首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Kretz (1982) and Lindsley (1983) have each calibrated the Ca-pyroxene thermometer. These new calibrations are applied to 24 analyzed pyroxenes from 24 H6, L6 and LL6 chondrites. Both thermometers agree that the H group equilibrated to a significantly lower temperature, 820°–830°C, than the L and LL groups. The two thermometers disagree on the value of the higher temperature of equilibration of the L and LL groups, giving values of 860°C (Lindsley) to 930°C (Kretz).  相似文献   

3.
We have studied metal grains in the hosts and lithic fragments of widely differing petrologic types in four xenolithic chondrftes, using reflected-light microscopy and electron-probe analysis. In Weston and Fayetteville, which both contain solar-flare tracks and solar-wind gases, kamacite, taenite and tetrataenite (ordered FeNi) and troilite show a variety of textures. On a Wood plot of central Ni content vs dimension, taenite analyses scatter as if metal grains cooled at rates of 10–1000 and 1–100 K/Myr respectively through 700 K, although metal in an H6 clast in Fayetteville plots coherently with a cooling rate of 50 K/Myr. We propose that metal grains cooled at these rates in chondritic clasts at different locations before host and clasts were compacted, and were not subsequently heated above 650 K. We predict a similar history for all gas-rich ordinary chondrites.By contrast, metallic minerals throughout Bhola and Mezö-Madaras show more uniform textures and plot coherently giving cooling rates in the range 750 to ~600 K of 0.1 and 1 K/Myr, respectively. We conclude that host and xenoliths in both chondrites were slowly cooled after compaction. Thus clasts in these chondrites experienced peak metamorphic temperatures and slow cooling through 700 K in different environments.According to the conventional onion-shell model for H, L or LL chondrite parent bodies, material of petrologic types 3–5 was arranged in successive shells around a type 6 core prior to catastrophic collisions which mixed all types intimately. But if peak metamorphic temperatures were reached during, not after accretion, as seems plausible, maximum metamorphism may have occurred in planetesimals <10 km in radius. Cooling through 700 K may then have occurred in larger bodies that accreted from these planetesimals. Iron meteorites, mesosiderites and some achondrites may also have experienced melting in planetesimals and slow cooling in larger bodies.  相似文献   

4.
D.A Carswell 《Lithos》1974,7(2):113-121
The chemistry of the pyroxenes suggests that the garnet lherzolites enclosed in the Norwegian basal gneisses have equilibrated at depths greater than 70 kilometres along an expected sub-continental geotherm. Such depths are somewhat shallower than the apparent depths of origin of most garnet lherzolite xenoliths in kimberlite pipes. Distribution coefficients for Fe2+/Mg2+ and Mn2+/Mg2+ between coexisting clinopyroxenes and garnets support the slightly lower equilibration temperatures deduced for the Norwegian garnet lherzolites compared with the xenolithic garnet lherzolites in kimberlites.The pressure-temperature equilibration conditions deduced for the Norwegian garnet lherzolites (800–1020°C at 22–37 kbs) contrast with previous estimates (625 ± 30° at 14 kbs) for basic eclogite masses in the Norwegian gneisses. This suggests a possible dual paragenesis of the Norwegian eclogites, with the garnet lherzolites being tectonic slices of the sub-continental upper mantle and the basic eclogites deep crustal metamorphic rocks.  相似文献   

5.
The abundance, composition and grain size of the metal available to volatile siderophile elements strongly affect the condensation of these elements. These parameters are redefined on the basis of published chemical analyses and new mechanical analyses of the unequilibrated ordinary chondrites. The results suggest that previous workers have seriously overestimated the amount of metal present and available during condensation, and seriously underestimated the heat of solution of Bi in chondritic metal. Correction of these parameters results in nominal accretion temperatures for Bi which are substantially (95–110°K) lower than those calculated earlier, and which are discordant with the temperatures inferred for chalcophile trace elements.  相似文献   

6.
The thermal histories of Martian meteorite are important for the interpretation of petrologic, geochemical, geochronological, and paleomagnetic constraints that they provide on the evolution of Mars. In this paper, we quantify 40Ar/39Ar ages and Ar diffusion kinetics of Martian meteorites Allan Hills (ALH) 84001, Nakhla, and Miller Range (MIL) 03346. We constrain the thermal history of each meteorite and discuss the resulting implications for their petrology, paleomagnetism, and geochronology. Maskelynite in ALH 84001 yields a 40Ar/39Ar isochron age of 4163 ± 35 Ma, which is indistinguishable from recent Pb-Pb (Bouvier et al., 2009a) and Lu-Hf ages (Lapen et al., 2010). The high precision of this result arises from clear resolution of a reproducible trapped 40Ar/36Ar component in maskelynite in ALH 84001 (40Ar/36Ar = 632 ± 90). The maskelynite 40Ar/39Ar age predates the Late Heavy Bombardment and likely represents the time at which the original natural remanent magnetization (NRM) component observed in ALH 84001 was acquired. Nakhla and MIL 03346 yield 40Ar/39Ar isochron ages of 1332 ± 24 and 1339 ± 8 Ma, respectively, which we interpret to date crystallization. Multi-phase, multi-domain diffusion models constrained by the observed Ar diffusion kinetics and 40Ar/39Ar age spectra suggest that localized regions within both ALH 84001 and Nakhla were intensely heated for brief durations during shock events at 1158 ± 110 and 913 ± 9 Ma, respectively. These ages may date the marginal melting of pyroxene in each rock, mobilization of carbonates and maskelynite in ALH 84001, and NRM overprints observed in ALH 84001. The inferred peak temperatures of the shock heating events (>1400 °C) are sufficient to mobilize Ar, Sr, and Pb in constituent minerals, which may explain some of the dispersion observed in 40Ar/39Ar, Rb-Sr, and U-Th-Pb data toward ages younger than ∼4.1 Ga. The data also place conservative upper bounds on the long-duration residence temperatures of the ALH 84001 and Nakhla protolith to be  °C and  °C over the last ∼4.16 Ga and ∼1.35 Ga, respectively. MIL 03346 has apparently not experienced significant shock-heating since it crystallized, consistent with the fact that various chronometers yield concordant ages.  相似文献   

7.
Neutron activation analysis was used to determine As, Au, Bi, Cd, Co, Cu, Ga, In, Sb, Se, Te, Tl and Zn in 13 different unequilibrated ordinary chondrites (UOC), i.e. those having chemicallyinhomogeneous silicates. This study together with prior data completes our coverage of this group of 23 primitive chondrites. Four elements are quite variable in UOC (Cd—20 x, In—30 x, Bi—300 x and Tl—1300 x), the others varying by 2–8 x. Three highly-depleted elements—Bi, In and Tl—are richer by 5–35 x in unequilibrated chondrites than in their equilibrated congeners. All 3 elements vary directly in characteristic fashion with disequilibrium parameters for olivine and pyroxene in UOC and generally with petrologic type 3 > 4 > 5 > 6. The data do not provide unambiguous evidence for nebular fractionation of siderophile elements. Examination of statistically-significant interelement relationships among various ordinary chondrite populations involving 34 elements reveals patterns distinct from those of other chondritic groups. These patterns reflect nebular metal-silicate fractionation which preceded or accompanied thermal fractionation. The results point to significant differences in the formation of primitive carbonaceous, enstatite and ordinary chondrites.  相似文献   

8.
A new compilation of Australian meteorite discoveries suggests that many meteorites remain to be discovered by field geologists and others, in outback areas of Australia.  相似文献   

9.
Enstatite-rich meteorites include EH and EL chondrites, rare ungrouped enstatite chondrites, aubrites, a few metal-rich meteorites (possibly derived from the mantle of the aubrite parent body), various impact-melt breccias and impact-melt rocks, and a few samples that may be partial-melt residues ultimately derived from enstatite chondrites. Members of these sets of rocks exhibit a wide range of impact features including mineral-lattice deformation, whole-rock brecciation, petrofabrics, opaque veins, rare high-pressure phases, silicate darkening, silicate-rich melt veins and melt pockets, shock-produced diamonds, euhedral enstatite grains, nucleation of enstatite on relict grains and chondrules, low MnO in enstatite, high Mn in troilite and oldhamite, grains of keilite, abundant silica, euhedral graphite, euhedral sinoite, F-rich amphibole and mica, and impact-melt globules and spherules. No single meteorite possesses all of these features, although many possess several. Impacts can also cause bulk REE fractionations due to melting and loss of oldhamite (CaS) – the main REE carrier in enstatite meteorites. The Shallowater aubrite can be modeled as an impact-melt rock derived from a large cratering event on a porous enstatite chondritic asteroid; it may have been shock melted at depth, slowly cooled and then excavated and quenched. Mount Egerton may share a broadly similar shock and thermal history; it could be from the same parent body as Shallowater. Many aubrites contain large pyroxene grains that exhibit weak mosaic extinction, consistent with shock-stage S4; in contrast, small olivine grains in some of these same aubrites have sharp or undulose extinction, consistent with shock stage S1 to S2. Because elemental diffusion is much faster in olivine than pyroxene, it seems likely that these aubrites experienced mild post-shock annealing, perhaps due to relatively shallow burial after an energetic impact event. There are correlations among EH and EL chondrites between petrologic type and the degree of shock, consistent with the hypothesis that collisional heating is mainly responsible for enstatite-chondrite thermal metamorphism. Nevertheless, the apparent shock stages of EL6 and EH6 chondrites tend to be lower than EL3-5 and EH3-5 chondrites, suggesting that the type-6 enstatite chondrites (many of which possess impact-produced features) were shocked and annealed. The relatively young Ar–Ar ages of enstatite chondrites record heating events that occurred long after any 26Al that may have been present initially had decayed away. Impacts remain the only plausible heat source at these late dates. Some enstatite meteorites accreted to other celestial bodies: Hadley Rille (EH) was partly melted when it struck the Moon; Galim (b), also an EH chondrite, was shocked and partly oxidized when it accreted to the LL parent asteroid. EH, EL and aubrite-like clasts also occur in the polymict breccias Kaidun (a carbonaceous chondrite) and Almahata Sitta (an anomalous ureilite). The EH and EL clasts in Kaidun appear unshocked; some clasts in Almahata Sitta may have been extensively shocked on their parent bodies prior to being incorporated into the Almahata Sitta host.  相似文献   

10.
A method for selective annealing of cosmic-ray tracks has been developed, permitting determination of fission-track ages in the presence of a large background of cosmic-ray tracks. The mesosiderite Bondoc contains 41 fission tracks/cm2, of which about 75% are due to neutron-induced fission of U235 during cosmic-ray exposure. Its net fission-track age is 140 ± 40 Myr, nearly identical to its cosmic-ray exposure age of 150 Myr. The mesosiderite Mincy has a fission-track age of 1500 ± 400 Myr.Nakhla (nakhlite) contains an excess of apparent fission tracks, which may be either genuine fission tracks from Pu244 or etch pits mimicking fission tracks in length, thermal stability, random orientation, and other characteristics. On the assumption that they are fission tracks, the Pu244/U238 ratio at the onset of track retention in Nakhla was (3.1 ± 1.3) × 10?3, nearly an order of magnitude lower than the initial solar system ratio. This may reflect a chemical fractionation of Pu and U, or a late impact or magmatic event. Different minerals of the Washougal howardite have different Pu244/U238 ratios, from (24 ± 7) × 10?3 to (2.3 ± 0.7) × 10?3. This may imply a succession of impacts over a period of time. Additionally, Pu and U may have been chemically fractionated from each other in this meteorite.Shocked meteorites show no consistent pattern in the retentivity of fission tracks and of fissiogenic or radiogenic noble gases. Some meteorites, e.g. Bondoc, Serra de Magé, and Mincy, retain gases more completely than tracks; others, e.g. Nakhla and Allende, retain them less completely.Uranium was determined in feldspar and/or pyroxene from 19 Ca-rich achondrites and mesosiderites. For most, only upper limits of 0.01–0.03 ppb were obtained. Apparently the uranium in these meteorites resides almost exclusively in minor phases, as in terrestrial and lunar rocks.  相似文献   

11.
Basalts and basaltic cumulates from Mars (delivered to Earth as meteorites) carry a record of the history of that planet - from accretion to initial differentiation and subsequent volcanism, up to recent times. We provide new microprobe data for plagioclase, olivine, and pyroxene from 19 of the martian meteorites that are representative of the six types of martian rocks. We also provide a comprehensive WDS map dataset for each sample studied, collected at a common magnification for easy comparison of composition and texture. The silicate data shows that plagioclase from each of the rock types shares similar trends in Ca-Na-K, and that K2O/Na2O wt% of plagioclase multiplied by the Al content of the bulk rock can be used to determine whether a rock is “enriched” or “depleted” in nature. Olivine data show that meteorite Y 980459 is a primitive melt from the martian mantle as its olivine crystals are in equilibrium with its bulk rock composition; all other olivine-bearing Shergottites have been affected by fractional crystallization. Pyroxene quadrilateral compositions can be used to isolate the type of melt from which the grains crystallized, and minor element concentrations in pyroxene can lend insight into parent melt compositions.In a comparative planetary mineralogy context, plagioclase from Mars is richer in Na than terrestrial and lunar plagioclase. The two most important factors contributing to this are the low activity of Al in martian melts and the resulting delayed nucleation of plagioclase in the crystallizing rock. Olivine from martian rocks shows distinct trends in Ni-Co and Cr systematics compared with olivine from Earth and Moon. The trends are due to several factors including oxygen fugacity, melt compositions and melt structures, properties which show variability among the planets. Finally, Fe-Mn ratios in both olivine and pyroxene can be used as a fingerprint of planetary parentage, where minerals show distinct planetary trends that may have been set at the time of planetary accretion.Although the silicate mineralogical data alone cannot support one specific model of martian magmatism over another, the data does support the basic igneous reservoirs proposed for Mars, and may also be used to constrain some aspects of specific petrogenetic models. Examples include enriched and depleted reservoirs that can be identified by plagioclase K, Na and Al composition, multivalent element partitioning in olivine and pyroxene (V, Cr) elucidates oxygen fugacity conditions of the reservoirs, and minor element concentrations (i.e., Cr in pyx) show that proposed fractional crystallization models linking Y 980459 to QUE 94201 will not work.  相似文献   

12.
Samples of a type 3.4 chondrite have been annealed at 400–1000°C for 1–200 hours, their thermoluminescence properties determined and analyzed for K, Na, Mn, Sc and Ca by instrumental neutron activation analysis. After annealing at ?900°C, the samples showed a 50% decrease in TL sensitivity, while after annealing at 1000°C it fell to 0.1-0.01 times its unannealed value and loss of Na and K occurred. The TL and compositional changes resemble those observed for the equilibrated Kernouve chondrite after similar annealing treatments, except that the sharp TL decrease, and element loss, occurred at ~ 1100°C; this difference is presumably due to petrographic differences in the feldspar of the two meteorites. The temperature and the width of the TL peak showed a discontinuous increase after annealing at 800°C; peak temperature jumped from 130 to 200°C and peak width increased from 90 to 150°C. The activation energies for these TL changes are 7–10 kcal/mole. Similar increases in the TL peak temperature have been reported in TL studies of Amelia, VA, albite, where they were associated with the low to high-temperature transformation. However, the activation energy for the transformation is ~80 kcal/mole. These changes in TL emission characteristics resemble trends observed in type 3 ordinary chondrites and it is suggested that type 3.3–3.5 chondrites have a low-feldspar as TL phosphor and > 3.5 have high-feldspar as the phosphor. Thermoluminescence therefore provides a means of palaeothermometry for type 3 ordinary chondrites.  相似文献   

13.
Extending our earlier work on 11 L-chondrites, we have measured 9 volatile elements (Ag, Bi, Cs, In, Rb, Tl, Se, Cd, Zn) by neutron activation analysis in 11 LL- and 10 E-chondrites; the first 6 elements also in 22 H-chondrites. The observed fractionation patterns are consistent with theoretical condensation curves and hence were apparently established during condensation from the solar nebula. Ordinary chondrites seem to have accreted between 420 and 500°K at P ≈ 10?5 atm; enstatite chondrites, at 460 to 520°K and P ≈ 5 x? 10?4 atm. The values for ordinary chondrites agree with O18-based temperatures by Onuma. et al. (1972) and with other characteristics such as Fe2+ content, presence of FeS and absence of Fe3O4.A few detailed trends were noted. Seven of the 54 meteorites seem to contain small amounts of a material enriched in Ag, Bi and especially T1; possibly a late condensate from a region depleted in metal. Silver shows considerable scatter, which suggests inhomogeneous distribution in the meteorites. Xenon correlates with In approximately as expected for equilibrium solubility, with some differences (petrologic type 3; E-chondrites) attributable to mineralogical factors. Meteorites of higher petrologic types are slightly deficient in Xe, probably due to gas losses during metamorphism. Cesium also appears to have been redistributed during metamorphism.Various features of the two-component model are critically examined in the light of the latest evidence. Apparently this model still is an adequate approximation of reality.  相似文献   

14.
Low pressure melting experiments on eucritic meteorites demonstrate that the compositions of most eucrites can be generated by low pressure fractionation of pigeonite and plagioclase from liquids similar in composition to the Sioux County and Juvinas eucrites. It is unlikely that the liquids with compositions similar to Sioux County and Juvinas were themselves residual liquids produced by extensive fractionation of more magnesian parental liquids. The compositions of Stannern and Ibitira cannot be produced by fractionation of liquids with compositions similar to other known eucrites. Liquid compositions similar to Stannern, Ibitira, and Sioux County could have been generated by increasing degrees of low pressure partial melting of source regions composed of olivine (~Fo65), pigeonite (~Wo5En65), plagioclase (~An94), Cr-rich spinel, and metal. These source assemblages may have been primitive, undifferentiated material of the basaltic achondrite parent body and the eucrites may represent melts produced in early stages of its melting and differentiation. Further melting in these source regions, after exhaustion of plagioclase, may have produced magnesian liquids from which the magnesian pyroxenes and olivines in howardites, diogenites, and mesosiderites crystallized in closed-system plutonic environments. Most of the cumulate eucrites (e.g. Moama, Moore County, Serra de Magé) could not have equilibrated with liquids similar in composition to known eucrites. These cumulates may have accumulated from liquids produced by extensive fractionation of advanced partial melts of the source regions of eucritic liquids. A depletion in Na, K, and Rb in Ibitira is noted.  相似文献   

15.
Group IIAB is the third largest group of iron meteorites and the second largest group that formed by fractional crystallization; many of these irons formed from the P-rich portion of a magma consisting of two-immiscible liquids. We report neutron-activation data for 78 IIAB irons. These confirm earlier studies showing that the group has the largest known range in Ir concentrations (a factor of 4000) and that slopes are steeply negative on plots of Ir vs. Au or As (or Ni). High negative slopes imply relatively high distribution coefficients for Ir, Au, and As (but, with rare exceptions, remaining less than unity for the latter). IIAB appears to have had the highest S contents of any magmatic group of iron meteorites, consistent with its high contents of other volatile siderophiles, particularly Ga and Ge. Large fractions of trapped melt were present in the IIAB irons with the highest Au and As and lowest Ir contents. As a result, when these irons crystallized, the DAu and DAs values can, with moderate accuracy, be estimated to have been roughly 0.53 and 0.46, respectively. These low values imply that the initial nonmetal (S + P) content of the magma was much lower than 170 mg/g, as estimated in earlier studies; our estimate is 75 mg/g. Our results are consistent with an initial P/S ratio of 0.25, similar to the ratio estimated for other magmatic groups. There is little doubt that incompatible S-rich and P-rich metallic liquids were involved during the formation of group IIAB. After 20% crystallization of our assumed starting composition the two-liquid boundary is encountered (at 72 mg/g S and 18 mg/g P). Initially the volume of S-rich liquid is very small, but continued crystallization increased the volume of this phase and decreased its P/S ratio while increasing this ratio in the P-rich liquid. Most crystallization of the IIAB magma would have occurred in the lower, P-rich portion of the core. However, metal was still a liquidus phase at the top of the core and, because both the immiscible liquids would have convected, they may have approached equilibrium throughout the very limited crystallization of the magma recorded in group IIAB. All IIAB irons contain trapped melt, and this melt will have had very different compositions depending on whether the liquid is S-rich (at the outer solid/liquid interface) or P-rich (at the inner interface). The P/S ratio in the melt trapped in the Santa Luzia iron is about 0.6 g/g, consistent with our modeling of Ir-Au and Ir-As trends implying that Santa Luzia formed in the lower, P-rich portion of the core after about 48% crystallization of the magma. Because the liquids were in equilibrium, the point at which immiscibility first occurred is not recorded by a dramatic change in the trends on element-Au diagrams; the main compositional effect is recorded in the P/S ratio of the trapped melt. The high-Au (>0.8 μg/g) irons for which large sections are available all contain skeletal schreibersite implying a relatively high (>0.3 g/g) P/S ratio; none of these irons could have crystallized from the S-rich upper layer of the core.  相似文献   

16.
White micas (phengites) in the metasediments of the Scottish Dalradian display a large range of compositions within single samples. The variations in the composition of these phengites are strongly controlled by their structural age, with early fabrics containing a paragonite-poor, celadonite-rich phengite whereas in later fabrics the micas are generally paragonite-rich and celadonite-poor. Retrograde phengite growth, identified using back scattered electron imaging, occurs as celadonite-rich rims on micas within all existing fabrics and appears to be preferentially developed along existing white mica-plagioclase grain boundaries. The presence of these chemically distinct phengite populations within single samples implies that chemical exchange between the individual micas was inefficient. It is proposed that diffusion-controlled exchange reactions in phengites have relatively high closure temperatures below which major element exchange is effectively impossible. This closed system behaviour of micas questions the ease with which phengites may equilibrate with other phases during prograde greenschist and lower amphibolite facies metamorphism. Many of the chemical variations preserved in phengites from such metamorphic rocks may reflect deformation/recrystallization controlled equilibria.  相似文献   

17.
The production rate of 38Ar in meteorites—P(38)—has been determined, as a function of the sample's chemical composition, from 81Kr-Kr exposure ages of four eucrite falls. The cosmogenic 78Kr/83Kr ratio is used to estimate the shielding dependence of P(38).

From the “true” 38Ar exposure ages and the apparent 81Kr-Kr exposure ages of nine Antarctic eucrite finds, terrestrial ages are calculated. They range from about 3 × 105 a (Pecora Escarpment 82502) to very recent falls (Thiel Mountains 82502). Polymict eucrites from the Allan Hills (A78132, A79017 and A81009) have within the limits of error the same exposure age (15.2 × 106 a) and the same terrestrial age (1.1 × 105 a). This is taken as strong evidence that these meteorites are fragments of the same fall. A similar case are the Elephant Moraine polymict eucrites A79005, A79006 and 82600 with an exposure age of 26 × 106 a and a terrestrial age of 1.8 × 105 a. EETA79004 may be different from this group because its exposure age and terrestrial age are 21 × 106 a and 2.5 × 105 a, respectively.

The distribution of terrestrial ages of Allan Hills meteorites is discussed. Meteorites from this blue ice field have two sources: Directly deposited falls and meteorites transported to the Allan Hills inside the moving Antarctic ice sheet. During the surface residence time meteorites decompose due to weathering processes. The weathering “half-life” is about 1.6 × 105 a. From the different age distributions of Allan Hills and Yamato meteorites, it is concluded that meteorite concentrations of different Antarctic ice fields need different explanations.  相似文献   


18.
再论“麻江古油藏”烃源岩   总被引:1,自引:0,他引:1  
目前,对麻江古油藏源岩的认识仍存在很大分歧.对研究区沥青与原油进行了岩石热解(Roek-Eval)、饱和烃色谱分析,并测定了正构烷烃单体碳同位素组成.结果显示,麻江、丹寨地区下奥陶统O1h+d的沥青成熟度明显高于凯里地区志留系翁项群(S2W),原油;麻江、丹寨地区O1d+h沥青的Pr/Ph峰面积比值>1,而凯里地区S2...  相似文献   

19.
Samples of bulk meteorites show only mass-dependent fractionation of silicon isotopes. No isotopic anomalies were found. The variation of the ratios 29Si/28Si and 30Si/28Si over the meteorite classes is small; 1%. per mass unit difference. The average Si isotopic composition for each class of meteorites is identical, within analytical uncertainties. This is quite unlike O, whose anomalous isotopic abundances in bulk samples differentiate among the classes of meteorites. The overlapping abundance ranges of Si isotopes among many classes of meteorites suggest closed-system behavior for this element prior to meteorite accretion and allow calculation of an average solar system Si isotope composition.  相似文献   

20.
A group of stony meteorites, mainly unequilibrated chondrites ( and , 1965), has been analysed chemically. The chemical analyses of ten meteorites are given in this paper. Detailed studies of the petrology and mineralogy of these meteorites are in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号