首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The manifestation of convection in deep layers of the Sun has been found in the dynamics of solar surface activity (Arkhypov, Antonov, and Khodachenko in Solar Phys. 270, 1, 2011). Some chromospheric phenomena could be connected with deep convection, too. We justify this hypothesis with sunspot, Ca ii, Hα, and millimeter-wave radio data. It is argued that large-scale (20 to 25 deg) bright regions in the chromosphere, surrounded by dark halos with diameters of 40° to 50°, can be manifestations of giant convection cells. The ascending and descending flows in such cells modulate the emergence of magnetic tubes generating the high-temperature regions and low-temperature halo in the chromosphere. Our estimates of the rotation rate of such features confirm their association with deep (≳ 35 Mm) layers of the solar convection zone.  相似文献   

2.
The north – south asymmetries (NSA) of three solar activity indices are derived and mutually compared over a period of more than five solar cycles (1945 – 2001). A catalogue of the hemispheric sunspot numbers, the data set of the coronal green line brightness developed by us, and the magnetic flux derived from the NSO/KP data (1975 – 2001) are treated separately within the discrete low- and mid-latitude zones (5° – 30°, 35° – 60°). The calculated autocorrelations, cross-correlations, and regressions between the long-term NSA data sets reveal regularities in the solar activity phenomenon. Namely, the appearance of a distinct quasi-biennial oscillation (QBO) is evident in all selected activity indices. Nevertheless, a smooth behavior of QBO is derived only when sufficient temporal averaging is performed over solar cycles. The variation in the significance and periodicity of QBO allows us to conclude that the QBO is not persistent over the whole solar cycle. A similarity in the photospheric and coronal manifestations of the NSA implies that their mutual relation will also show the QBO. A roughly two-year periodicity is actually obtained, but again only after significant averaging over solar cycles. The derived cross-correlations are in fact variable in degree of correlation as well as in changing periodicity. A clear and significant temporal shift of 1 – 2 months in the coronal manifestation of the magnetic flux asymmetry relative to the photospheric manifestation is revealed as a main property of their mutual correlation. This shift can be explained by the delayed large-scale coronal manifestation in responding to the emergence of the magnetic flux in the photosphere. The reliability of the derived results was confirmed by numerical tests performed by selecting different numerical values of the used parameters.  相似文献   

3.
In this article we present the results of a study of the spatial distribution and asymmetry of solar active prominences (SAP) for the period 1996 through 2007 (solar cycle 23). For more meaningful statistical analysis we analyzed the distribution and asymmetry of SAP in two subdivisions viz. Group1 (ADF, APR, DSF, CRN, CAP) and Group2 (AFS, ASR, BSD, BSL, DSD, SPY, LPS). The North – South (N – S) latitudinal distribution shows that the SAP events are most prolific in the 21° to 30° slice in the Northern and Southern Hemispheres; the East – West (E – W) longitudinal distribution study shows that the SAP events are most prolific (best observable) in the 81° to 90° slice in the Eastern and Western Hemispheres. It was found that the SAP activity during this cycle is low compared to previous solar cycles. The present study indicates that during the rising phase of the cycle the number of SAP events are roughly equal in the Northern and Southern Hemispheres. However, activity in the Southern Hemisphere has been dominant since 1999. Our statistical study shows that the N – S asymmetry is more significant then the E – W asymmetry.  相似文献   

4.
The observed phase relations between the weak background solar magnetic (poloidal) field and strong magnetic field associated with sunspots (toroidal field) measured at different latitudes are presented. For measurements of the solar magnetic field (SMF) the low-resolution images obtained from Wilcox Solar Observatory are used and the sunspot magnetic field was taken from the Solar Feature Catalogues utilizing the SOHO/MDI full-disk magnetograms. The quasi-3D latitudinal distributions of sunspot areas and magnetic fields obtained for 30 latitudinal bands (15 in the northern hemisphere and 15 in the southern hemisphere) within fixed longitudinal strips are correlated with those of the background SMF. The sunspot areas in all latitudinal zones (averaged with a sliding one-year filter) reveal a strong positive correlation with the absolute SMF in the same zone appearing first with a zero time lag and repeating with a two- to three-year lag through the whole period of observations. The residuals of the sunspot areas averaged over one year and those over four years are also shown to have a well defined periodic structure visible in every two – three years close to one-quarter cycle with the maxima occurring at − 40° and + 40° and drifts during this period either toward the equator or the poles depending on the latitude of sunspot occurrence. This phase relation between poloidal and toroidal field throughout the whole cycle is discussed in association with both the symmetric and asymmetric components of the background SMF and relevant predictions by the solar dynamo models.  相似文献   

5.
Employing the synoptic maps of the photospheric magnetic fields from the beginning of solar cycle 21 to the end of 23, we first build up a time – longitude stackplot at each latitude between ±35°. On each stackplot there are many tilted magnetic structures clearly reflecting the rotation rates, and we adopt a cross-correlation technique to explore the rotation rates from these tilted structures. Our new method avoids artificially choosing magnetic tracers, and it is convenient for investigating the rotation rates of the positive and negative fields by omitting one kind of field on the stackplots. We have obtained the following results. i) The rotation rates of the positive and negative fields (or the leader and follower polarities, depending on the hemispheres and solar cycles) between latitudes ±35° during solar cycles 21–23 are derived. The reversal times of the leader and follower polarities are usually not consistent with the years of the solar minimum, nevertheless, at latitudes ±16°, the reversal times are almost simultaneous with them. ii) The rotation rates of the three solar cycles averaged over each cycle are calculated separately for the positive, negative and total fields. The latitude profiles of rotation of the positive and negative fields exhibit equatorial symmetries with each other, and those of the total fields lie between them. iii) The differences in rotation rates between the leader and follower polarities are obtained. They are very small near the equator, and increase as latitude increases. In the latitude range of 5° – 20°, these differences reach 0.05 deg day−1, and the mean difference for solar cycle 22 is somewhat smaller than cycles 21 and 23 in these latitude regions. Then, the differences reduce again at latitudes higher than 20°.  相似文献   

6.
Measurement of the floor in the interplanetary magnetic field and estimation of the time-invariant open magnetic flux of the Sun require knowledge of closed magnetic flux carried away by coronal mass ejections (CMEs). In contrast with previous papers, we do not use global solar parameters to estimate such values: instead we identify different large-scale types of solar wind for the 1976 – 2000 interval to obtain the fraction of interplanetary CMEs (ICMEs). By calculating the magnitude of the interplanetary magnetic field B averaged over two Carrington rotations, the floor of the magnetic field can be estimated from the B value at a solar cycle minimum when the number of ICMEs is minimal. We find a value of 4.65±0.6 nT, in good agreement with previous results.  相似文献   

7.
As part of a program to estimate the solar spectrum back to the early twentieth century, we have generated fits to UV spectral irradiance measurements from 1 – 410 nm. The longer wavelength spectra (150 – 410 nm) were fit as a function of two solar activity proxies, the Mg ii core-to-wing ratio, or Mg ii index, and the total Ca ii K disk activity derived from ground based observations. Irradiance spectra at shorter wavelengths (1 – 150 nm) where used to generate fits to the Mg ii core-to-wing ratio alone. Two sets of spectra were used in these fitting procedures. The fits at longer wavelengths (150 to 410 nm) were derived from the high-resolution spectra taken by the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) on the Upper Atmospheric Research Satellite (UARS). Spectra measured by the Solar EUV Experiment (SEE) instrument on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite were used for the fits at wavelengths from 1 to 150 nm. To generate fits between solar irradiance and solar proxies, this study uses the above irradiance data, the NOAA composite Mg ii index, and daily Ca ii K disk activity determined from images measured by Big Bear Solar Observatory (BBSO). In addition to the fitting coefficients between irradiance and solar proxies, other results from this study include an estimated relationship between the fraction of the disk with enhanced Ca ii K activity and the Mg ii index, an upper bound of the average solar UV spectral irradiance during periods where the solar disk contains only regions of the quiet Sun, as was believed to be present during the Maunder Minimum, as well as results indicating that slightly more than 60% of the total solar irradiance (TSI) variability occurs between 150 and 400 nm.  相似文献   

8.
Supergranulation is a component of solar convection that manifests itself on the photosphere as a cellular network of around 35 Mm across, with a turnover lifetime of 1 – 2 days. It is strongly linked to the structure of the magnetic field. The horizontal, divergent flows within supergranule cells carry local field lines to the cell boundaries, while the rotational properties of supergranule upflows may contribute to the restoration of the poloidal field as part of the dynamo mechanism, which controls the solar cycle. The solar minimum at the transition from cycle 23 to 24 was notable for its low level of activity and its extended length. It is of interest to study whether the convective phenomena that influence the solar magnetic field during this time differed in character from periods of previous minima. This study investigates three characteristics (velocity components, sizes and lifetimes) of solar supergranulation. Comparisons of these characteristics are made between the minima of cycles 22/23 and 23/24 using MDI Doppler data from 1996 and 2008, respectively. It is found that whereas the lifetimes are equal during both epochs (around 18 h), the sizes are larger in 1996 (35.9 ± 0.3 Mm) than in 2008 (35.0 ± 0.3 Mm), while the dominant horizontal velocity flows are weaker (139 ± 1 m s−1 in 1996; 141 ± 1 m s−1 in 2008). Although numerical differences are seen, they are not conclusive proof of the most recent minimum being inherently unusual.  相似文献   

9.
Longitudinal distributions of the photospheric magnetic field studied on the basis of National Solar Observatory (Kitt Peak) data (1976 – 2003) displayed two opposite patterns during different parts of the 11-year solar cycle. Helio-longitudinal distributions differed for the ascending phase and the maximum of the solar cycle on the one hand and for the descending phase and the minimum on the other, depicting maxima around two diametrically opposite Carrington longitudes (180° and 0°/360°). Thus the maximum of the distribution shifted its position by 180° with the transition from one characteristic period to the other. Two characteristic periods correspond to different situations occurring in the 22-year magnetic cycle of the Sun, in the course of which both global magnetic field and the magnetic field of the leading sunspot in a group change their sign. During the ascending phase and the maximum (active longitude 180°) polarities of the global magnetic field and those of the leading sunspots coincide, whereas for the descending phase and the minimum (active longitude 0°/360°) the polarities are opposite. Thus the observed change of active longitudes may be connected with the polarity changes of Sun’s magnetic field in the course of 22-year magnetic cycle.  相似文献   

10.
Guided by the recent observational result that the meridional circulation of the Sun becomes weaker at the time of the sunspot maximum, we have included a parametric quenching of the meridional circulation in solar dynamo models such that the meridional circulation becomes weaker when the magnetic field at the base of the convection zone is stronger. We find that a flux transport solar dynamo tends to become unstable on including this quenching of meridional circulation if the diffusivity in the convection zone is less than about 2×1011 cm2 s−1. The quenching of α, however, has a stabilizing effect and it is possible to stabilize a dynamo with low diffusivity with sufficiently strong α-quenching. For dynamo models with high diffusivity, the quenching of meridional circulation does not produce a large effect and the dynamo remains stable. We present a solar-like solution from a dynamo model with diffusivity 2.8×1012 cm2 s−1 in which the quenching of meridional circulation makes the meridional circulation vary periodically with solar cycle as observed and does not have any other significant effect on the dynamo.  相似文献   

11.
The properties of solar magnetic fields on scales less than the spatial resolution of solar telescopes are studied. A synthetic infrared spectropolarimetric diagnostic based on a 2D MHD simulation of magnetoconvection is used for this. Analyzed are two time sequences of snapshots that likely represent two regions of the network fields with their immediate surroundings on the solar surface with unsigned magnetic flux densities of 300 and 140 G. In the first region from the probability density functions of the magnetic field strength it is found that the most probable field strength at log τ 5=0 is equal to 250 G. Weak fields (B<500 G) occupy about 70% of the surface, whereas stronger fields (B>1000 G) occupy only 9.7% of the surface. The magnetic flux is −28 G and its imbalance is −0.04. In the second region, these parameters are correspondingly equal to 150 G, 93.3%, 0.3%, −40 G, and −0.10. The distribution of line-of-sight velocities on the surface of log τ 5=−1 is estimated. The mean velocity is equal to 0.4 km s−1 in the first simulated region. The average velocity in the granules is −1.2 km s−1 and in the intergranules it is 2.5 km s−1. In the second region, the corresponding values of the mean velocities are equal to 0, −1.8, and 1.5 km s−1. In addition the asymmetry of synthetic Stokes V profiles of the Fe i 1564.8 nm line is analyzed. The mean values of the amplitude and area asymmetry do not exceed 1%. The spatially smoothed amplitude asymmetry is increased to 10% whereas the area asymmetry is only slightly varied.  相似文献   

12.
We analyse data from Hinode spacecraft taken over two 54-minute periods during the emergence of AR 11024. We focus on small-scale portions within the observed solar active region and discover the appearance of very distinctive small-scale and short-lived dark features in Ca ii H chromospheric filtergrams and Stokes I images. The features appear in regions with close-to-zero longitudinal magnetic field, and are observed to increase in length before they eventually disappear. Energy release in the low chromospheric line is detected while the dark features are fading. Three complete series of these events are detected with remarkably similar properties, i.e. lifetime of ≈ 12 min, maximum length and area of 2 – 4 Mm and 1.6 – 4 Mm2, respectively, and all with associated brightenings. In time series of magnetograms a diverging bipolar configuration is observed accompanying the appearance of the dark features and the brightenings. The observed phenomena are explained as evidencing elementary flux emergence in the solar atmosphere, i.e. small-scale arch filament systems rising up from the photosphere to the lower chromosphere with a length scale of a few solar granules. Brightenings are explained as being the signatures of chromospheric heating triggered by reconnection of the rising loops (once they have reached chromospheric heights) with pre-existing magnetic fields, as well as being due to reconnection/cancellation events in U-loop segments of emerging serpentine fields. The characteristic length scale, area and lifetime of these elementary flux emergence events agree well with those of the serpentine field observed in emerging active regions. We study the temporal evolution and dynamics of the events and compare them with the emergence of magnetic loops detected in quiet Sun regions and serpentine flux emergence signatures in active regions. The physical processes of the emergence of granular-scale magnetic loops seem to be the same in the quiet Sun and active regions. The difference is the reduced chromospheric emission in the quiet Sun attributed to the fact that loops are emerging in a region of lower ambient magnetic field density, making interactions and reconnection less likely to occur. Incorporating the novel features of granular-scale flux emergence presented in this study, we advance the scenario for serpentine flux emergence.  相似文献   

13.
R. P. Kane 《Solar physics》2008,249(2):369-380
The sunspot number series at the peak of sunspot activity often has two or three peaks (Gnevyshev peaks; Gnevyshev, Solar Phys. 1, 107, 1967; Solar Phys. 51, 175, 1977). The sunspot group number (SGN) data were examined for 1997 – 2003 (part of cycle 23) and compared with data for coronal mass ejection (CME) events. It was noticed that they exhibited mostly two Gnevyshev peaks in each of the four latitude belts 0° – 10°, 10° – 20°, 20 ° – 30°, and > 30°, in both N (northern) and S (southern) solar hemispheres. The SGN were confined to within latitudes ± 50° around the Equator, mostly around ± 35°, and seemed to occur later in lower latitudes, indicating possible latitudinal migration as in the Maunder butterfly diagrams. In CMEs, less energetic CMEs (of widths < 71°) showed prominent Gnevyshev peaks during sunspot maximum years in almost all latitude belts, including near the poles. The CME activity lasted longer than the SGN activity. However, the CME peaks did not match the SGN peaks and were almost simultaneous at different latitudes, indicating no latitudinal migration. In energetic CMEs including halo CMEs, the Gnevyshev peaks were obscure and ill-defined. The solar polar magnetic fields show polarity reversal during sunspot maximum years, first at the North Pole and, a few months later, at the South Pole. However, the CME peaks and gaps did not match with the magnetic field reversal times, preceding them by several months, rendering any cause – effect relationship doubtful.  相似文献   

14.
We performed high resolution spectroscopy of the solar corona during the total solar eclipse of 22 July 2009 in two emission lines: the green line at 5303 ? due to Fe xiv and the red line at 6374 ? due to Fe x, simultaneously from Anji (latitude 30°28.1′ N; longitude 119°35.4′ E; elevation 890 m), China. A two-mirror coelostat with 100 cm focal length lens produced a 9.2 mm image of the Sun. The spectrograph using 140 cm focal length lens in Littrow mode and a grating with 600 lines per millimeter blazed at 2 μm provided a dispersion of 30 m? and 43 m? per pixel in the fourth order around the green line and third order around the red line, respectively. Two Peltier cooled 1k × 1k CCD cameras, with a pixel size of 13 μm square and 14-bit readout at 10 MHz operated in frame transfer mode, were used to obtain the time sequence spectra in two emission lines simultaneously. The duration of totality was 341 s, but we could get spectra for 270 s after a trial exposure at an interval of 5 s. We report here on the detection of intensity, velocity, and line width oscillations with periodicity in the range of 25 – 50 s. These oscillations can be interpreted in terms of the presence of fast magnetoacoustic waves or torsional Alfvén waves. The intensity ratios of green to red emission lines indicate the temperature of the corona to be 1.65 MK in the equatorial region and 1.40 MK in the polar region, relatively higher than the expected temperature during the low activity period. The width variation of the emission lines in different coronal structures suggests different physical conditions in different structures.  相似文献   

15.
Comparisons of solar magnetic-field measurements made in different spectral lines are very important, especially in those lines in which observations have a long history or (and) specific diagnostic significance. The spectral lines Fe i 523.3 nm and Fe i 525.0 nm belong to this class. Therefore, this study is devoted to a comprehensive analysis using new high-precision Stokes-meter full-disk observations. The disk-averaged magnetic-field strength ratio R=B(523.3)/B(525.0) equals 1.97±0.02. The center-to-limb variation (CLV) is R=1.74−2.43μ+3.43μ 2, where μ is the cosine of the center-to-limb angle. For the disk center, we find R=2.74, and for near-limb areas with μ=0.3, R equals 1.32. There is only a small dependence of R on the spatial resolution. Our results are rather close to those published three decades ago, but differ significantly from recent magnetographic observations. An application of our results to the important SOHO/MDI magnetic data calibration issue is discussed. We conclude that the revision of the SOHO/MDI data, based only on the comparison of magnetic-field measurements in the line pair Fe i 523.3 nm and Fe i 525.0 nm (increasing by a factor of 1.7 or 1.6 on average according to recent publications) is not obvious and new investigations are urgently needed.  相似文献   

16.
Ivanov  E.V.  Obridko  V.N. 《Solar physics》2002,206(1):1-19
Digitized synoptic charts of photospheric magnetic fields were analyzed for the past 4 incomplete solar activity cycles (1969–2000). The zonal structure and cyclic evolution of large-scale solar magnetic fields were investigated using the calculated values of the radial B r, |B r|, meridional B θ, |B θ|, and azimuthal B φ, |B φ| components of the solar magnetic field averaged over a Carrington rotation (CR). The time–latitude diagrams of all 6 parameters and their correlation analysis clearly reveal a zonal structure and two types of the meridional poleward drift of magnetic fields with the characteristic times of travel from the equator to the poles equal to ∼16–18 and ∼2–3 years. A conclusion is made that we observe two different processes of reorganization of magnetic fields in the Sun that are related to generation of magnetic fields and their subsequent redistribution in the process of emergence from the field generation region to the solar surface. Redistribution is supposed to be caused by some external forces (presumably, by sub-surface plasma flows in the convection zone).  相似文献   

17.
We present a straightforward comparison of model calculations for the α-effect, helicities, and magnetic field line twist in the solar convection zone with magnetic field observations at atmospheric levels. The model calculations are carried out in a mixing-length approximation for the turbulence with a profile of the solar internal rotation rate obtained from helioseismic inversions. The magnetic field data consist of photospheric vector magnetograms of 422 active regions for which spatially-averaged values of the force-free twist parameter and of the current helicity density are calculated, which are then used to determine latitudinal profiles of these quantities. The comparison of the model calculations with the observations suggests that the observed twist and helicity are generated in the bulk of the convection zone, rather than in a layer close to the bottom. This supports two-layer dynamo models where the large-scale toroidal field is generated by differential rotation in a thin layer at the bottom while the α-effect is operating in the bulk of the convection zone. Our previous observational finding was that the moduli of the twist factor and of the current helicity density increase rather steeply from zero at the equator towards higher latitudes and attain a certain saturation at about 12 – 15. In our dynamo model with algebraic nonlinearity, the increase continues, however, to higher latitudes and is more gradual. This could be due to the neglect of the coupling between small-scale and large-scale current and magnetic helicities and of the latitudinal drift of the activity belts in the model.  相似文献   

18.
Photospheric ephemeral regions (EPRs) cover the Sun like a magnetic carpet. From this, we update the Babcock – Leighton solar dynamo. Rather than sunspot fields appearing in the photosphere de novo from eruptions originating in the deep interior, we consider that sunspots form directly in the photosphere by a rapid accumulation of like-sign field from EPRs. This would only occur during special circumstances: locations and times when the temperature structure is highly superadiabatic and contains a large subsurface horizontal magnetic field (only present in the Sun’s lower latitudes). When these conditions are met, superadiabatic percolation occurs, wherein an inflow and downflow of gas scours the surface of EPRs to form active regions. When these conditions are not met, magnetic elements undergo normal percolation, wherein magnetic elements move about the photosphere in Brownian-type motions. Cellular automata (CA) models are developed that allow these processes to be calculated and thereby both small-scale and large-scale models of magnetic motions can be obtained. The small-scale model is compared with active region development and Hinode observations. The large-scale CA model offers a solar dynamo, which suggests that fields from decaying bipolar magnetic regions (BMRs) drift on the photosphere driven by subsurface magnetic forces. These models are related to observations and are shown to support Waldmeier’s findings of an inverse relationship between solar cycle length and cycle size. Evidence for significant amounts of deep magnetic activity could disprove the model presented here, but recent helioseismic observations of “butterfly patterns” at depth are likely just a reflection of surface activity. Their existence seems to support the contention made here that the field and flow separate, allowing cool, relatively field-free downdrafts to descend with little field into the nether worlds of the solar interior. There they heat by compression to form a hot solar-type Santa Ana wind deep below active regions.  相似文献   

19.
We have constructed a time series of the number of coronal mass ejections (CMEs) observed by SOHO/LASCO during solar cycle 23. Using spectral analysis techniques (the maximum entropy method and wavelet analysis) we found short-period (< one year) semiperiodic activity. Among others, we found interesting periodicities at 193, 36, 28, and 25 days. We discuss the implications of such short-period activity in terms of the emergence and escape of magnetic flux from the convection zone, through the low solar atmosphere (where these periodicities have been found for numerous activity parameters), toward interplanetary space. This analysis shows that CMEs remove the magnetic flux in a quasiperiodic process in a way similar to that of magnetic flux emergence and other solar eruptive activity.  相似文献   

20.
It is well established that both total and spectral solar irradiance are modulated by variable magnetic activity on the solar surface. However, there is still disagreement about the contribution of individual solar features for changes in the solar output, in particular over decadal time scales. Ionized Ca ii K line spectroheliograms are one of the major resources for these long-term trend studies, mainly because such measurements have been available now for more than 100 years. In this paper we introduce a new Ca ii K plage and active network index time series derived from the digitization of almost 40 000 photographic solar images that were obtained at the 60-foot solar tower, between 1915 and 1985, as a part of the monitoring program of the Mount Wilson Observatory. We describe here the procedure we applied to calibrate the images and the properties of our new defined index, which is strongly correlated to the average fractional area of the visible solar disk occupied by plages and active network. We show that the long-term variation of this index is in an excellent agreement with the 11-year solar-cycle trend determined from the annual international sunspot numbers series. Our time series agrees also very well with similar indicators derived from a different reduction of the same data base and other Ca ii K spectroheliograms long-term synoptic programs, such as those at Kodaikanal Observatory (India), and at the National Solar Observatory at Sacramento Peak (USA). Finally, we show that using appropriate proxies it is possible to extend this time series up to date, making this data set one of the longest Ca ii K index series currently available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号