首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Past work on analyzing ground-source diffusion data in terms of surface-layer similarity theory is reviewed; these analyses assume that z /L orh/L is a function of u * x/L (where h = Q/ dy). It is argued that an alternative scaling, h */L versus x/L, is nearly as universal in that it is very weakly influenced by surface roughness, except for a modest influence in the free convective case (h * = Q/u * dy); the advantage of this scaling is that it eliminates the need to reassess as vertical diffusion progresses. The Prairie Grass data set is adjusted for the difference in source and sampling heights, and is plotted with this scaling. Simple analytic equations are suggested that fit the resultant data plots for stable and unstable conditions, and suggestions are made towards practical application of these results.On assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce.  相似文献   

2.
The system transfer function ¦H(v)¦2 at frequencyv (units of Hz) for a vertical velocity propeller anemometer in a statistically stationary and horizontally homogeneous turbulent flow is determined from: (1) experimental estimates of propeller velocity spectra; and (2) estimates of Eulerian vertical velocity spectra based on the hypothesis that degradation of the input vertical velocity Fourier components occurs in the inertial subrange. The experimental estimates of ¦H(v)¦2 were adequately summarized with the mathematical expression for the system transfer function of a first-order system with parameterT which has units of time and is analogous to the time constant of a horizontal velocity propeller anemometer. Dimensional analysis techniques and the Monin-Obukhov similarity hypothesis were used to construct a model for the system parameterT which yielded the result that w /D 1 ( w /)1/3, where w , andD 1 denote the standard deviation of the input vertical velocity fluctuations, the horizontal mean wind speed, and the diameter of the propeller, respectively. The system parameterT is interpreted in terms of the time required for the propeller velocity statistics to become asymptotically independent of time upon being released from rest in a statistically stationary turbulent flow.Currently on leave of absence from the Indian Institute of Technology, New Delhi, India.  相似文献   

3.
A simple formula, (1 + (2fmc))-1,is proposed to estimate the attenuation of a scalar flux measurement made by eddy-correlation using a fast-response anemometer and a linear, first-order-response scalar sensor with a characteristic time constant c.In this formula, =7/8 for neutral and unstable stratification within the surface-flux layer and =1 both within the convective boundary layer (CBL) and for stable stratification in the surface layer.fm is the frequency of the peak of the logarithmic cospectrum and can be estimated from fm = nm /z, where z is the measurement height and is thewind speed at that height. The dimensionless frequency at the cospectral maximum nm is estimated here from observations of its behavioras a function of atmospheric stability, z/L within the surface layeror z/zi within the CBL, where L is the Obukhov stability length and zi is the depth of the CBL. The predicted dependence of flux attenuation on measurement height is discussed.  相似文献   

4.
The turbulent structure of the lake breeze penetration and subsequent development of the thermal internal boundary layer (TIBL) was observed using a kytoon-mounted ultrasonic anemometer-thermometer. The lake breeze penetrated with an upward rolling motion associated with the upward flow near the lake breeze front. After the lake breeze front passed, the behaviors of the velocity and temperature at the top of the lake breeze layer were similar to those found in convective boundary layers (CBL). Comparing gq/*, u /w * and w /w * between the present observation of TIBL development after the passage of the lake breeze front and CBL data from the literature, the /* values showed reasonable agreement; however, u /w * and w /W* had smaller values in the TIBL than in the CBL at higher altitudes. This is due to the differences in the mean velocity profiles. While the CBL has a uniform velocity profile, the TIBL has a peak at lower elevation due to the lake breeze penetration; the velocity then decreases with height.Present address: The Institute of Behavioral Science, 1-35-7 Yoyogi, Tokyo 151, Japan.  相似文献   

5.
Meteorological measurements taken at the Näsudden wind turbine site during slightly unstable conditions have been analyzed. The height of the convective boundary layer (CBL) was rather low, varying between 60 and 300 m. Turbulence statistics near the ground followed Monin-Obukhov similarity, whereas the remaining part of the boundary layer can be regarded as a near neutral upper layer. In 55% of the runs, horizontal roll vortices were found. Those were the most unstable runs, with -z i/L > 5. Spectra and co-spectra are used to identify the structures. Three roll indicators were identified: (i) a low frequency peak in the spectrum of the lateral component at low level; (ii) a corresponding increase in the vertical component at mid-CBL; (iii) a positive covariance {ovvw} together with positive wind shear in the lateral direction (V/z) in the CBL. By applying these indicators, it is possible to show that horizontal roll circulations are likely to be a common phenomenon over the Baltic during late summer and early winter.  相似文献   

6.
The paper considers a puff diffusion in its inertial stage when particle separation obeys the laws of the inertial subrange and depends only on eddy energy dissipation rate . The can be determined in the surface layer by the turbulent kinetic energy equation. Similarity equations connect with diffusion measure .A simple analytical model has been deduced to estimate pollutants diffusion during calms.  相似文献   

7.
A set of semi-continuous measurements of temperature, wind and moisture gradients as well as of net radiation and ground heat flux covering a period of about one and a half years has been analysed to give a corresponding set of complete surface energy balance data on an hourly basis. An analysis of the evaporation data so obtained is given.It is shown that surface resistance r S exhibits a diurnal trend: values are smallest (ca. 150 s m-1) a few hours before noon and increase to as much as 800 s m-1 towards dusk. The minimum values tend to be higher during dry periods when the soil moisture is low. There is also some indication that r S decreases rapidly soon after rainfall.An exponential relation is found between the fraction of available energy used as evaporative flux, , and r S for values of r I/rS <0.70, where r I is the climatological resistance. On the other hand, the ratio of r I to r S is linearly correlated with , implying that an equilibrium state is established between the grass surface and the atmosphere, at least from mid-morning to mid-afternoon when the leaves are dry. Near-noon values calculated by Stewart and Thom for Thetford Forest also follow a linear trend.The above two regression results (In (r S) versus r I/rS versus ) are combined to obtain an empirical relation of the form r I=m exp (a-b) which is used to estimate evaporative flux. The estimates are found to be within 20% of calculated values.Guest Scientist from Department of Physics, University of Cape Coast, Cape Coast, Ghana.  相似文献   

8.
Characteristic features of the convectively driven monsoon-trough boundary layer have been explored using the conserved-variable method of analysis. Aerological observations during the Monsoon Trough Boundary Layer Experiment 1990 (MONTBLEX-90) during 18–20 August have been used to investigate the thermodynamic features of the Convective Boundary Layer (CBL). Thermodynamic parameters such as e , es have been used to study the dynamical aspects of the CBL. Also, mixed-layer heights at an inland station, in the monsoon trough region, obtained from SODAR, are used to document the saturation of the mixed layer after the onset of the monsoon.  相似文献   

9.
Analytical solutions for the Ekman layer   总被引:1,自引:0,他引:1  
The PBL equation that governs the transition from the constant-stress surface layer to the geostrophic wind in a neutrally stratified atmosphere for which the eddy viscosityK(z) is assumed to vary smoothly from the surface-layer value U *z (0.4,U *=friction velocity,z=elevation) to the geostrophic asymptoteK GU *d forzd is solved through an expansion in fd/U *1 (f=Coriolis parameter). The resulting solution is separated into Ekman's constant-K solution an inner component that reduces to the classical logarithmic form forzd and isO() relative to the Ekman component forzd. The approximationKU *d is supported by the solution of Nee and Kovasznay's phenomenological transport equation forK(z), which yieldsKU *d exp(–z/d), where is an empirical constant for which observation implies, 1. The parametersA andB in Kazanskii and Monin's similarity relation forG/U * (G=geostrophic velocity) are determined as functions of . The predicted values ofG/U * and the turning angle are in agreement with the observed values for the Leipzig wind profile. The predicted value ofB based on the assumption of asymptotically constantK is 4.5, while that based on the Nee-Kovasznay model is 5.1; these compare with the observed value of 4.7 for the Leipzig profile. A thermal wind correction, an asymptotic solution for arbitraryK(z) and 1, and an exact (unrestricted ) solution forK(z)=U *d[1–exp(–z/d)] are developed in appendices.  相似文献   

10.
The spatial variability of turbulent flow statistics in the roughness sublayer (RSL) of a uniform even-aged 14 m (= h) tall loblolly pine forest was investigated experimentally. Using seven existing walkup towers at this stand, high frequency velocity, temperature, water vapour and carbon dioxide concentrations were measured at 15.5 m above the ground surface from October 6 to 10 in 1997. These seven towers were separated by at least 100m from each other. The objective of this study was to examine whether single tower turbulence statistics measurements represent the flow properties of RSL turbulence above a uniform even-aged managed loblolly pine forest as a best-case scenario for natural forested ecosystems. From the intensive space-time series measurements, it was demonstrated that standard deviations of longitudinal and vertical velocities (u, w) and temperature (T) are more planar homogeneous than their vertical flux of momentum (u* 2) and sensible heat (H) counterparts. Also, the measured H is more horizontally homogeneous when compared to fluxes of other scalar entities such as CO2 and water vapour. While the spatial variability in fluxes was significant (>15 %), this unique data set confirmed that single tower measurements represent the canonical structure of single-point RSL turbulence statistics, especially flux-variance relationships. Implications to extending the moving-equilibrium hypothesis for RSL flows are discussed. The spatial variability in all RSL flow variables was not constant in time and varied strongly with spatially averaged friction velocity u*, especially when u* was small. It is shown that flow properties derived from two-point temporal statistics such as correlation functions are more sensitive to local variability in leaf area density when compared to single point flow statistics. Specifically, that the local relationship between the reciprocal of the vertical velocity integral time scale (Iw) and the arrival frequency of organized structures (/h) predicted from a mixing-layer theory exhibited dependence on the local leaf area index. The broader implications of these findings to the measurement and modelling of RSL flows are also discussed.  相似文献   

11.
The I-atom sensitised decomposition of ozone in air at 1 atm pressure and ambient temperature has been investigated. Iodine atoms were produced by photolysis of I2 using visible light or of CH3I using ultraviolet light. In both cases, the quantum yield for O3 decomposition was 1.25 (±0.11) per I atom. An important role is proposed for the self-reaction of IO radicals leading to higher oxides of iodine, IO+IO(+M)I2O2(+M)higher oxides, which predominated over the bimolecular reaction leading to regeneration of I atoms, IO+IO2I+O2, with k 2a/k 2b4. Simple computer modelling calculations indicate that reaction (2a) may be important in determining the fate of photolabile iodine species in the atmosphere. The consequences for the behaviour of radioiodine releases are also discussed.  相似文献   

12.
The effect of changes in zonal and meridional atmospheric moisture transports on Atlantic overturning is investigated. Zonal transports are considered in terms of net moisture export from the Atlantic sector. Meridional transports are related to the vigour of the global hydrological cycle. The equilibrium thermohaline circulation (THC) simulated with an efficient climate model is strongly dependent on two key parameters that control these transports: an anomaly in the specified Atlantic–Pacific moisture flux (Fa) and atmospheric moisture diffusivity (Kq). In a large ensemble of spinup experiments, the values of Fa and Kq are varied by small increments across wide ranges, to identify sharp transitions of equilibrium THC strength in a 2-parameter space (between Conveyor On and Off states). Final states from this ensemble of simulations are then used as the initial states for further such ensembles. Large differences in THC strength between ensembles, for identical combinations of Fa and Kq, reveal the co-existence of two stable THC states (Conveyor On and Off)—i.e. a bistable regime. In further sensitivity experiments, the model is forced with small, temporary freshwater perturbations to the mid-latitude North Atlantic, to establish the minimum perturbation necessary for irreversible THC collapse in this bistable regime. A threshold is identified in terms of the forcing duration required. The model THC, in a Conveyor On state, irreversibly collapses to a Conveyor Off state under additional freshwater forcing of just 0.1 Sv applied for around 100 years. The irreversible collapse is primarily due to a positive feedback associated with suppressed convection and reduced surface heat loss in the sinking region. Increased atmosphere-to-ocean freshwater flux, under a collapsed Conveyor, plays a secondary role.  相似文献   

13.
A Random Displacement Model (RDM) and a Langevin Equation Model (LEM) are used to simulate point releases in a complex flow around a building. The flow field is generated by a three-dimensional finite element model that uses the standardk- model to parameterize the turbulence. The RDM- and LEM-calculated concentration fields are compared, with particular emphasis on the structure in regions with high turbulence and/or recirculation. RDM and LEM results are similar qualitatively, but RDM tends to predict lower concentration levels. In part this is due to the higher early-time diffusion. However, the expected convergence at later times is prevented by the interaction of the diffusion with the strongly inhomogeneous mean flow.Notation a i coefficient in the Langevin equation - b ij coefficient in the Langevin equation - C 0 the universal constant associated with the Lagrangian structure function - H building height (22.5 m) - K eddy viscosity - K k eddy viscosity used in the definition of the off-diagonal Reynolds stresses - k turbulent kinetic energy - LEM Langevin Equation Model - p 1 local unit vector in thexy-plane, orthogonal tos - p 2 local unit vector, orthogonal to boths andp 1 - RDM Random Displacement Model - s local unit vector in the streamline direction - T local decorrelation time (Lagrangian time scale) - U magnitude of the local Eulerian mean wind velocity - u s total velocity in the streamline direction - u 1 velocity component in thexy-plane, orthogonal to the streamline direction - u 2 velocity component orthogonal to bothu s andu 1 - i mean Eulerian wind velocity - W i stochastic vector-valued Wiener process - x unit vector inx-direction - y unit vector iny-direction - z unit vector inz-direction - angle between thexy-plane and the mean wind streamline - angle between the projection in thexy-plane of the streamline and thex-axis - ij the Kronecker delta function - rate of turbulence dissipation - i/ga the part ofa i that contains mean wind and turbulence gradients - ij inverse of a Reynolds stress tensor component - ij shorthand for a quantity that defines a part of i/ga - i shorthand for a quantity that defines a part of i/ga - ij Reynolds stress tensor component  相似文献   

14.
The reactions of alkoxy radicals determine to a large extent the products formed during the atmospheric degradations of emitted organic compounds. Experimental data concerning the decompositions, 1,5-H shift isomerizations and reactions with O2 of several classes of alkoxy radicals are inconsistent with literature estimations of their absolute or relative rate constants. An alternative, although empirical, method for assessing the relative importance under atmospheric conditions of the reactions of alkoxy radicals with O2 versus decomposition was derived. This estimation method utilizes the differences in the heats of reaction, (H)=(Hdecomposition–HO 2 reaction), between these two reactions pathways. For (H)[22–0.5(HO 2 reaction)], alkoxy radical decomposition dominates over the reaction with O2 at room temperature and atmospheric pressure of air, while for (H)[25-0.5(HO 2 reaction)], the O2 reaction dominates over decomposition (where the units of H are in kcal mol–1). The utility and shortcomings of this approach are discussed. It is concluded that further studies concerning the reactions of alkoxy radicals are needed.  相似文献   

15.
Effect of finite sampling on atmospheric spectra   总被引:2,自引:0,他引:2  
The effect of a finite averaging time on variances is well known, but its effect on power spectra is less clearly understood. We present numerical solutions for the spectral distortion arising from sampling over a finite time interval T and show that the commonly used filter function (1 – sinc2f T), valid for variances, is a reasonable approximation for power spectra only when T 10 m , where f is the cyclic frequency, and m is the dominant time scale of the process. Our results exhibit an increasingly steeper low-frequency roll-off as T decreases relative to m , indicating that the measured spectrum is subject to a greater suppression of the lower frequencies (f > 1/T) than predicted by (1 – sinc2f T). This suppression is, in a sense, compensated by an overestimation of spectral estimates in the frequency range f 1/T.  相似文献   

16.
TheConvectiveDiffusionObserved byRemoteSensors (CONDORS) field experiment conducted at the Boulder Atmospheric Observatory used innovative techniques to obtain three-dimensional mappings of plume concentration fields, /Q, of oil fog detected by lidar and chaff detected by Doppler radar. It included extensive meteorological measurements and, in 1983, tracer gases measured at a single sampling arc. Final results from ten hours of elevated and surface release data are summarized here. Many intercomparisons were made. Oil fog /Q measured 40m above the arc are mostly in good agreement withSF 6 values, except in a few instances with large spacial inhomogeneities over short distances. After a correction scheme was applied to compensate for the effect of its settling speed, chaff dy/Q agreed well with those of oil except in two cases of oil fog hot spots. Mass or frequency distribution vs. azimuth or elevation angle comparisons were made for chaff, oil, and wind, with mostly good agreements. Spacial standard deviations, y and z, of chaff and oil agree overall and are consistent at short range with velocity standard deviations vand w 0.6w* (the convective scale velocity), as measured atz>100m. Surface release y is enhanced up to 60% at smallx, consistent with the Prairie Grass measurements and with larger v and reduced wind speed measured near the surface. Decreased y at small dimensionless average times is also noted. Finally, convectively scaled dy, C y, were plotted versus dimensionlessx andz for oil, chaff, and corrected chaff for each 30–60 min period. Aggregated CONDORSC y fields compare well with laboratory tank and LES numerical simulations; surface-released oil fog compares expecially well with the tank experiments. However, large deviations from the norm occurred in individual averaging periods; these deviations correlated strongly with anomalies in measured distributions.On assignment to the US Environmental Protection Agency, Atmospheric Research and Exposure Assessment Laboratory, RTP, NC.  相似文献   

17.
Summary The effect of the Alpine orography on prototype cold fronts approaching from the west is investigated by three-dimensional numerical model simulations. The numerical experiments cover a range of parameter constellations which govern the prefrontal environment of the front. Especially, the appearance and intensity of prefrontal northern Alpine foehn varies from case to case.The behaviour of a cold front north of the Alps depends much on the prefrontal condition it encounters. It is found that prefrontal foehn can either accelerate or retard the approaching front.An important feature is the pressure depression along the northern Alpine rim that results from the southerly foehn flow. In cases where this depression compensates the eastward directed pressure gradient associated with the largescale flow, the front tends to accelerate and the foehn breaks down as soon as the front passes. In contrast, the foehn prevents the front from a rapid eastward propagation if it is connected with a strong southerly wind component.No-foehn experiments are performed for comparison, where either the mountains are removed, or the static stability is set to neutral. Also shown are effects of different crossfrontal temperature contrasts.List of Symbols c F propagation speed of a front - x, y horizontal grid spacing (cartesian system) - , horizontal grid spacing (geographic system) - t time step - z vertical grid spacing (cartesian system) - cross-frontal potential temperature difference - i potential temperature step at an inversion - E turbulent kinetic energy - f Coriolis parameter - FGP frontogenesis parameter (see section 2.2) - g gravity acceleration (g=9.81 m s–2) - vertical gradient of potential temperature - h terrain elevation (above MSL) - h i height of an inversion (h i =1000 m MSL) - H height of model lid (H=9000 m MSL) - K M exchange coefficient of momentum - K H exchange coefficient of heat and moisture - longitude - N Brunt-Väisäla-frequency - p pressure - Exner function (=T/) - latitude - q v specific humidity - R d gas constant of dry air (R d =287.06 J kg–1 K–1) - density of dry air - t time - T temperature - potential temperature - TFP thermal front parameter (see section 2.2) - u, v, w cartesian wind components - u g ,v g geostrophic wind components - horizontal wind vector - x, y, z cartesian coordinates Abbreviations GND (above) ground level - MSL (above) mean sea level - UTC universal time coordinated With 20 Figures  相似文献   

18.
The standard deviation of temperature T is proposed as a temperature scale and as a velocity scale to describe the behaviour of turbulent flows in the Atmospheric Surface Layer (ASL), instead of * andu * of the Monin—Obukhov similarity theory, and ofT f andU f used for free convection stability conditions. On the basis of experimental evidence reported in the literature, it is shown that T T f andv * U f in the free convection region, and T * andv * U * in nearneutral and stable conditions. This implies that the proposed scales can be applied for all stabilities. Furthermore, a new length scale is proposed and its relation with Obukhov length is given. Also, a simple semi-empirical expression is presented with which T andv * can be evaluated in a rather simple way. Some examples of practical applications are given, e.g., a stability classification for unstable conditions.  相似文献   

19.
The relation between the turbulence Reynolds numberR and a Reynolds numberz* based on the friction velocity and height from the ground is established using direct measurements of the r.m.s. longitudinal velocity and turbulent energy dissipation in the atmospheric surface layer. Measurements of the relative magnitude of components of the turbulent kinetic energy budget in the stability range 0 >z/L 0.4 indicate that local balance between production and dissipation is maintained. Approximate expressions, in terms of readily measured micrometeorological quantities, are proposed for the Taylor microscale and the Kolmogorov length scale .  相似文献   

20.
Vegetation changes both in stationary and changing climates. Such changes can significantly affect hydrological and climate dynamics. Probabilistic, inferential, empirical, statistical, threshold, ecophysiological, and mechanistic vegetation models provide tools and ideas to construct coupled climate and vegetation schemes to study climate/vegetation feedbacks. Their logic is discussed, typical applications are presented, and their usefulness is assessed. Developing coupled climate and vegetation schemes also implies tackling scaling issues explicitly. Just as the Courant-Friedrichs-Lewy (CFL) criterion guarantees that information is not transferred faster through space than time in climate models, information should be transmitted fast enough in vegetation models for the landscape to register vegetation responses. To guarantee that this is the case, a migration criterion, or m criterion, is proposed. The CFL criterion and the m criterion set formal constraints on the design of coupled atmosphere and vegetation schemes. In particular, the ratio of climate and vegetation space scales should be approximately five orders of magnitude less than the ratio of climate and vegetation time scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号