuracy of the VTS method over commonly used integration methods is demonstrated. The stability of the VTS method is also studied and the results show that it provides conditional stability; however, its stability limit is well beyond the accuracy limit. The effect of time delay on the VTS method results is also investigated and it is shown that the VTS method is quite successful in handling this experimental error.  相似文献   

11.
上海环球金融中心大厦整体结构振动台试验设计   总被引:11,自引:2,他引:11  
同济大学土木工程防灾国家重点实验室对上海环球金融中心大厦进行了整体结构模型的振动台试验.该大厦101层,结构高度492m,拟建成为世界上结构主体最高的建筑物.本文详细介绍了大厦结构体系、振动台试验模型材料的选取、动力相似关系的确定以及试验方案的设计.针对超高层整体结构小比例模型施工困难的特点,提出了模型的简化方法,并利用ANSYS对简化模型进行了计算,计算结果表明模型简化对结构自振特性和地震反应影响很小,验证了简化方法的可行性.本文提供的模型和试验的设计思路对今后有关的试验工作有一定的借鉴作用.  相似文献   

12.
In conventional methods of modal control, the number of controllable structural modes is usually restrained by the number of sensors that feedback the structural signals. In this paper a modal control scheme where the feedback gain is formulated in an augmented state space is proposed. The advantage of the proposed method is that it increases the number of the controllable modes without adding extra sensors. The method is verified experimentally by an earthquake simulation test with a full‐scale building model. The proposed modal control was also compared with the conventional ones in the test. For the building model tested, the performance of the proposed control with only one feedback signal can be as efficient as that of modal control with full state feedback. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
研究了随机地震动作用下基于MR阻尼器的结构振动控制振动台试验设计的若干问题。首先,由原型结构按动力相似关系进行了模型结构的设计,基于ANSYS模态分析的结果识别出了其结构参数;其次,基于物理随机地震动模型生成了试验地震动样本,根据试验要求调整了各地震动样本的加速度峰值;然后,基于MATLAB对试验模型进行了随机地震动作用下无控与主动控制数值仿真分析;最后,结合ANSYS弹塑性动力时程分析,研究了试验模型的动力稳定性。介绍的振动控制试验设计方法可供进行类似试验设计的研究人员参考。  相似文献   

14.
Servo‐hydraulic actuators have been widely used for experimental studies in engineering. They can be controlled in either displacement or force control mode depending on the purpose of a test. It is necessary to control the actuators in real time when the rate‐dependency effect of a test specimen needs to be accounted for under dynamic loads. Real‐time hybrid simulation (RTHS) and effective force testing (EFT) method, which can consider the rate‐dependency effect, have been known as viable alternatives to the shake table testing method. Due to the lack of knowledge in real‐time force control, however, the structures that can be tested with RTHS and EFT are fairly limited. For instance, satisfying the force boundary condition for axially stiff members is a challenging task in RTHS, while EFT has a difficulty to be implemented for nonlinear structures. In order to resolve these issues, this paper introduces new real‐time force control methods utilizing the adaptive time series (ATS) compensator and compliance springs. Unlike existing methods, the proposed force control methods do not require the structural modeling of a test structure, making it easy to be implemented especially for nonlinear structures. The force tracking performance of the proposed methods is evaluated for a small‐scale steel mass block system with a magneto‐rheological damper subjected to various target forces. Accuracy, time delay, and resonance response of these methods are discussed along with their force control performance for an axially stiff member. Overall, a satisfactory force tracking performance was observed by using the proposed force control methods.  相似文献   

15.
In this paper a predictive control method especially suitable for the control of semi‐active friction dampers is proposed. By keeping the adjustable slip force of a semi‐active friction damper slightly lower than the critical friction force, the method allows the damper to remain in its slip state throughout an earthquake of arbitrary intensity, so the energy dissipation capacity of the damper can be improved. The proposed method is formulated in a discrete‐time domain and cast in the form of direct output feedback for easy control implementation. The control algorithm is able to produce a continuous and smooth slip force for a friction damper and thus avoid exerting the high‐frequency structural response that usually exists in structures with conventional friction dampers. Using a numerical study, the control performance of a multiple degrees of freedom (DOF) structural system equipped with passive friction dampers and semi‐active dampers controlled by the proposed method are compared. The numerical case shows that by merely using a single semi‐active friction damper and a few sensors, the proposed method is able to achieve better acceleration reduction than the case using multiple passive dampers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
A method to predict structural damage in its location and severity from modal characteristics of the damaged structure is proposed. No a priori knowledge of the modal characteristics of a corresponding baseline structure is required in the proposed formulation. Instead, information on the geometry of the structure which is reflected in its mass and stiffness distribution is needed. From matrix structural analysis, a system of equations is generated which relates the relative change of stiffness of structural members to a load vector generated from modal parameters of the damaged structure. Different solution techniques are suggested to determine the damage from the generated equations. The feasibility of the proposed formulation is demonstrated via a numerical example of a 10-storey building. Further, an error investigation on the error in the damage predictions due to uncertainties in the input data is carried out.  相似文献   

17.
One of the founders of structural control theory and its application in civil engineering,Professor Emeritus Tsu T.Soong,envisioned the development of the integral design of structures protected by active control devices.Most of his disciples and colleagues continuously attempted to develop procedures to achieve such integral control.In his recent papers published jointly with some of the authors of this paper,Professor Soong developed design procedures for the entire structure using a design-redesign proce...  相似文献   

18.
In the paper a recently proposed method for damage localization and quantification of RC-structures from response measurements is tested on experimental data. The method investigated requires at least one response measurement along the structures and the ground surface acceleration. Further, the two lowest time-varying eigenfrequencies of the structure must be identified. The data considered are sampled from a series of three RC-frame model tests performed at the structural laboratory at Aalborg University, Denmark during the autumn of 1996. The frames in the test series were exposed to two or three series of ground motions of increasing magnitude. After each of these runs the damage state of the frame was examined and each storey of the frame were classified into one of the following six classifications: undamaged, cracked, lightly damaged, damaged, severely damaged or collapse. During each of the ground motion events the storey accelerations were measured by accelerometers. After application of the last earthquake sequence to the structure the frames were cut into pieces and each of the beams and columns was statically tested and damage assessment was performed using the obtained stiffnesses. The damage in the storeys determined by the suggested method was then compared to the damage classification from the visual inspection as well as the static tests. It was found that especially in the cases where the damage is concentrated in a certain area of the structure a very good damage assessment is obtained using the suggested method. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
The recent spate of large earthquakes has triggered diverse performance requirements for structures. This has led to increasing worldwide interest in performance‐based design methods. To establish such methods, however, it is necessary to evaluate structure conditions after defining the loads, and this is difficult to accomplish. On the other hand, there has been steady progress on research and development of structural control techniques for improving structural performance. These technological innovations need to be rationally incorporated into structural design. In particular, semi‐active structural control techniques are effective in improving structural performance during large earthquakes. By effectively incorporating them into the design, it is possible to meet the various structural performance requirements. This paper first outlines the various structural control methods and focuses on the semi‐active structural control technique as the main topic. It then describes an example to verify the effectiveness of the semi‐active structural control technique in high‐rise buildings. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
<正>This paper focuses on the investigation of a hybrid seismic isolation system with passive variable friction dampers for protection of structures against near fault earthquakes.The seismic isolation can be implemented by replacing the conventional columns fixed to the foundations by seismic isolating ones.These columns allow horizontal displacement between the superstructure and the foundations and decouple the building from the damaging earthquake motion.As a result, the forces in the structural elements decrease and damage that may be caused to the building by the earthquake significantly decreases.However,this positive effect is achieved on account of displacements occurring in the isolating columns.These displacements become very large when the structure is subjected to a strong earthquake.In this case,impact may occur between the parts of the isolating column yielding their damage or collapse.In order to limit the displacements in the isolating columns,it is proposed to add variable friction dampers.A method for selecting the dampers' properties is proposed.It is carried out using an artificial ground motion record and optimal active control algorithm.Numerical simulation of a seven-story structure shows that the proposed method allows efficient reduction in structural response and limits the displacements at the seismic isolating columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号