首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
南海及邻域中,新生代盆地类型与油气资源关系探讨   总被引:9,自引:1,他引:8  
杜德莉  曾维军 《地质论评》1998,44(6):580-589
在南海区域地质构造特征及周缘盆地发育特点的基础上,根据盆地分类的理论,试将南海及周缘的35个中、新生代盆地,划分为两型十一类。各主要盆地的油气地质特点表明,不同类型的盆地,其油气远景不同。分析认为,在板内拉张离散环境中所形成的盆地,含油气远景最佳,是目前勘探和开发的重点。  相似文献   

2.
南海北部大陆边缘深水盆地烃源岩早期预测与评价   总被引:6,自引:2,他引:4       下载免费PDF全文
南海北部深水盆地与浅水陆架区一样,新生代均处于南海北部准被动大陆边缘的地球动力学环境,具有北部大陆边缘拉张裂陷的基本构造地质属性.深水盆地油气运聚成藏的基本地质条件亦与浅水区类似,但由于陆坡深水区凹陷裂陷更深、沉积充填规模更大,因此,烃源岩发育且展布规模更大,进而为深水油气形成莫定了雄厚的烃源物质基础.本文基于深水区少井无井、地质资料缺乏的现状,借鉴浅水区烃源岩地质地球化学特点及评价参数,依据跨越深水区地震剖面层序地层追踪解释及油气地质综合研究,重点对深水盆地烃源岩进行早期预测与评价,同时亦对其油气资源潜力进行初步分析.  相似文献   

3.
作者收集众多国内外有关南海油气勘探的资料和近年来的最新调查成果。在分析安盆地构造地质、沉积特征和烃源岩演化油气分布规律的基础上,用PRES专家系统对该盆地不同凹陷的油气运移进行了数值模拟,取得了较好的效果,可为本区的进一步油气勘探提供可靠的选区依据。  相似文献   

4.
介绍世界著名深水油气盆地的主要特征,着重构造特征,并与南海北部深水区进行了对比。世界著名深水油气盆地产出的大地构造条件具多样性,虽然大多数位于开阔大洋被动陆缘(南大西洋裂谷系、北海、澳大利亚西北陆架盆地),但边缘海的被动陆缘(墨西哥湾盆地)、转换大陆边缘(洛杉矶盆地)、主动陆缘(南沙海槽盆地)也可形成极佳的深水含油气盆地。南海北部深水区具有世界某些重要深水含油气盆地类似的特征,如位于被动陆缘和大河出口下方,以裂陷期的湖相富有机质页岩为主要生油岩,白云凹陷发育上下叠置的6层深水扇等,这都是有利的石油地质条件。但南海北部深水区盐层和盐构造不发育,构造圈闭相对较不发育,使深水油气系统的研究更加困难,也更具开拓意义。   相似文献   

5.
南海作为西太平洋最大的边缘海,油气资源丰富,油气赋存规律的南北差异性大。本文在系统梳理南海中—新生代地层、沉积相发育特征的基础上,对南海南北典型含油气盆地的石油地质条件进行了对比分析。结果认为南海打开过程对古南海沉积地层的改造,使得现有残余地层南北分离,主要分布于北部的珠江口盆地—台西南盆地和南部的礼乐盆地中,推测发育“自生自储”、“新生古储”或“古生新储”的中—新生界油气成藏模式。南海新生代油气藏在“北张、南挤”的构造应力背景下,古近纪以来的古水系控制了大型碎屑岩油气藏的分布;区域构造运动和海平面变化控制了中新世碳酸盐岩油气藏的发育;早新生代以来的古地貌控制的深水峡谷、深海扇、扇三角洲沉积体系孕育了潜在深水油气藏。总之,南海南北地层沉积各有特色,油气成藏条件各有优势,但均有良好的油气勘探前景,本文以期为未来南海油气勘探战略部署和选区提供参考。  相似文献   

6.
通过对构造环境、地球物理场特征、盆地生储盖层发育等方面对比研究, 讨论南海南北部沉积盆地的油气资源分布特征, 为在南海进行油气勘查指明方向.目前油气勘探实践证明, 南海南部的油气资源比北部丰富, 究其原因, 南海北部为被动大陆边缘, 张性沉积盆地的烃源岩体积较小, 而南部挤压环境下形成的沉积盆地的烃源岩体积大; 北部的地热流较南部小, 因此地温梯度也较小, 如北部陆架上的珠江口盆地的热流值在5 3~ 87mW /m2之间, 平均6 7mW /m2, 而南海南部大曾母盆地平均热流值达97mW /m2, 最大值达130mW /m2, 故南部边缘烃源岩的成熟度比北部高; 由于南部边缘处于挤压构造环境, 因此在沉积盆地中形成了许多挤压构造, 而北部边缘一直处于张性构造环境, 形成的构造较少且较小; 同时, 南部边缘沉积盆地中, 烃源岩生烃与构造形成在时间上搭配较好.因此, 在南海南部边缘沉积盆地中形成了许多大型油气田, 而南海北部边缘沉积盆地中, 大型油气田较少, 中小型油气田较多.这就是为什么南海南部边缘的油气资源比北部丰富的地质原因.   相似文献   

7.
南海岩石圈结构与油气资源分布   总被引:6,自引:2,他引:6       下载免费PDF全文
南海是中国唯一发育有洋壳的边缘海,是世界四大海洋油气聚集中心之一。油气勘探表明,南海的油气田分布在北部、西部和南部陆缘沉积盆地内,而大中型油气田集中分布在西部海域盆地中,自北而南有莺歌海—琼东南盆地、万安盆地、湄公盆地、曾母盆地和文莱—沙巴盆地,且以含气为主,含油次之。此外,这一区域深水区还存在多个潜在的大型含油气盆地。研究发现,南海的油气分布与深部岩石圈结构有密切关系。在构造上,南海的含油气盆地位于岩石圈块体边缘或之上,受控于大型岩石圈断裂的发育与演化。在油气富集的盆地中,莫霍面显著凸起,与盆地基底形成镜像,地壳厚度最薄处仅数千米厚,热流值明显较周围地区高,热岩石圈厚度大大减薄。地震层析成像结果反映,这些盆地深部发育一条规模宏大的北西向上地幔隆起带,自红河口向东南穿越南海西部海盆,一直延伸到婆罗州东北部地区,在宏观上控制了南海的油气分布与富集。  相似文献   

8.
南海西南部万安盆地含油气系统研究   总被引:1,自引:0,他引:1  
本文试图运用含油气系统这门新兴学科的理论和方法来研究资料掌握较少的南海万安盆地伯含油气系统。在区域地质、沉积相特征和生烃、运移、聚集以及保存条件的时空匹配关系等研究的基础上。将万安盆地划分为三个含油气系统,指出北、中两个含油气系统的油气远景较好,从中已相继发现和找到不同产能的油气田南部含油所系统远景较差。  相似文献   

9.
中国油气资源勘探现状与战略选区   总被引:2,自引:0,他引:2  
从中国石油地质概况、油气勘探现状和战略选区进行分析总结,提出了中国油气资源战略选区的方向和重点.认为中国石油地质和构造条件复杂,勘探难度增大,油气资源战略选区把南海北部深水海域、松辽盆地及外围、东部及近海前古近系、青藏高原含油气盆地以及非常规油气资源,作为基础性、公益性油气资源战略调查与评价的重点,应用新技术,获得了系列重要地质认识,实现了油气发现和突破.未来应围绕上述领域开展进一步的勘查和勘探工作.  相似文献   

10.
从中国石油地质概况、油气勘探现状和战略选区进行分析总结,提出了中国油气资源战略选区的方向和重点。认为中国石油地质和构造条件复杂,勘探难度增大,油气资源战略选区把南海北部深水海域、松辽盆地及外围、东部及近海前古近系、青藏高原含油气盆地以及非常规油气资源,作为基础性、公益性油气资源战略调查与评价的重点,应用新技术,获得了系列重要地质认识,实现了油气发现和突破。未来应围绕上述领域开展进一步的勘查和勘探工作。  相似文献   

11.
Relative percentages of sand, silt, and clay from samples of the same till unit are not identical because of different lithologies in the source areas, sorting in transport, random variation, and experimental error. Random variation and experimental error can be isolated from the other two as follows. For each particle-size class of each till unit, a standard population is determined by using a normally distributed, representative group of data. New measurements are compared with the standard population and, if they compare satisfactorily, the experimental error is not significant and random variation is within the expected range for the population. The outcome of the comparison depends on numerical criteria derived from a graphical method rather than on a more commonly used one-way analysis of variance with two treatments. If the number of samples and the standard deviation of the standard population are substituted in at-test equation, a family of hyperbolas is generated, each of which corresponds to a specific number of subsamples taken from each new sample. The axes of the graphs of the hyperbolas are the standard deviation of new measurements (horizontal axis) and the difference between the means of the new measurements and the standard population (vertical axis). The area between the two branches of each hyperbola corresponds to a satisfactory comparison between the new measurements and the standard population. Measurements from a new sample can be tested by plotting their standard deviation vs. difference in means on axes containing a hyperbola corresponding to the specific number of subsamples used. If the point lies between the branches of the hyperbola, the measurements are considered reliable. But if the point lies outside this region, the measurements are repeated. Because the critical segment of the hyperbola is approximately a straight line parallel to the horizontal axis, the test is simplified to a comparison between the means of the standard population and the means of the subsample. The minimum number of subsamples required to prove significant variation between samples caused by different lithologies in the source areas and sorting in transport can be determined directly from the graphical method. The minimum number of subsamples required is the maximum number to be run for economy of effort.  相似文献   

12.
Summary Finite element analyses were conducted to investigate the magnitude of tensile strains imposed on landfill liners due to the formation of subsurface cavities. The study incorporated the significance of using geogrids to reduce the magnitude of strains and possibly the potential for collapse of landfill liners. Variations of key parameters included depth of overburden (D) and diameter of the cavity (B). Estimated stress distributions were compared to theoretical values obtained from a model reported in the literature. Results indicated that, contrary to conventional wisdom, the critical area based on the mechanics of arching was above the edge of the cavity where stress concentration occurred. Incorporation of geogrid reinforcement reduced the magnitude of tensile strains. The tensile force in the geogrid was dependent upon the size of the cavity, the depth of the overburden, and the applied pressure.  相似文献   

13.
The evolution of the European Cenozoic Rift System (ECRIS) and the Alpine orogen is discussed on the base of a set of palaeotectonic maps and two retro-deformed lithospheric transects which extend across the Western and Central Alps and the Massif Central and the Rhenish Massif, respectively.During the Paleocene, compressional stresses exerted on continental Europe by the evolving Alps and Pyrenees caused lithospheric buckling and basin inversion up to 1700 km to the north of the Alpine and Pyrenean deformation fronts. This deformation was accompanied by the injection of melilite dykes, reflecting a plume-related increase in the temperature of the asthenosphere beneath the European foreland. At the Paleocene–Eocene transition, compressional stresses relaxed in the Alpine foreland, whereas collisional interaction of the Pyrenees with their foreland persisted. In the Alps, major Eocene north-directed lithospheric shortening was followed by mid-Eocene slab- and thrust-loaded subsidence of the Dauphinois and Helvetic shelves. During the late Eocene, north-directed compressional intraplate stresses originating in the Alpine and Pyrenean collision zones built up and activated ECRIS.At the Eocene–Oligocene transition, the subducted Central Alpine slab was detached, whereas the West-Alpine slab remained attached to the lithosphere. Subsequently, the Alpine orogenic wedge converged northwestward with its foreland. The Oligocene main rifting phase of ECRIS was controlled by north-directed compressional stresses originating in the Pyrenean and Alpine collision zones.Following early Miocene termination of crustal shortening in the Pyrenees and opening of the oceanic Provençal Basin, the evolution of ECRIS was exclusively controlled by west- and northwest-directed compressional stresses emanating from the Alps during imbrication of their external massifs. Whereas the grabens of the Massif Central and the Rhône Valley became inactive during the early Miocene, the Rhine Rift System remained active until the present. Lithospheric folding controlled mid-Miocene and Pliocene uplift of the Vosges-Black Forest Arch. Progressive uplift of the Rhenish Massif and Massif Central is mainly attributed to plume-related thermal thinning of the mantle-lithosphere.ECRIS evolved by passive rifting in response to the build-up of Pyrenean and Alpine collision-related compressional intraplate stresses. Mantle-plume-type upwelling of the asthenosphere caused thermal weakening of the foreland lithosphere, rendering it prone to deformation.  相似文献   

14.
《Geodinamica Acta》2013,26(1-3):127-143
The western part of the Polish Outer Carpathians is built up from the thrust, imbricated Upper Jurassic-Neogene flysch deposits. The following Outer Carpathian nappes have been distinguished: Magura Nappe, Fore-Magura group of nappes, Silesian, Subsilesian and Skole nappes. Interpretation of seismic and magnetotelluric survey from the region South of Wadowice, allows observation of relationship between basement and flysch nappes in the Outer Carpathians. It also allows identification of dislocation cutting both flysch nappes and their basement. All the Outer Carpathian nappes are thrust over the southern part of the North European Platform. The platform basement is composed of older Precambrian metamorphic rocks belonging to the Bruno-Vistulicum terrane. Sedimentary cover consists of Paleozoic, Mesozoic and Neogene sequences. The characteristic features of this boundary are horsts and troughs of general direction NW-SE, turning W-E. Faults cutting only the consolidated basement and the Paleozoic cover were formed during the Hercynian Orogeny in the Carboniferous and the Early Permian. Most of the older normal faults were covered by allochtonous flysch nappes forming thus the blind faults. During the last stage of the geodynamic development the Carpathians thrust sheets moved towards their present position. Displacement of the Carpathians northwards is related to development of dextral strike-slip faults of N—S direction. The orientation of this strike-slip fault zones zone more or less coincides with the surface position of the major faults perpendicular to the strike of the Outer Carpathian thrustsheets. The huge fault cuts formations from the Paleozoic basement through the flysch allochton between the boreholes in Sucha Beskidzka area. The displacement of nappes of the Carpathian overthrust and diapiric extrusion of plastic formations of the lower flysch units occurred along this fault.  相似文献   

15.
Stratigraphic units are defined and described for the Lower Carboniferous succession in the Walterstown-Kentstown area of Co. Meath, Ireland. A complete (unexposed) Courceyan succession from the terrestrial red bed facies of the Baronstown Formation to the Moathill Formation of the Navan Group has been penetrated in several boreholes. Although the lower part of the sequence is comparable with the Courceyan succession at Navan and Slane, the middle part of the sequence differs markedly in the Walterstown-Kentstown area and two new members, the Proudstown and Walterstown Members, are defined in the upper part of the Meath Formation. Syndepositional faulting was initiated during the Courceyan, probably in latest Pseudopolygnathus multistriatus or early Polygnathus mehli latus time. Movement on the ENE trending St. Patrick's Well Fault influenced the deposition of the Walterstown Member and the overlying Moathill Formation and was probably associated with the development of the East Midlands depocentre to the south of the area. A second episode of tectonism in the latest Courceyan or early Chadian resulted in uplift and erosion and the development of ‘block and basin’ sedimentation. Subsequent transgression of the uplifted block led to the establishment of the Kentstown Platform, bounded to the north, west and south by rocks of basinal facies. The Milverton Group (Chadian-Asbian), confined to this platform, unconformably overlies Courceyan or Lower Palaeozoic strata and is subdivided into three formations: Crufty Formation (late Chadian), Holmpatrick Formation (late Chadian-Arundian) and Mullaghfin Formation (late Arundian-Asbian). The Walterstown Fault controlled the western margin of the Kentstown Platform at this time. Contemporaneous basinal sediments of the Fingal Group (Lucan and Naul Formations) accumulated to the west of the Walterstown Fault and are much thicker than age-equivalent platform facies. Platform sedimentation ceased in latest Asbian to early Brigantian time with tectonically induced collapse and drowning of the platform; platform carbonates of the Mullaghfin Formation are onlapped northwards by coarse proximal basinal facies of the Loughshinny Formation. A distinct gravity anomaly in the Kentstown area suggests the presence of a granitoid body within the basement. The Kentstown Platform is therefore considered to have formed on a buoyant, granite-cored, footwall high analogous to the Askrigg and Alston Blocks of northern England.  相似文献   

16.
Shallow water platform limestones of the Chadian–Asbian Milverton Group are restricted to the north-eastern part of the Lower Carboniferous (Dinantian) Dublin Basin. Here, they are confined to two granite-cored fault blocks, the Kentstown and Balbriggan Blocks, known to have been active during the late Dinantian. Three areas of platform sedimentation are delimited (the Kentstown, Drogheda and Milverton areas), although in reality they probably formed part of a single carbonate platform. Resedimented submarine breccias and calciturbidites (Fingal Group) composed of shallow water allochems and intraclasts sourced from the platform accumulated, along with terrigenous muds, in the surrounding basinal areas. Sedimentological evidence suggests that the Kentstown and Balbriggan Blocks possessed tilt-block geometries and developed during an episode of basin-wide extensional faulting in late Chadian time. Rotation of the blocks during extension resulted in the erosion of previously deposited sequences in footwall areas and concomitant drowning of distal hangingwall sequences. Antithetic faults on the northern part of the Balbriggan Block aided the preferential subsidence of the Drogheda area and accounts for the anomously thick sequence of late Chadian platform sediments present there. Continued subsidence and/or sea-level rise in the late Chadian–early Arundian resulted in transgression of the Kentstown and Balbriggan Blocks; carbonate ramps developed on the hangingwall dip slopes and transgressed southward with time. Subsequent progradation and aggradation of shallow water sediments throughout the Arundian to Asbian led to the development of carbonate shelves. Several coarse conglomeratic intervals within the contemporaneous basinal sequences of the Fingal Group attest to periodic increases of sediment influx associated with the development of the shelves. Sedimentological processes controlled the development of the carbonate platforms on the hangingwall dip slopes of the Kentstown and Balbriggan Blocks, though periodic increases of sediment flux into the basinal areas may have been triggered by eustatic falls in sea level. In contrast, differential subsidence along the bounding faults of these blocks exerted a strong control on the margins of the late Dinantian shelves, maintaining relatively steep slopes and inhibiting the progradation of the shelves into the adjacent basins. Tectonically induced collapse and retreat of the platform margins occurred in the late Asbian–early Brigantian. Platform sediments are overlain by coarse-grained proximal basinal facies which fine upwards before passing into a thick shale sequence, indicating that by the late Brigantian carbonate production had almost stopped as the platforms were drowned.  相似文献   

17.
The penetration of rigid objects such as piles and penetrometers into soils creates a zone of soil disturbance around them. The extent of this disturbed zone influences the resistance of the moving rigid body. This paper presents a theoretical framework to analyze the resistance in the disturbed zone created by a shaft penetrating a clay soil. The soil is modeled as a viscous material after it reaches failure [critical state (CS)]. The results of this analysis show that the viscous drag stress component on the shaft surface is influenced by the size of disturbed zone that has reached CS around the shaft, the shear viscosity of the soil and the velocity profile (or strain rate) in the CS zone around the shaft. The size of CS zone, the velocity profile and the viscosity of soil are interdependent. Large variation in viscous drag occurs when the size of the CS soil zone is less than four times the shaft’s radius. Limiting drag occurs when the size of the CS soil zone exceeds six times the shaft’s radius. The theoretical velocity distribution of the movement of soil in the CS zone shows that the soil is dragged along with shaft in the near field (close to the shaft surface) and moves upwards in the far field.  相似文献   

18.
文中描述了产自广西桂林地区下石炭统黄金组下部的颅形贝属一新种,桂林颅形贝(Cranaena guilinensis)。新种以平直的前结合缘和背壳上发育中槽为特征。在4枚标本上发现保存有放射状的彩色条带,表明该种当时生活在温暖海域的浅水环境。对该属70个种的地质地理分布和生物多样性变化的初步分析表明,该属可能起源于早泥盆世欧美大陆西北缘的老世界区,之后的地理分布和生物多样性发展以北美地区为中心,经历了中泥盆世—晚泥盆世早期和早石炭世2次比较明显的辐射演化、迁移扩散高峰和晚泥盆世晚期的1次严重衰退。第1次高峰是中泥盆世—晚泥盆世早期,该属的生物多样性达到巅峰,生物地理分布范围扩大到欧美大陆之外的西伯利亚板块、哈萨克斯坦板块和华南板块等;第2次高峰是早石炭世,该属的生物多样性虽不及前一次,但获得了最广泛的地理分布,不仅在北方大陆有分布,而且已进入到冈瓦纳大陆边缘。晚泥盆世晚期该属的1次严重衰退显然与F/F灭绝事件有关。早石炭世之后,该属进入衰退阶段,最终在二叠纪初灭绝。  相似文献   

19.
The explanation normally given for the tectonics of Sainte-Victoire Mountain, a dozen kilometres east of Aix-en-Provence, to the north of the limestone Provence, is incorrect. To the east, the morphology of the Sainte-Victoire is subdued, whereas to the west, before the mountain breaks savagely, the morphology is that of a young mountain as appears in Alpine landscapes. This unusual aspect in the region and the large subvertical faults with vertically striated surfaces that mark the massif to the south and to the west, induce the idea of strong vertical uplifts and caste doubt on the tectonic interpretation given in 1962 by Corroy et al. According to those authors, the Sainte-Victoire is a unit of Jurassic and Cretaceous formations overthrusting 1800 m to the south conglomerates of the Late Cretaceous or Palaeocene. New observations about the conglomerate transgression over the Jurassic and Cretaceous beds, and about the faults around and on the massif do not give evidence of an overthrusting but, on the contrary, induce the idea of a uplift, perhaps still active, in the form of a ‘piano key’ inclined to the northeast. To cite this article: J. Ricour et al., C. R. Geoscience 337 (2005).  相似文献   

20.
中国中新元古代重要沉积地质事件及其意义   总被引:2,自引:2,他引:0       下载免费PDF全文
地球曾经历了3次超大陆演化过程,其中2次超大陆(哥伦比亚(Columbia)和罗迪尼亚(Rodinia))旋回涉及中新元古代,并与一系列区域性事件相联系,形成了多成因的超大陆演化模型。华北中东部新元古代沉积事件、扬子和塔里木新元古代裂谷事件、雪球事件等都被视为Rodinia超大陆的裂解响应,它们对定时三大陆块相互关系及定位其在全球超大陆的位置具有至关重要的作用,也反映了重要沉积地质事件在超大陆研究中不可或缺的作用和意义。此外,在中新元古代的Columbia和Rodinia超大陆演化过程中,还伴随发育具有广泛区域性甚至全球意义的巨厚白云岩与碳酸盐岩微生物(岩)、红层与黑色页岩、全球性臼齿亮晶碳酸盐岩和埃迪卡拉纪盖帽碳酸盐岩等沉积事件群及元素(同位素)漂移等地球化学异常事件,也包括特殊且重要的磷块岩、锰、铁矿等沉积成矿事件。由于不断显示出来在全球古大陆重建和古地理恢复方面的重要作用,它们越来越得到学术界的广泛关注和研究。文中通过系统分析中国中新元古代超大陆旋回演化中发育的部分重要或关键地质事件(群)时空发育与分布特征,并结合作者团队的实际资料和测试数据,以期揭示超大陆演化过程与重要沉积地质事件的内在联系,为超大陆聚散旋回演化和时空定位及原型沉积盆地的发育和评价提供科学证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号