首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have carried out a combined theoretical and experimental study of multicomponent diffusion in garnets to address some unresolved issues and to better constrain the diffusion behavior of Fe and Mg in almandine–pyrope-rich garnets. We have (1) improved the convolution correction of concentration profiles measured using electron microprobes, (2) studied the effect of thermodynamic non-ideality on diffusion and (3) explored the use of a mathematical error minimization routine (the Nelder-Mead downhill simplex method) compared to the visual fitting of concentration profiles used in earlier studies. We conclude that incorporation of thermodynamic non-ideality alters the shapes of calculated profiles, resulting in better fits to measured shapes, but retrieved diffusion coefficients do not differ from those retrieved using ideal models by more than a factor of 1.2 for most natural garnet compositions. Diffusion coefficients retrieved using the two kinds of models differ only significantly for some unusual Mg–Mn–Ca-rich garnets. We found that when one of the diffusion coefficients becomes much faster or slower than the rest, or when the diffusion couple has a composition that is dominated by one component (>75 %), then profile shapes become insensitive to one or more tracer diffusion coefficients. Visual fitting and numerical fitting using the Nelder-Mead algorithm give identical results for idealized profile shapes, but for data with strong analytical noise or asymmetric profile shapes, visual fitting returns values closer to the known inputs. Finally, we have carried out four additional diffusion couple experiments (25–35 kbar, 1,260–1,400 °C) in a piston-cylinder apparatus using natural pyrope- and almandine-rich garnets. We have combined our results with a reanalysis of the profiles from Ganguly et al. (1998) using the tools developed in this work to obtain the following Arrhenius parameters in D = D 0 exp{–[Q 1bar + (P–1)ΔV +]/RT} for D Mg* and D Fe*: Mg: Q 1bar = 228.3 ± 20.3 kJ/mol, D 0 = 2.72 (±4.52) × 10−10 m2/s, Fe: Q 1bar = 226.9 ± 18.6 kJ/mol, D 0 = 1.64 (±2.54) × 10−10 m2/s. ΔV + values were assumed to be the same as those obtained by Chakraborty and Ganguly (1992).  相似文献   

2.
The return periods and occurrence probabilities related to medium and large earthquakes (M w 4.0–7.0) in four seismic zones in northeast India and adjoining region (20°–32°N and 87°–100°E) have been estimated with the help of well-known extreme value theory using three methods given by Gumbel (1958), Knopoff and Kagan (1977) and Bury (1999). In the present analysis, the return periods, the most probable maximum magnitude in a specified time period and probabilities of occurrences of earthquakes of magnitude M ≥ 4.0 have been computed using a homogeneous and complete earthquake catalogue prepared for the period between 1897 and 2007. The analysis indicates that the most probable largest annual earthquakes are close to 4.6, 5.1, 5.2, 5.5 and 5.8 in the four seismic zones, namely, the Shillong Plateau Zone, the Eastern Syntaxis Zone, the Himalayan Thrusts Zone, the Arakan-Yoma subduction zone and the whole region, respectively. The most probable largest earthquakes that may occur within different time periods have been also estimated and reported. The study reveals that the estimated mean return periods for the earthquake of magnitude M w 6.5 are about 6–7 years, 9–10 years, 59–78 years, 72–115 years and 88–127 years in the whole region, the Arakan-Yoma subduction zone, the Himalayan Thrusts Zone, the Shillong Plateau Zone and the Eastern Syntaxis Zone, respectively. The study indicates that Arakan-Yoma subduction zone has the lowest mean return periods and high occurrence probability for the same earthquake magnitude in comparison to the other zones. The differences in the hazard parameters from zone to zone reveal the high crustal heterogeneity and seismotectonics complexity in northeast India and adjoining regions.  相似文献   

3.
Sadhuram  Y.  Rao  B. P.  Rao  D. P.  Shastri  P. N. M.  Subrahmanyam  M. V. 《Natural Hazards》2004,32(2):191-209
Monthly maps of cyclone heat potential (CHP) in the Bay of Bengalhave been prepared by using Levitus climatological data set. Seasonal variability ofCHP in the Bay of Bengal has been studied using the CTD data sets collected duringfive cruises during the period, 1993–1996. High value (>30 kcal/cm2) of CHP coincided with anticyclonic gyre (ACG) and the low value of CHP (16 kcal/cm2) coincided with thecyclonic gyre (CG). This emphasizes the importance of gyres in the distribution ofCHP, which play an important role in the intensification of cyclones/depressions.CHP is >14 kcal/cm2 over Andaman Sea, southern and Central Bay of Bengal where the generation and movement of cyclones take place during post south west monsoon season (October–November). A depression formed on 07.11.95 at 11°N; 91°E and intensified into a cyclonic storm by 8th November evening and crossed Orissa Coast on 9th November 1995. A few days before its formation, the value of CHP at the origin of thiscyclone was about 20 kcal/cm2. To understand the exact role of CHP in theformation and intensification of cyclones/depressions over Bay of Bengal, more intense and systematic data sets are essential.  相似文献   

4.
The major cation and anion compositions of waters from the Lake Qinghai river system (LQRS) in the northeastern Tibetan Plateau were measured. The waters were collected seasonally from five main rivers during pre-monsoon (late May), monsoon (late July), and post-monsoon (middle October). The LQRS waters are all very alkaline and have high concentrations of TDS (total dissolved solids) compared to rivers draining the Himalayas and the southeastern Tibetan Plateau. Seasonal variations in the water chemistry show that, except the Daotang River, the TDS concentration is high in October and low in July in the LQRS waters. The forward models were used to quantify the input of three main rivers (Buha River, Shaliu River, and Hargai River) from rain, halite, carbonates, and silicates. The results suggest that (1) atmospheric input is the first important source for the waters of the Buha River and the Shaliu River, contributing 36–57% of the total dissolved cations, (2) carbonate weathering input and atmospheric input have equal contribution to the Hargai River water, (3) carbonate weathering has higher contribution to these rivers than silicate weathering, and (4) halite is also important source for the Buha River. The Daotang River water is dominated by halite input owing to its underlying old lacustrine sediments. The water compositions of the Heima River are controlled by carbonate weathering and rainfall input in monsoon season, and groundwater input may be important in pre-monsoon and post-monsoon seasons. After being corrected the atmospheric input, average CO2 drawdown via silicate weathering in the LQRS is 35 × 103 mol/km2 per year, with highest in monsoon season, lower than Himalayas and periphery of Tibetan Plateau rivers but higher than some rivers draining shields.  相似文献   

5.
We have experimentally determined the tracer diffusion coefficients (D*) of 44Ca and 26Mg in a natural diopside (~Di96) as function of crystallographic direction and temperature in the range of 950–1,150 °C at 1 bar and f(O2) corresponding to those of the WI buffer. The experimental data parallel to the a*, b, and c crystallographic directions show significant diffusion anisotropy in the a–c and b–c planes, with the fastest diffusion being parallel to the c axis. With the exception of logD*(26Mg) parallel to the a* axis, the experimental data conform to the empirical diffusion “compensation relation”, converging to logD ~ −19.3 m2/s and T ~ 1,155 °C. Our data do not show any change of diffusion mechanism within the temperature range of the experiments. Assuming that D* varies roughly linearly as a function of angle with respect to the c axis in the a–c plane, at least within a limited domain of ~20° from the c-axis, our data do not suggest any significant difference between D*(//c) and D*(⊥(001)), the latter being the diffusion data required to model compositional zoning in the (001) augite exsolution lamellae in natural clinopyroxenes. Since the thermodynamic mixing property of Ca and Mg is highly nonideal, calculation of chemical diffusion coefficient of Ca and Mg must take into account the effect of thermodynamic factor (TF) on diffusion coefficient. We calculate the dependence of the TF and the chemical interdiffusion coefficient, D(Ca–Mg), on composition in the diopside–clinoenstatite mixture, using the available data on mixing property in this binary system. Our D*(Ca) values parallel to the c axis are about 1–1.5 log units larger than those Dimanov et al. (1996). Incorporating the effect of TF, the D(Ca–Mg) values calculated from our data at 1,100–1,200 °C is ~0.6–0.7 log unit greater than the experimental quasibinary D((Ca–Mg + Fe)) data of Fujino et al. (1990) at 1 bar, and ~0.6 log unit smaller than that of Brady and McCallister (1983) at 25 kb, 1,150 °C, if our data are normalized to 25 kb using activation volume (~4 and ~6 cm3/mol for Mg and Ca diffusion, respectively) calculated from theoretical considerations.  相似文献   

6.
The fractionation of boron isotopes between synthetic dravitic tourmaline and fluid was determined by hydrothermal experiments between 400 and 700°C at 200 MPa and at 500°C, 500 MPa. Tourmaline was crystallized from an oxide mix in presence of water that contained boron in excess. In one series of experiments, [B]fluid/[B]tour was 9 after the run; in another series it was 0.1. All experiments produced tourmaline as the sole boron-bearing solid, along with traces of quartz and talc. Powder XRD and Rietveld refinements revealed no significant amounts of tetrahedrally coordinated boron in tourmaline. 11B always preferentially fractionated into the fluid. For experiments where [B]fluid/[B]tour was 9, a consistent temperature-dependent boron isotope fractionation curve resulted, approximated by Δ11B(tour–fluid) = −4.20 · [1,000/T (K)] + 3.52; R 2 = 0.77, and valid from 400 to 700°C. No pressure dependence was observed. The fractionation (−2.7 ± 0.5‰ at 400°C; and −0.8 ± 0.5‰ at 700°C) is much lower than that previously presented by Palmer et al. (1992). Experiments where [B]fluid/[B]tour was 0.1 showed a significant larger apparent fractionation of up to −4.7‰. In one of these runs, the isotopic composition of handpicked tourmaline crystals of different size varied by 1.3‰. This is interpreted as resulting from fractional crystallization of boron isotopes during tourmaline growth due to the small boron reservoir of the fluid relative to tourmaline, thus indicating larger fractionation than observed at equilibrium. The effect is eliminated or minimized in experiments with very high boron excess in the fluid. We therefore suggest that values given by the above relation represent the true equilibrium fractionations.  相似文献   

7.
The presence of arsenic (As) in groundwater and its effect on human health has become an issue of serious concern in recent years. The present study assessed the groundwater quality of the Bishnupur District, Manipur, with respect to drinking water standards. Higher concentrations of pH, iron and phosphate were observed at several locations. Phosphate and iron levels were highest in the pre-monsoon, followed by monsoon and post-monsoon seasons. The arsenic concentrations were highest during post-monsoon (1–200 μg L−1) as compared to pre-monsoon (1–108 μg L−1) and monsoon (2–99 μg L−1). Kwakta and Ngakhalawai show higher levels of arsenic concentration as compared to the prescribed World Health Organization (WHO) and Bureau of Indian Standards (BIS) norms. Arsenic showed a strong positive correlation with phosphate and negative correlation with sulphate, suggesting a partial influence of anthropogenic sources. The study suggests that the Bishnupur area has an arsenic contamination problem, which is expected to increase in the near future.  相似文献   

8.
The aim of this study was to investigate temporal variation in seasonal and annual rainfall trend over Ranchi district of Jharkhand, India for the period (1901–2014: 113 years). Mean monthly rainfall data series were used to determine the significance and magnitude of the trend using non-parametric Mann–Kendall and Sen’s slope estimator. The analysis showed a significant decreased in rainfall during annual, winter and southwest monsoon rainfall while increased in pre-monsoon and post-monsoon rainfall over the Ranchi district. A positive trend is detected in pre-monsoon and post-monsoon rainfall data series while annual, winter and southwest monsoon rainfall showed a negative trend. The maximum decrease in rainfall was found for monsoon (? 1.348 mm year?1) and minimum (? 0.098 mm year?1) during winter rainfall. The trend of post-monsoon rainfall was found upward (0.068 mm year?1). The positive and negative trends of annual and seasonal rainfall were found statistically non-significant except monsoon rainfall at 5% level of significance. Rainfall variability pattern was calculated using coefficient of variation CV, %. Post-monsoon rainfall showed the maximum value of CV (70.80%), whereas annual rainfall exhibited the minimum value of CV (17.09%), respectively. In general, high variation of CV was found which showed that the entire region is very vulnerable to droughts and floods.  相似文献   

9.
The standard thermodynamic properties at 25°C, 1 bar (ΔG fo, ΔH fo, S o, C Po, V o, ω) and the coefficients of the revised Helgeson–Kirkham–Flowers equations of state were evaluated for several aqueous complexes formed by dissolved metals and either arsenate or arsenite ions. The guidelines of Shock and Helgeson (Geochim Cosmochim Acta 52:2009–2036, 1988) and Sverjensky et al. (Geochim Cosmochim Acta 61:1359–1412, 1997) were followed and corroborated with alternative approaches, whenever possible. The SUPCRT92 computer code was used to generate the log K of the destruction reactions of these metal–arsenate and metal–arsenite aqueous complexes at pressures and temperatures required by the EQ3/6 software package, version 7.2b. Apart from the AlAsO4o and FeAsO4o complexes, our log K at 25°C, 1 bar are in fair agreement with those of Whiting (MS Thesis, Colorado School of Mines, Golden, CO, 1992). Moreover, the equilibrium constants evaluated in this study are in good to fair agreement with those determined experimentally for the Ca–dihydroarsenate and Ca–hydroarsenate complexes at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) and for Fe(III)–hydroarsenate complex at 25°C (Raposo et al., J Sol Chem 35:79–94, 2006), whereas the disagreement with the log K measured for the Ca–arsenate complex at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) might be due to uncertainties in this measured value. The implications of aqueous complexing between dissolved metals and arsenate/arsenite ions were investigated for seawater, high-temperature geothermal liquids and acid mine drainage and aqueous solutions deriving from mixing of acid mine waters and surface waters. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

10.
A single crystal X-ray diffraction study on lithium tetraborate Li2B4O7 (diomignite, space group I41 cd) has been performed under pressure up to 8.3 GPa. No phase transitions were found in the pressure range investigated, and hence the pressure evolution of the unit-cell volume of the I41 cd structure has been described using a third-order Birch–Murnaghan equation of state (BM-EoS) with the following parameters: V 0  = 923.21(6) Å3, K 0  = 45.6(6) GPa, and K′ = 7.3(3). A linearized BM-EoS was fitted to the axial compressibilities resulting in the following parameters a 0  = 9.4747(3) Å, K 0a  = 73.3(9) GPa, K′ a  = 5.1(3) and c 0  = 10.2838(4) Å, K 0c  = 24.6(3) GPa, K′ c  = 7.5(2) for the a and c axes, respectively. The elastic anisotropy of Li2B4O7 is very large with the zero-pressure compressibility ratio β 0c 0a  = 3.0(1). The large elastic anisotropy is consistent with the crystal structure: A three-dimensional arrangement of relatively rigid tetraborate groups [B4O7]2− forms channels occupied by lithium along the polar c–axis, and hence compression along the c axis requires the shrinkage of the lithium channels, whereas compression in the a direction depends mainly on the contraction of the most rigid [B4O7]2− units. Finally, the isothermal bulk modulus obtained in this work is in general agreement with that derived from ultrasonic (Adachi et al. in Proceedings-IEEE Ultrasonic Symposium, 228–232, 1985; Shorrocks et al. in Proceedings-IEEE Ultrasonic Symposium, 337–340, 1981) and Brillouin scattering measurements (Takagi et al. in Ferroelectrics, 137:337–342, 1992).  相似文献   

11.
The Jurassic paleogeographic position of the Pontides is not well studied because of insufficient paleomagnetic data. For this reason, a paleomagnetic study was carried out in order to constrain the paleolatitudinal drift of the Turkish blocks during the Jurassic period. A total of 32 sites were sampled from volcanic and volcanoclastic rocks of the Lower/Middle Jurassic Kelkit formation (Eastern Pontides), Mudurnu formation (Sakarya continent) and Upper Jurassic–Lower Cretaceous Ferhatkaya formation exposed around Amasya region (Eastern Pontides). Rock magnetic experiments demonstrate that the main ferromagnetic mineral is pseudo-single-domain titanomagnetite in these rocks. Paleomagnetic analysis revealed two main components of the natural remanent magnetization during stepwise thermal and alternating field demagnetization. The first component is a low-coercivity (unblocking temperature) component with a direction sometimes similar to that of the earth’s present field or a viscous component. The second component, which is interpreted as the characteristic remanent magnetization (ChRM) direction, has low to high coercivity properties between 20 and 100 mT or unblocking temperatures between 300 and 580°C. A positive fold test at the 95% level of confidence proved that the ChRM of the sites is primary. Paleomagnetic directions calculated for the Kelkit formation in the Eastern Pontides have a mean direction of D = 334.8°, I = 49.7°, α 95 = 7.1° after tilt-correction. A mean direction of D = 332.2°, I = 48.5°, α 95 = 14.6° was obtained from the volcanoclastic rocks of the Mudurnu formation, and D = 324.3°, I = 43.3°, α 95 = 9.5° was calculated for the Upper Jurassic–Lower Cretaceous limestones/Ferhatkaya formation of the Amasya region. The Jurassic rocks in the Eastern Pontides and Mudurnu region are considered to represent products of the rifted Neo-Tethys ocean, while the Upper Jurassic–Lower Cretaceous sediments in Amasya are related to basin-filling materials. The data suggest that the Kelkit formation was formed at 30.5°N paleolatitude and the equivalent Mudurnu formation at 29.5°N paleolatitude. The paleolatitude of the Eastern Pontides indicates that this rifting block was separated from Eurasia by a marginal basin instead of being a part of Eurasia. The lower paleolatitude of the Amasya region at 24.8°N in the Upper Jurassic to Lower Cretaceous clearly indicates southward drift of the Turkish blocks during the Jurassic to Lower Cretaceous period together with the motion of Eurasia.  相似文献   

12.
Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) report laser-assisted fluorination (LF) and secondary ionization mass spectrometry (SIMS) 18O/16O datasets for olivine grains from the Canary Islands of Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro. As with prior studies of oxygen isotopes in Canary Island lavas (e.g. Thirlwall et al. Chem Geol 135:233–262, 1997; Day et al. Geology 37:555–558, 2009, Geochim Cosmochim Acta 74:6565–6589, 2010), these authors find variations in δ18Ool (~4.6–6.0 ‰) beyond that measured for mantle peridotite olivine (Mattey et al. Earth Planet Sci Lett 128:231–241, 1994) and interpret this variation to reflect contributions from pyroxenite-peridotite mantle sources. Furthermore, Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) speculate that δ18Ool values for La Palma olivine grains measured by LF (Day et al. Geology 37:555–558, 2009, Geochim Cosmochim Acta 74:6565–6589, 2010) may be biased to low values due to the presence of altered silicate, possibly serpentine. The range in δ18Ool values for Canary Island lavas are of importance for constraining their origin. Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) took a subset (39 SIMS analyses from 13 grains from a single El Hierro lava; EH4) of a more extensive dataset (321 SIMS analyses from 110 grains from 16 Canary Island lavas) to suggest that δ18Ool is weakly correlated (R 2 = 0.291) with the parameter used by Gurenko et al. (Earth Planet Sci Lett 277:514–524, 2009) to describe the estimated weight fraction of pyroxenite-derived melt (Xpx). With this relationship, end-member δ18O values for HIMU-peridotite (δ18O = 5.3 ± 0.3 ‰) and depleted pyroxenite (δ18O = 5.9 ± 0.3 ‰) were defined. Although the model proposed by Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) implicates similar pyroxenite-peridotite mantle sources to those proposed by Day et al. (Geology 37:555–558, 2009, Geochim Cosmochim Acta 74:6565–6589, 2010) and Day and Hilton (Earth Planet Sci Lett 305:226–234, 2011), there are significant differences in the predicted δ18O values of end member components in the two models. In particular, Day et al. (Geochim Cosmochim Acta 74:6565–6589, 2010) proposed a mantle source for La Palma lavas with low-δ18O (<5 ‰), rather than higher-δ18O (c.f. the HIMU-peridotite composition of Gurenko et al. in Contrib Mineral Petrol 162:349–363, 2011). Here we question the approach of using weakly correlated variations in δ18Ool and the Xpx parameter to define mantle source oxygen isotope compositions, and provide examples of why this approach appears flawed. We also provide reasons why the LF datasets previously published for Canary Island lavas remain robust and discuss why LF and SIMS data may provide complementary information on oxygen isotope variations in ocean island basalts (OIB), despite unresolved small-scale uncertainties associated with both techniques.  相似文献   

13.
The Indo-Gangetic Plain (IGP) is a major regional and global emitter of atmospheric pollutants, which adversely affect surrounding areas such as the Himalayas. We present a comprehensive dataset on carbonaceous aerosol (CA) composition, radiocarbon (Δ14C) -based source apportionment, and light absorption of total suspended particle (TSP) samples collected over a 3-year period from high-altitude Jomsom in the central Himalayas. The 3-year mean TSP, organic carbon (OC), and elemental carbon (EC) concentrations were 92.0 ± 28.6, 9.74 ± 6.31, and 2.02 ± 1.35 μg m?3, respectively, with the highest concentrations observed during the pre-monsoon season, followed by the post-monsoon, winter, and monsoon seasons. The Δ14C analysis revealed that the contribution of fossil fuel combustion (ffossil) to EC was 47.9% ± 11.5%, which is consistent with observations in urban and remote regions in South Asia and attests that EC likely arrives in Jomsom from upwind IGP sources via long-range transport. In addition, the lowest ffossil (38.7% ± 13.3%) was observed in winter, indicating large contributions in this season from local biomass burning. The mass absorption cross-section of EC (MACEC: 8.27 ± 1.76 m2/g) and water-soluble organic carbon (MACWSOC: 0.98 ± 0.45 m2/g) were slightly higher and lower than those reported in urban regions, respectively, indicating that CA undergo an aging process. Organic aerosol coating during transport and variation of biomass burning probably led to the seasonal variation in MAC of two components. Overall, WSOC contributed considerably to the light absorption (11.1% ± 4.23%) of EC. The findings suggest that to protect glaciers of the Himalayas from pollution-related melting, it is essential to mitigate emissions from the IGP.  相似文献   

14.
Variability in the standard deviation of surface wind direction (σθ), under different Pasquill stability regimes on diurnal, seasonal and interannual scales has been investigated making use of a 10-year data set collected at Visakhapatnam (17°42′ N., 82° 18′ E) during January, April, August and October for winter, pre-monsoon, monsoon and post-monsoon seasons respectively. The diurnal scale variability in σθ is more pronounced during day time than in night. The seasonal variability in σθ is only moderate around noon while relatively large fluctuations are noticed on inter-annual scale only during day time in January and August. The seasonal dispersion in σθ decreased from most unstable regime to most stable regime.  相似文献   

15.
The thermoelastic behaviour of anthophyllite has been determined for a natural crystal with crystal-chemical formula ANa0.01 B(Mg1.30Mn0.57Ca0.09Na0.04) C(Mg4.95Fe0.02Al0.03) T(Si8.00)O22 W(OH)2 using single-crystal X-ray diffraction to 973 K. The best model for fitting the thermal expansion data is that of Berman (J Petrol 29:445–522, 1988) in which the coefficient of volume thermal expansion varies linearly with T as α V,T  = a 1 + 2a 2 (T − T 0): α298 = a 1 = 3.40(6) × 10−5 K−1, a 2 = 5.1(1.0) × 10−9 K−2. The corresponding axial thermal expansion coefficients for this linear model are: α a ,298 = 1.21(2) × 10−5 K−1, a 2,a  = 5.2(4) × 10−9 K−2; α b ,298 = 9.2(1) × 10−6 K−1, a 2,b  = 7(2) × 10−10 K−2. α c ,298 = 1.26(3) × 10−5 K−1, a 2,c  = 1.3(6) × 10−9 K−2. The thermoelastic behaviour of anthophyllite differs from that of most monoclinic (C2/m) amphiboles: (a) the ε 1 − ε 2 plane of the unit-strain ellipsoid, which is normal to b in anthophyllite but usually at a high angle to c in monoclinic amphiboles; (b) the strain components are ε 1 ≫ ε 2 > ε 3 in anthophyllite, but ε 1 ~ ε 2 ≫ ε 3 in monoclinic amphiboles. The strain behaviour of anthophyllite is similar to that of synthetic C2/m ANa B(LiMg) CMg5 TSi8 O22 W(OH)2, suggesting that high contents of small cations at the B-site may be primarily responsible for the much higher thermal expansion ⊥(100). Refined values for site-scattering at M4 decrease from 31.64 epfu at 298 K to 30.81 epfu at 973 K, which couples with similar increases of those of M1 and M2 sites. These changes in site scattering are interpreted in terms of Mn ↔ Mg exchange involving M1,2 ↔ M4, which was first detected at 673 K.  相似文献   

16.
Melt inclusions in olivine and pyroxene phenocrysts in kersantite and camptonite at Chhaktalao in Madhya Pradesh, India are mainly of the evolved type forming daughter minerals of olivine, pyroxene, plagioclase, spinel, mica, titanomagnetite and sulphides. Heating studies exhibit a temperature range from 1215° to 1245°C for the melt inclusions in olivine in camptonite and 1220–1245°C for olivine in kersantite. The temperature for melt inclusions in pyroxene ranged from 1000° to 1150°C in camptonite and 850–1100°C for pyroxene in kersantite. The bubble inside these melt inclusions is mainly CO2. The Th°C of CO2 into liquid phase occurred between 26° and 31°C in olivine and 25–30°C in pyroxene from kersantite and camptonite. The maximum density estimated is 0.72 g/cm3 and the minimum is 0.45 g/cm3. The depth of entrapment of the melt inclusion is estimated between 10–15 km. The pressure of entrapment of melt inclusion in olvine is 4.6 kbar where as that in pyroxene is 3.7 kbar. The lamprophyres in the Chhaktalao area are considered to be derived from low depth and low pressure region, possibly within spinel lherzolite zone.  相似文献   

17.
Halite traps inclusions of the mother fluid when precipitating. When unchanged, the density of these fluid inclusions (FIs) records the water temperature Tf at the time of crystal formation. As halite is ubiquitous on Earth and geological time, its FIs possess a high potential as temperature archives. However, the use of FIs in halite as an accurate palaeothermometer has been hampered due to limitations of microthermometry, the most commonly used analytical method. Here, we show how Brillouin spectroscopy in halite FIs bypasses these limitations and allows recovering Tf to within 1 °C or less. To demonstrate this, we measured samples synthesised at 24.6 ± 0.5 °C and 33 ± 1 °C, and obtained 24.8 ± 0.4 °C and 31.9 ± 0.4 °C, respectively. This novel approach thus provides an accurate palaeothermometer for lacustrine and marine environments. Moreover, Brillouin spectroscopy solves the long‐standing debate on damage of halite fluid inclusions through quantifying the acceptable temperature excursion for preserving elastic behaviour: [l/(1 µm)]?0.64 × (90 °C), where l is the FI size. This threshold is lower for FIs close to the surface of the host crystal or to another FI. We also list ‘best practices’ for applying both microthermometry and Brillouin thermometry.  相似文献   

18.
The H2O content of wadsleyite were measured in a wide pressure (13–20 GPa) and temperature range (1,200–1,900°C) using FTIR method. We confirmed significant decrease of the H2O content of wadsleyite with increasing temperature and reported first systematic data for temperature interval of 1,400–1,900°C. Wadsleyite contains 0.37–0.55 wt% H2O at 1,600°C, which may be close to its water storage capacity along average mantle geotherm in the transition zone. Accordingly, water storage capacity of the average mantle in the transition zone may be estimated as 0.2–0.3 wt% H2O. The H2O contents of wadsleyite at 1,800–1,900°C are 0.22–0.39 wt%, indicating that it can store significant amount of water even under the hot mantle environments. Temperature dependence of the H2O content of wadsleyite can be described by exponential equation C\textH2 \textO = 6 3 7.0 7 \texte - 0.00 4 8T , C_{{{\text{H}}_{2} {\text{O}}}} = 6 3 7.0 7 {\text{e}}^{ - 0.00 4 8T} , where T is in °C. This equation is valid for temperature range 1,200–2,100°C with the coefficient of determination R 2 = 0.954. Temperature dependence of H2O partition coefficient between wadsleyite and forsterite (D wd/fo) is complex. According to our data apparent Dwd/fo decreases with increasing temperature from D wd/fo = 4–5 at 1,200°C, reaches a minimum of D wd/fo = 2.0 at 1,400–1,500°C, and then again increases to D wd/fo = 4–6 at 1,700–1,900°C.  相似文献   

19.
Diffusion coefficients of Cr and Al in chromite spinel have been determined at pressures ranging from 3 to 7 GPa and temperatures ranging from 1,400 to 1,700°C by using the diffusion couple of natural single crystals of MgAl2O4 spinel and chromite. The interdiffusion coefficient of Cr–Al as a function of Cr# (=Cr/(Cr + Al)) was determined as D Cr–AlD 0 exp {−(Q′ + PV*)/RT}, where D 0 = exp{(10.3 ± 0.08) × Cr#0.54±0.02} + (1170 ± 31.2) cm2/s, Q′ = 520 ± 81 kJ/mol at 3 GPa, and V* = 1.36 ± 0.25 cm3/mol at 1,600°C, which is applicable up to Cr# = 0.8. The estimation of the self-diffusion coefficients of Cr and Al from Cr–Al interdiffusion shows that the diffusivity of Cr is more than one order of magnitude smaller than that of Al. These results are in agreement with patterns of multipolar Cr–Al zoning observed in natural chromite spinel samples deformed by diffusion creep.  相似文献   

20.
Hudson volcano (Chile) is the southern most stratovolcano of the Andean Southern Volcanic Zone and has produced some of the largest Holocene eruptions in South America. There have been at least 12 recorded Holocene explosive events at Hudson, with the 6700 years BP, 3600 years BP, and 1991 eruptions the largest of these. Hudson volcano has consistently discharged magmas of similar trachyandesitic and trachydacitic composition, with comparable anhydrous phenocryst assemblages, and pre-eruptive temperatures and oxygen fugacities. Pre-eruptive storage conditions for the three largest Holocene events have been estimated using mineral geothermometry, melt inclusion volatile contents, and comparisons to analogous high pressure experiments. Throughout the Holocene, storage of the trachyandesitic magmas occurred at depths between 0.2 and 2.7 km at approximately ~972°C (±25) and log fO2 −10.33–10.24 (±0.2) (one log unit above the NNO buffer), with between 1 and 3 wt% H2O in the melt. Pre-eruptive storage of the trachydacitic magma occurred between 1.1 and 2.0 km, at ~942°C (±26) and log fO2 −10.68 (±0.2), with ~2.5 wt% H2O in the melt. The evolved trachyandesitic and trachydacitic magmas can be derived from a basaltic parent primarily via fractional crystallization. Entrapment pressures estimated from plagioclase-hosted melt inclusions suggest relatively shallow levels of crystallization. However, trace element data (e.g., Dy/Yb ratio trends) suggests amphibole played an important role in the differentiation of the Hudson magmas, and this fractionation is likely to have occurred at depths >6 km. The absence of a garnet signal in the Hudson trace element data, the potential staging point for differentiation of parental mafic magmas [i.e., ~20 km (e.g., Annen et al. in J Petrol 47(3):505–539, 2006)], and the inferred amphibolite facies [~24 km (e.g., Rudnick and Fountain in Rev Geophys 33:267–309, 1995)] combine to place some constraint on the lower limit of depth of differentiation (i.e., ~20–24 km). These constraints suggest that differentiation of mantle-derived magmas occurred at upper-mid to lower crustal levels and involved a hydrous mineral assemblage that included amphibole, and generated a basaltic to basaltic andesitic composition similar to the magma discharged during the first phase of the 1991 eruption. Continued fractionation at this depth resulted in the formation of the trachyandesitic and trachydacitic compositions. These more evolved magmas ascended and stalled in the shallow crust, as suggested by the pressures of entrapment obtained from the melt inclusions. The decrease in pressure that accompanied ascent, combined with the potential heating of the magma body through decompression-induced crystallization would cause the magma to cross out of the amphibole stability field. Further shallow crystallization involved an anhydrous mineral assemblage and may explain the lack of phenocrystic amphibole in the Hudson suite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号