首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee-side windspeed and sediment transport were measured over a small (1·2 m) transverse ridge in the Silver Peak dunefield, west-central Nevada, USA, using an intensive array of 25 cup anemometers and seven total flux traps. During crest-transverse and transporting flow conditions (u0·3crest ≈ 8·4 m s−1), windspeed near the surface of the lee slope averaged half (48 per cent) that of crest speeds. Dimensionless speeds in the separation zone ranged from 0·2 to 0·8 that of the outer flow (u12). Along the boundary of the separation cell, windspeed increased by 10 per cent of the crest speed before separation. Equilibrium of upper and lower wake regions was not observed by the documented eight dune heights, suggesting that wake recovery may not occur over closely spaced dunes. Sediment transport measured directly on both the lee slope and interdune surfaces averaged approximately 15 per cent of crest inputs. This suggests that a significant amount (c. 70–95 per cent) of sediment transported over the crest moved as fallout. For this data set, flux was approximately proportional to the cube of the near-surface windspeed (u0·3) and in general there was an order of magnitude difference between flux measured at the crest and that measured within the separation zone. Transport direction in the separation zone was acutely oblique to the incident direction owing to secondary flow deflection. Beyond the interdune, transport direction progressed from oblique to crest-transverse. This indicates that an appreciable amount of sediment may move laterally along the lee slope and interdune corridor under crest-transverse flows. Regarding the grain size and sorting properties of transported sediment, there was no significant difference in mean grain size over the dune, although in general particles were finer and more poorly sorted in the lee. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
One process of erosion of Mancos Shale badlands near Hanksville, Utah, appears to be caused by nearly instantaneous drops in air pressure accompanying gusts of wind. A series of sharp-crested bedrock ridges trend nearly perpendicular to the strong, gusty southwesterly winds that precede cold fronts passing through the area. The Bernoulli effect, resulting from the explosive onset of wind gusts in which the wind over the ridges can accelerate from 7 to 14 m s−1, can cause nearly instantaneous pressure drops of 1·27 mmHg. This provides a unit lifting force of 0·01697 N. Since the average gravitational force acting on a unit area of the crust is only 0·00883 N, this force is sufficient to lift the crust, exposing the underlying weathered shale chips to further wind erosion. Soils susceptible to this type of erosion consist of polygonally cracked surface crust averaging 1·2 cm thick overlying a porous subsoil of silt-sized shale chips. The arid environment permits complete soil drying between weather fronts, greatly reducing the cohesion that would occur if the soil were moist. The pressure drops, and the erosion caused by them, were observed on the lee side of bedrock ridges about 10 m high, within 1 m of the ridge crest. Landforms resulting from this process are micro-cirque forms located near the ridge crests. Continued development of micro-cirques eventually forms cliffs on the lee sides of the ridges. © 1997 by John Wiley & Sons, Ltd.  相似文献   

3.
We report concentrations of cosmogenic 10Be and 36Cl used to determine erosion depths in the recently deglaciated bedrock at Goldbergkees in the Eastern Alps. The glacier covered the sampling sites during the Little Ice Age (LIA) until c. 1940. The youngest ages calculated from these concentrations match the known exposure time after the post‐LIA exposure of <100 years. The apparent age (no cover, no erosion) of most samples, however, is significantly older. We show that the measured nuclide concentrations represent subglacial erosion depths, rather than exposure times. In particular, erosion depths calculated using 10Be and 36Cl concentrations of individual samples match well, whereas apparent 36Cl ages are consistently older than 10Be ages. The bedrock at the ‘youngest’ surfaces was deeply eroded (≥ 297 cm) by the Goldbergkees during the late Holocene. In contrast, bedrock at the margin of the LIA ice extent was eroded ≤35 cm. These values convert to subglacial erosion rates on the order of 0.1 mm/a to >5 mm/a. While modeled erosion rates depend on the duration of glacial cover and erosion intrinsic to the different exposure scenarios used for calculation (700–3300 years), modeled total erosion depths are insensitive (5–20% change). Analysis of erosion depths on the transverse valley profile shows a general trend of greatest erosion part way up the valley side and less erosion under thin ice at the lateral margin. A second profile along the valley axis indicates depth of erosion is greatest where the ice abuts the foot of the investigated bedrock riegel and at its lee side just beyond the crest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The Athabasca Glacier, resting on a rigid bed, provides an excellent example of subglacial ice and till erosion. The presence of a thin mobile till layer is shown by the presence of flutes, saturated till layer, push moraines and ploughed boulders. Cross‐cutting striations, v‐shaped striations and reversed stoss‐and‐lee clasts are indicative of clasts rotating within this layer. As the till moves it erodes the bedrock and clasts within it. A combination of erosion by ice and till produces stoss‐and‐lee‐clasts and generates striations on flutes and embedded clasts, as well as eroding the bedrock into a continuum of smoothed, rounded and streamlined forms. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
A well-developed subglacial drainage system consisting of large cavities developed in the lee of bedrock steps connected together by a network of Nye channels is exposed on an area of recently deglaciated limestone bedrock in front of Glacier de Tsanfleuron, Switzerland. This system covers some 51 per cent of the bedrock surface area, and is believed to have transported the bulk of supraglacially-derived meltwaters through the glacier. Using the cavity hydraulics model of Kamb (1987), it is shown that the geometry of the system rendered it stable against collapse by meltback of channel roofs into a tunnel-dominated system. For likely combinations of glacier geometry and meltwater discharge, the steady state water pressure in this system would have been only a small fraction of that required for flotation, and for discharges of less than about 0·5–5 m3 s?1 water would have flowed at atmospheric pressure. The system appears to have adjusted to varying discharges by a combination of varying water pressure and changing the total cross-sectional area of flow by altering the number of active channels connecting cavities. Glacier sliding velocity would have been independent of meltwater discharge for discharges at which water flowed at atmospheric pressure, but would have risen with increasing discharge for higher flows. Velocities on the order of 0·1 m d?1 are predicted for a realistic range of discharges and effective pressures, and these are believed to be plausible. Episodes of enhanced sliding in glaciers with similar drainage systems could be triggered by a rise in meltwater discharge across the threshold between flows at atmospheric pressure and flow under pressure from the glacier.  相似文献   

6.
Stepped bedrock topography at the snout of a small outlet glacier from Øksfjordjøkelen, North Norway, produces an extensive subglacial cavity system which stretches some 70m across and 100m up-glacier, giving access beneath ice ≤50 m thick. Inside the cavity, regelation ice, clean glacier ice and deforming basal ice have been observed. Samples were taken and basal debris concentrations at the glacier sole were found to vary between 0.005 and 15.38 per cent by volume. The basal ice velocity has been determined using a linear variable differential transformer attached to an analogue recorder, and also by means of measured displacements of ice crews and clasts embedded in the basal ice. Velocities were found to differ both spatially and temporally from a maximum of 2.55 mm h1 to a minimum of 0.3 mm h?1. The measurements and observations, which have been related to present theory, show how spatially averaged values for a number of variables could lead to inaccuracies in predicted erosion values, certainly at a local scale. On the exposed foreland, jointcontrolled lee-side faces provide evidence for extensive subglacial plucking (here taken to mean the removal of preloosened bed material and/or material resulting from bed failure). Indeed, in the cavity the early stages of removal of joint-controlled blocks by ice deformation along joints have been observed. The importance of debris-rich basal ice is shown in the formation of large striations (up to 500cm × 16cm × 2cm) present on the foreland.  相似文献   

7.
Aeolian abrasional, depositional and deflational features indicate exceptionally strong southwesterly winds in a giant sandstone weathering pit in Grand Staircase Escalante Monument, about 22 km southeast of Escalante, Utah. The 60 m wide, 5–20 m deep pit has developed near the summit of a broad, barren 160‐m‐high dome on the Lower Jurassic Navajo Sandstone. Unlike other giant weathering pits (10–30 m diameter) in the region, the bedrock floor of this pit is undulatory, and there is a cylindrical, 10‐m‐high rock pedestal in the centre of the pit. An active dune surrounds the central pedestal and at times has as much as 8 m of local relief. The dune shifts considerably over brief (<1 year) periods of time. Fine‐grained (<250 µm) dunal sand on the pit floor is periodically removed by deflation, leaving coarser sand (>250 µm) trapped in the pit. Dunal sand is typically derived from external sources (other than the pit walls and floor). Centimetre to metre‐scale abrasional features such as grooves, flutes and dedos occur on the bedrock walls and floor of the pit. These dedos and other streamlined aeolian sculpted host‐rock features occur in clusters and typically form in the lee of iron concretions. The dedos are similar to the controversial stalked blueberries on Mars. Above the western rim of the pit there is a 29‐m‐long, 5‐m‐wide aeolian groove with a fluted bedrock floor. A 1·2‐km‐long bedrock valley descends to the southwest from the pit and groove, amplifying southwesterly winds. Data from hand‐held anemometers suggest that southwesterly winds can be accelerated 200–300 per cent or more by local topography. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

8.
As fundamental parameters of the Antarctic Ice Sheet, ice thickness and subglacial topography are critical factors for studying the basal conditions and mass balance in Antarctica. During CHINARE 24 (the 24th Chinese National Antarctic Research Expedition, 2007/08), the research team used a deep ice-penetrating radar system to measure the ice thickness and subglacial topography of the “Chinese Wall” around Kunlun Station, East Antarctica. Preliminary results show that the ice thickness varies mostly from 1600 m to 2800 m along the “Chinese Wall”, with the thickest ice being 3444 m, and the thinnest ice 1255 m. The average bedrock elevation is 1722 m, while the minimum is just 604 m. Compared with the northern side of the ice divide, the ice thickness is a little greater and the subglacial topography lower on the southern side, which is also characterized by four deep valleys. We found no basal freeze-on ice in the Gamburtsev Subglacial Mountains area, subglacial lakes, or water bodies along the “Chinese Wall”. Ice thickness and subglacial topography data extracted from the Bedmap 2 database along the “Chinese Wall” are consistent with our results, but their resolution and accuracy are very limited in areas where the bedrock fluctuates intensely. The distribution of ice thickness and subglacial topography detected by ice-penetrating radar clarifies the features of the ice sheet in this “inaccessible” region. These results will help to advance the study of ice sheet dynamics and the determination of future locations of the GSM’s geological and deep ice core drilling sites in the Dome A region.  相似文献   

9.
In this study, we used an archive of borehole logs from the British Geological Survey to collect information on the spatial structure of weathering that extends from the surface to competent bedrock across the Triassic Sherwood Sandstone Group outcrop (750 km2), in the East Midlands, UK. The borehole logs were used to estimate the thickness of the soil (n = 280) and soil and saprolite (S&S) to competent rock (n = 500). The weathering profile of the sandstone consisted of soil (median thickness ~ 1·5 m) overlying a transition zone of compacted and weakly cemented weathered sandstone saprolite over bedrock. Topographic analysis using a NEXTMAP 5 m × 5 m digital elevation model (DEM) revealed no significant relationships between slope properties (relief, flow length, flow accumulation or slope angle) and soil or S&S thickness. A weak, but statistically significant correlation was found between the thickness of the soil and S&S (rs = 0·25, p < 0·001, n = 192). The variation in soil thickness may be related to changes in current and historic and land‐use, variation in sandstone properties and the influence of glacial/peri‐glacial processes. The thickness of the saprolite was more variable towards the southern part of the study area, where it increased to a maximum 40 m. We hypothesize and provide evidence that the greater weathering thickness is related to the occurrence of increased faulting in this part of the study region, allowing increased access to meteoric waters. A possible source of increased water supply is meltwater from Quaternary ice sheets; the overburden of ice may have increased sub‐glacial pore water pressure, with the fractures and faults acting as a drainage system for the removal of dissolved weathering products. British Geological Survey © NERC 2010  相似文献   

10.
Field‐measured patterns of mean velocity and turbulent airflow are reported for isolated barchan dunes. Turbulence was sampled using a high frequency sonic anemometer, deriving near‐surface Reynolds shear and normal stresses. Measurements upwind of and over a crest‐brink separated barchan indicated that shear stress was sustained despite a velocity reduction at the dune toe. The mapped streamline angles and enhanced turbulent intensities suggest the effects of positive streamline curvature are responsible for this maintenance of shear stress. This field evidence supports an existing model for dune morphodynamics based on wind tunnel turbulence measurements. Downwind, the effect of different dune profiles on flow re‐attachment and recovery was apparent. With transverse incident flow, a re‐attachment length between 2·3 and 5·0h (h is dune brink height) existed for a crest‐brink separated dune and 6·5 to 8·6h for a crest‐brink coincident dune. The lee side shear layer produced elevated turbulent stresses immediately downwind of both dunes, and a decrease in turbulence with distance characterized flow recovery. Recovery of mean velocity for the crest‐brink separated dune occurred over a distance 6·5h shorter than the crest‐brink coincident form. As the application of sonic anemometers in aeolian geomorphology is relatively new, there is debate concerning the suitability of processing their data in relation to dune surface and streamline angle. This paper demonstrates the effect on Reynolds stresses of mathematically correcting data to the local streamline over varying dune slope. Where the streamline angle was closely related to the surface (windward slope), time‐averaged shear stress agreed best with previous wind tunnel findings when data were rotated along streamlines. In the close lee, however, the angle of downwardly projected (separated) flow was not aligned with the flat ground surface. Here, shear stress appeared to be underestimated by streamline correction, and corrected shear stress values were less than half of those uncorrected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Cosmogenic 10Be concentrations in exposed bedrock surfaces and alluvial sediment in the northern Flinders Ranges reveal surprisingly high erosion rates for a supposedly ancient and stable landscape. Bedrock erosion rates increase with decreasing elevation in the Yudnamutana Catchment, from summit surfaces (13·96 ± 1·29 and 14·38 ± 1·40 m Myr?1), to hillslopes (17·61 ± 2·21 to 29·24 ± 4·38 m Myr?1), to valley bottoms (53·19 ± 7·26 to 227·95 ± 21·39 m Myr?1), indicating late Quaternary increases to topographic relief. Minimum cliff retreat rates (9·30 ± 3·60 to 24·54 ± 8·53 m Myr?1) indicate that even the most resistant parts of cliff faces have undergone significant late Quaternary erosion. However, erosion rates from visibly weathered and varnished tors protruding from steep bedrock hillslopes (4·17 ± 0·42 to 14·00 ± 1·97 m Myr?1) indicate that bedrock may locally weather at rates equivalent to, or even slower than, summit surfaces. 10Be concentrations in contemporary alluvial sediment indicate catchment‐averaged erosion at a rate dominated by more rapid erosion (22·79 ± 2·78 m Myr?1), consistent with an average rate from individual hillslope point measurements. Late Cenozoic relief production in the Yudnamutana Catchment resulted from (1) tectonic uplift at rates of 30–160 m Myr?1 due to range‐front reverse faulting, which maintained steep river gradients and uplifted summit surfaces, and (2) climate change, which episodically increased both in situ bedrock weathering rates and frequency–magnitude distributions of large magnitude floods, leading to increased incision rates. These results provide quantitative evidence that the Australian landscape is, in places, considerably more dynamic than commonly perceived. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The effect of bedrock permeability on subsurface stormflow initiation and the hillslope water balance is poorly understood. Previous hillslope hydrological studies at the Panola Mountain Research Watershed (PMRW), Georgia, USA, have assumed that the bedrock underlying the trenched hillslope is effectively impermeable. This paper presents a series of sprinkling experiments where we test the bedrock impermeability hypothesis at the PMRW. Specifically, we quantify the bedrock permeability effects on hillslope subsurface stormflow generation and the hillslope water balance at the PMRW. Five sprinkling experiments were performed by applying 882–1676 mm of rainfall over a ~5·5 m × 12 m area on the lower hillslope during ~8 days. In addition to water input and output captured at the trench, we measured transpiration in 14 trees on the slope to close the water balance. Of the 193 mm day?1 applied during the later part of the sprinkling experiments when soil moisture changes were small, <14 mm day?1 was collected at the trench and <4 mm day?1 was transpired by the trees, with residual bedrock leakage of >175 mm day?1 (91%). Bedrock moisture was measured at three locations downslope of the water collection system in the trench. Bedrock moisture responded quickly to precipitation in early spring. Peak tracer breakthrough in response to natural precipitation in the bedrock downslope from the trench was delayed only 2 days relative to peak tracer arrival in subsurface stormflow at the trench. Leakage to bedrock influences subsurface stormflow at the storm time‐scale and also the water balance of the hillslope. This has important implications for the age and geochemistry of the water and thus how one models this hillslope and watershed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The geochemical, mineralogical and lithological composition of modern stream bed material is examined in order to characterize sources and evaluate downstream mixing of sediments in the upper Fraser River drainage basin, British Columbia. The <63 µm fraction is emphasized for its relative mobility and ease of analysis using instrumental neutron activation. Overall, the composition of the stream sediments closely re?ects bedrock distribution. Samples dominated by limestone and dolostone, calcite and dolomite, and related elements (Ca, Mg, Sr etc.) correspond to Lower and Middle Cambrian carbonate bedrock largely con?ned to the Moose River sub‐basin. Clastic and non‐quartzite metamorphic lithologies, primary and secondary aluminosilicate minerals and related elements (Al, Cs, Rb etc.) are largely derived from Miette Group bedrock and associated with the uppermost Fraser River sub‐basin. Except in the case of the Moose River/Fraser River junction, the determination of proportional tributary contributions is complicated by variable or delayed mixing, localized ?oodplain or valley side sources, and limited contrast between source areas. At present the Moose River sub‐basin contributes a greater proportion of the total and ?ne‐grained sediment loads of the combined Fraser River than would be expected from drainage basin area alone. The imbalance is related to greater relief, precipitation and runoff in the Moose River sub‐basin; however, the spatial association of carbonate‐rich stream sediments, ice cover and carbonate bedrock exposure indicates that glaciers play a particularly important roll in generating ?ne‐grained ?uvial sediment. Since differences in glacier cover and glacier potential in the two major sub‐basins are likely to be persistent, and since relative sediment yields from the sub‐basins can be determined from sediment composition, a potential indicator of glacier variation and climate change during the Holocene is therein available. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Subglacial conditions strongly influence the flow of ice‐sheets, in part due to the availability of melt water. Contemporary ice sheets are retreating and are affected by increased melting as climate warms. The south Swedish uplands (SSU) were deglaciated during the relatively warm Bølling‐Allerød interval, and by studying the glacial landforms there it is possible to increase the understanding of the subglacial environment during this period of warming. Across the study area, vast tracts of hummocks have long been recognized. However, recent mapping shows a pattern of elongated zones of hummocks radially oriented, hereafter referred to as ‘hummock corridors’. Morphometric parameters were measured on the hummock corridors using a 2 m horizontal resolution digital elevation model. Corridor width varies between 0.2 and 4.9 km and their length between 1.5 and 11.8 km. A majority of hummock corridors are incised in drumlinised till surfaces. The pattern of hummock corridors shows a clear relation to the overall ice‐flow. Further, hummock corridors do not follow topographic gradients, and in at least one place an esker overlies hummocks on the corridor floor. The lateral spacing of hummock corridors and corridor morphology are similar to tunnel valleys, eskers and glaciofluvial corridors reported elsewhere. Such relationships support a subglacial genesis of the corridors in the SSU by water driven by the subglacial hydraulic gradient and that hummock corridors are forms that can be identified as tunnel valleys and glaciofluvial corridors (GFC). Ages were assigned to hummock‐corridor cross‐sections from a deglacial reconstruction of the Fennoscandian Ice Sheet. By comparing the frequency of corridors per age interval with climate variations from a Greenland ice core, we hypothesize that an increase in the number of corridors is related to the Bølling‐Allerød warming, indicating a higher rate of delivery of surface melt water to the bed at this time. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Utilization of the two-wave NNSS receiver drastically improved the positioning accuracy on the ice sheet of Antarctica. The NNSS positioning gives us 3 m three-dimensional convergence with 25 accepted satellite passes, and is most useful for the measurement of ice flow velocity. The flow velocity vectors along Route S-H-Z on Mizuho plateau, East Antarctica were obtained by estimating positional change of glaciological traverse stations after 7 years' interval. The transformation of the coordinate system was necessary before the comparison of the positioning in 1973 by the geodetic traverse method on the Bessel Reference Ellipsoid with that in 1980 by the satellite Doppler method on the NWL-8E Ellipsoid. NNSS receiving experiments at astronomical datum point in Syowa Station enabled us to estimate the translation of the coordinate origin of the Bessel Reference Ellipsoid against the geocentric NWL-8E Ellipsoid and correction terms for coordinate transformation. The obtained flow velocity is 15 m/a at H17 of around 1000 m a.s.l. and 70 m/a at Z2 of around 2000 m a.s.l. with ±6% uncertainty, and is too large to be explained only by the laminar flow of the ice sheet. The obtained velocity vectors are found to be mostly parallel to the maximum slope of the free-air gravity anomaly contours and can be interpreted as the ice sheet sliding down the slope of the subglacial mound of 2400 m relative height from the average subglacial bedrock topography. If such bedrock sliding occurrs over the whole region of Mizuho Plateau, the related thinning of the ice sheet may be detected by the precise measurement of the height change of the same marker station. By dynamically modelling the ice sheet and substituting the observed parameters such as precipitation, principal strain rate, etc., into the equation of ice thickness change the submergence velocity of around −1 m/a is expected and will be detected by carefully designed repetitive NNSS receiving experiments after several year's interval.  相似文献   

17.
Till deposition by glacier submarginal,incremental thickening   总被引:1,自引:0,他引:1  
Macro‐ and micro‐scale sedimentological analyses of recently deposited tills and complex push/squeeze moraines on the forelands of Icelandic glaciers and in a stacked till sequence at the former Younger Dryas margin of the Loch Lomond glacier lobe in Scotland are used to assess the depositional processes involved in glacier submarginal emplacement of sediment. Where subglacial meltwater is unable to flush out subglacial sediment or construct thick debris‐rich basal ice by cumulative freeze‐on processes, glacier submarginal processes are dictated by seasonal cycles of refreezing and melt‐out of tills advected from up‐ice by a combination of lodgement, deformation and ice keel and clast ploughing. Although individual till layers may display typical A and B horizon deformation characteristics, the spatially and temporally variable mosaic of subglacial processes will overprint sedimentary and structural signatures on till sequences to the extent that they would be almost impossible to classify genetically in the ancient sediment record. At the macro‐scale, Icelandic tills display moderately strong clast fabrics that conform to the ice flow directions documented by surface flutings; very strong fabrics typify unequivocally lodged clasts. Despite previous interpretations of these tills as subglacial deforming layers, micro‐morphological analysis reveals that shearing played only a partial role in the emplacement of till matrixes, and water escape and sediment flowage features are widespread. A model of submarginal incremental thickening is presented as an explanation of these data, involving till slab emplacement over several seasonal cycles. Each cycle involves: (1) late summer subglacial lodgement, bedrock and sediment plucking, subglacial deformation and ice keel ploughing; (2) early winter freeze‐on of subglacial sediment to the thin outer snout; (3) late winter readvance and failure along a decollement plane within the till, resulting in the carriage of till onto the proximal side of the previous year's push moraine; (4) early summer melt‐out of the till slab, initiating porewater migration, water escape and sediment flow and extrusion. Repeated reworking of the thin end of submarginal till wedges produces overprinted strain signatures and clast pavements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Bulk runoff and meteorological data suggest the occurrence of two meltwater outburst events at Finsterwalderbreen, Svalbard, during the 1995 and 1999 melt seasons. Increased bulk meltwater concentrations of Cl? during the outbursts indicate the release of snowmelt from storage. Bulk meltwater hydrochemical data and suspended sediment concentrations suggest that this snowmelt accessed a chemical weathering environment characterized by high rock:water ratios and long rock–water contact times. This is consistent with a subglacial origin. The trigger for both the 1995 and 1999 outbursts is believed to be high rates of surface meltwater production and the oversupply of meltwater to areas of the glacier bed that were at the pressure melting point, but which were unconnected to the main subglacial drainage network. An increase in subglacial water pressure to above the overburden pressure lead to the forcing of a hydrological connection between the expanding subglacial reservoir and the ice‐marginal channelized system. The purging of ice blocks from the glacier during the outbursts may indicate the breach of an ice dam during connection. Although subglacial meltwater issued continually from the glacier terminus via a subglacial upwelling during both melt seasons, field observations showed outburst meltwaters were released solely via an ice‐marginal channel. It is possible that outburst events are a seasonal phenomenon at this glacier and reflect the periodic drainage of meltwaters from the same subglacial reservoir from year to year. However, the location of this reservoir is uncertain. A 100 m high bedrock ridge traverses the glacier 6·5 km from its terminus. The overdeepened area up‐glacier from this is the most probable site for subglacial meltwater accumulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Deciphering the complex interplays between climate, uplift and erosion is not straightforward and estimating present‐day erosion rates can provide useful insights. Glaciers are thought to be powerful erosional agents, but most published ‘glacial’ erosion rates combine periglacial, subglacial and proglacial erosion processes. Within a glaciated catchment, sediments found in subglacial streams originate either from glacial erosion of substratum or from the rock walls above the glacier that contribute to the supraglacial load. Terrestrial cosmogenic nuclides (TCN) are produced by interactions between cosmic ray particles and element targets at the surface of the Earth, but their concentration becomes negligible under 15 m of ice. Measuring TCN concentrations in quartz sand sampled in subglacial streams and in supraglacial channels is statistically compliant with stochastic processes (e.g. rockfalls) and may be used to discriminate subglacial and periglacial erosion. Results for two subglacial streams of the Bossons glacier (Mont Blanc massif, France) show that the proportion of sediments originating from glacially eroded bedrock is not constant: it varies from 50% to 90% (n = 6). The difference between the two streams is probably linked to the presence or absence of supraglacial channels and sinkholes, which are common features of alpine glaciers. Therefore, most of the published mean catchment glacial erosion rates should not be directly interpreted as subglacial erosion rates. In the case of catchments with efficient periglacial erosion and particularly rockfalls, the proportion of sediments in the subglacial stream originating from the supraglacial load could be considerable and the subglacial erosion rate overestimated. Here, we estimate warm‐based subglacial and periglacial erosion rates to be of the same order of magnitude: 0.39 ± 0.33 and 0.29 ± 0.17 mm a?1, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we try to calculate precipitation in Miyake Island, Japan. In order to know the temporal and spatial variations of precipitation, we have set 15 rain gauges randomly in the island to collect the monthly precipitation data since June 1994. It is found that the precipitation is very different from point to point. First, we used statistical methods to get the correlations between the monthly precipitation at our survey points and that at the weather station. Next, regression analyses were used to establish formulae to calculate precipitation as a function of altitude, aspect of the geomorphological surface and wind direction. Based on these results, distributions of monthly and yearly precipitation and δ18O over the island were assessed. The results show that landscape patterns strongly influence precipitation distribution over the island, with the highest precipitation being found on the windward side, about 400–600 m above sea level. Even at places at the same altitude, the precipitation was different because of the aspect of the landscape. At the same time, altitude effects for δ18O on both the windward and leeward sides were −0·10‰/100 m and −0·15‰/100 m, respectively. Comparing with the distribution of precipitation distribution, it was also found that δ18O for the windward and leeward sides was different from that for precipitation, which means that both topographical effects must be considered separately. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号