首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Feldspar phenocrysts, microphenocrysts, groundmass feldspar, interstitial material of feldspar composition, and residual SiO2-K2O-rich glass in 24 rocks of the tholeiitic, alkalic, and nephelinic suites from Haleakala and West Maui volcanoes, Maui, Hawaii, were analyzed quantitatively with the electron microprobe. Rocks studied include tholeiite, olivine tholeiite, oceanite, alkalic olivine basalt, alkalic basalt, hawaiite, mugearite, trachyte, basanite, and basanitoid. Results and conclusions: i) In all rocks studied, An decreases and Or increases from phenocrysts to microphenocrysts to groundmass feldspar to interstitial material of feldspar composition. ii) Phenocrysts occur in rocks of the tholeiitic and alkalic suites and, in spite of differences in bulk rock compositions, overlap in composition. iii) Groundmass feldspar in rocks of the tholeiitic suite are nearly identical in composition; the same is true for rocks of the nephelinic suite. However, in the highly differentiated alkalic suite, groundmass feldspar composition ranges from labradorite to sanidine; i.e. the higher the bulk rock CaO, the higher is the An content, and the higher the bulk K2O, the higher is the Or content. iv) In general, rocks with phenocrysts have groundmass feldspar less An-rich than those without phenocrysts. v) In rocks of the tholeiitic suite, normative feldspar approaches modal feldspar. However, in rocks of the alkalic and nephelinic suites, normative feldspar, because of the presence of highly alkalic interstitial material and the absence of nepheline in the mode but its presence in the norm, is drastically different from modal feldspar. vi) Hawaiites contain labradorite and not andesine, as per definition, and mugearite contains andesine and not oligoclase, as groundmass feldspar. In fact, when considering phenocrysts and interstitial material of feldspar composition, hawaiites range from bytownite to sanidine and mugearite from andesine to sodic sanidine, but normative feldspar plots in the andesine field for hawaiites and the oligoclase field for mugearite. vii) Rocks of the three suites can be distinguished on the basis of Or and An in groundmass feldspar, the presence of thin rims of groundmass composition of phenocrysts of rocks of the alkalic suite, and the presence of interstitial material of anorthoclase to sanidine composition in rocks of the alkalic and nephelinic suites. iix) Rocks transitional between the tholeiitic and alkalic suites are observed and are characterized by transitional mineral compositions.This paper was first presented as a talk before the 68. Annual Meeting of the Cordilleran Section of the Geological Society of America, Honolulu, Hawaii, March 29–April 1, 1972.  相似文献   

2.
Basaltic magmas found in intraplate suites appear to followmore than one differentiation trend. Many ocean island suitesfollow the ocean island tholeiitic trend, with the basalts differentiatingfrom olivine tholeiite through basaltic andesite, andesite,and dacite to sodic rhyolite. Many continental intraplate magmaticregimes, such as those of the Snake River Plain and the plutonicsequences associated with massif anorthosites, follow the potassicsilica-saturated alkalic trend, in which basalt differentiatesfrom olivine tholeiite through ferrobasalt (jotunite or ferrodiorite),Fe-rich intermediate rocks (trachybasalt or monzonite), andtrachyte (syenite) to potassic rhyolites and granites. Crystallizationexperiments on an olivine tholeiite from the Snake River Plainshow that the basaltic portions of the ocean island tholeiitictrend and the potassic silica-saturated alkalic trend (whichleads to strong alkali, P, Ti, and Fe enrichment and silicadepletion) can arise from the same ‘dry’ tholeiiticparental magma. These compositional differences are inducedby changes in phase equilibria as a function of pressure, withthe ocean island tholeiitic series arising from crystal–liquiddifferentiation at low pressure and the potassic silica-saturatedalkalic series arising via differentiation at elevated pressures. KEY WORDS: tholeiite differentiation; experimental petrology; phase equilibria; ferrodiorite; ferrobasalt  相似文献   

3.
A magmatic gap from 1.82 to 1.76 b.y. in the Lake Superior region represents the transition from synorogenic calc-alkaline igneous activity of the Penokean Orogeny to anorogenic potassic granophyric granite and ignimbrite. This paper deals with the petrogenetic evolution of 1.76 b.y. granites which represent a major change in source material and conceivably tectonic setting. Although perhaps related to a termination of the Penokean Orogeny by melting of a tectonically thickened crust during collision, these post-Penokean granites may represent the initial appearance of anorogenic, potentially rift-related igneous activity that was widespread throughout North America during late Precambrian time.These post-Penokean granites are too iron-rich and Al-poor to be considered calc-alkaline, a compositional feature shared with most anorogenic igneous activity of continental regions. Within this suite in central and northern Wisconsin, regional differences in composition indicate at least two different granite magma types: one a metaluminous suite of biotite and biotite-hornblende granite and a peraluminous suite of two-mica granite. The systematic compositional differences (Al, Fe/Mg, Ba/Sr, REE) in the two magma suites are likely the result of small differences in residue mineralogy and/or source composition. In general, the degree of fusion was small (10%) and probably of relatively young Penokean material. Both suites have a range of composition due to feldspar dominated fractional crystallization. Removal of the accessory minerals apatite, zircon, and allanite resulted in the REE depletion with differentiation of the two-mica granites.The granites intruded into the upper levels of the crust, and the appearance of primary celadonitic muscovite and subsolvus alkali feldspars (silicic members only) in the two mica granites indicate crystallization at depths of 10–11 km. The biotite granites contain both hypersolvus and subsolvus members and are intruded at depths less than 6 km with the more shallow members generating major volumes of ignimbrite. As a marked departure from the characteristics of most anorogenic granites, these melts crystallized at fairly oxidizing conditions (higher for the two-mica suite) as reflected in the composition of biotite, predominance of magnetite over ilmenite, and early appearance of the Fe-Ti oxides in the crystallization sequence.  相似文献   

4.
《Gondwana Research》2006,9(4):596-602
The Koraput Alkaline Complex in the high-grade Eastern Ghats Belt, India, is synkinematically emplaced in a pull-apart structure and far from the Bastar cratonic margin. The suite comprises four distinct members, namely, mafic syenite, felsic syenite, nepheline syenite and perthite syenite. Fe-rich orthopyroxene rims on olivine in mafic syenite indicate iron-enrichment in the early stage of differentiation. With plagioclase of andesine composition it could be described as alkali-norite, the plutonic equivalent of hawiite. Felsic syenite with both alkali-feldspars and plagioclase of oligoclase composition could be described as two-feldspar syenite, the plutonic equivalent of mugearite. Albitic rims on nepheline indicates subsolvus reaction. Chemical trends in amphiboles and plagioclase feldspars, progressively more ferroan and more sodic respectively, are strong indications of mineral fractionation in the Koraput suite. Chemical trends in the variation diagrams are compatible with feldspar fractionation in the Koraput suite. A weak Fe-enrichment trend in the early stage of differentiation, as observed in the AFM diagram, is compatible with that of the alkali-basalt series. Nb anomalies, both positive and negative, are indicative of crustal contamination as expected in synkinematic plutons. In terms of Gondwana assembly and break up, the alkaline complexes are supposed to represent rift-related magmatism along the continental margin. In spite of petrological evidence of the magmatic character of the Koraput Complex, anorogenic setting is contra-indicated by mesoscopic and microscopic fabrics, more akin to synkinematic intrusion during F 2 folding in the host country rocks. The Proterozoic alkaline complexes in the Eastern Ghats Belt, could alternatively trace the path of moving Gondwana continent over mantle plumes.  相似文献   

5.
The Longwoods Complex of Southland, New Zealand is part of an extensive terrane consisting of intrusives, volcanics, and sediments, which outcrops in the southern and north-western portions of the South Island. This terrane represents a volcanic arc which was active from Permian to Jurassic times (Grindley, 1958; Challis, 1968, 1969; Coombs et al., 1976). Between Pahia Point and Oraka Point on the southern coast of the South Island a section across the Longwoods Complex is well exposed and intrusives ranging in composition from ultrabasic cumulate rock, high-Al gabbro and gabbroic diorite to quartz diorite and granite outcrop. Two models have been considered for the origin of the rocks of the Pahia Point-Oraka Point section: (a) the rocks constitute one suite, the members of which are related by a crystal fractionation process; (b) the rocks constitute two suites which are not directly related. The ultrabasic rocks, and quartz diorites are complementary and are derived from a high-Al gabbro parent by crystal fractionation involving pyroxene, olivine, plagioclase and hornblende, but considerations of viscosity and the geochemistry of the granite preclude derivation of the high-Si rocks by continuation of the crystal fractionation model. Furthermore, the quartz-diorites are of two types: xenolith bearing foliated quartz-diorites and xenolith deficient unfoliated types. The latter rock type appears to group with the gabbros on variation diagrams and partitioning of Ti between mica and amphibole supports the view that two distinct suites of rocks are involved: (a) a suite derived by fractional crystallization from a high-Al gabbro parent and consisting of cumulate ultramafic rocks, high-Al gabbro, gabbroic diorite and quartz-diorite; (b) a suite of foliated quartz diorites, formed by partial melting of lower crustal igneous rocks. The xenoliths in the foliated quartz-diorites represent modified residue left after partial melting. Melt and residue have unmixed to varying degrees during diapiric rise and a range of compositions has resulted. The association of the two suites is tectonic. Gabbroic melts are generated in the lithosphere during plate subduction beneath a continental margin and rise of these melts into the lower continental crust results in partial melting and generation of quartz-diorite magmas.  相似文献   

6.
The Koraput Alkaline Complex in the high-grade Eastern Ghats Belt, India, is synkinematically emplaced in a pull-apart structure and far from the Bastar cratonic margin. The suite comprises four distinct members, namely, mafic syenite, felsic syenite, nepheline syenite and perthite syenite. Fe-rich orthopyroxene rims on olivine in mafic syenite indicate iron-enrichment in the early stage of differentiation. With plagioclase of andesine composition it could be described as alkali-norite, the plutonic equivalent of hawiite. Felsic syenite with both alkali-feldspars and plagioclase of oligoclase composition could be described as two-feldspar syenite, the plutonic equivalent of mugearite. Albitic rims on nepheline indicates subsolvus reaction. Chemical trends in amphiboles and plagioclase feldspars, progressively more ferroan and more sodic respectively, are strong indications of mineral fractionation in the Koraput suite. Chemical trends in the variation diagrams are compatible with feldspar fractionation in the Koraput suite. A weak Fe-enrichment trend in the early stage of differentiation, as observed in the AFM diagram, is compatible with that of the alkali-basalt series. Nb anomalies, both positive and negative, are indicative of crustal contamination as expected in synkinematic plutons. In terms of Gondwana assembly and break up, the alkaline complexes are supposed to represent rift-related magmatism along the continental margin. In spite of petrological evidence of the magmatic character of the Koraput Complex, anorogenic setting is contra-indicated by mesoscopic and microscopic fabrics, more akin to synkinematic intrusion during F 2 folding in the host country rocks. The Proterozoic alkaline complexes in the Eastern Ghats Belt, could alternatively trace the path of moving Gondwana continent over mantle plumes.  相似文献   

7.
The Blovice accretionary complex, Bohemian Massif, hosts well-preserved basaltic blocks derived from an oceanic plate subducted beneath the northern active margin of Gondwana during late Neoproterozoic to early Cambrian. The major and trace element and Hf–Nd isotope systematics revealed two different suites, tholeiitic and alkaline, whose composition reflects different sources of melts within a back-arc basin setting. The former suite has composition similar to mid-ocean ridge basalts (MORB), yet with striking enrichment in large-ion lithophile elements (LILE) and Pb paralleled by depletion in Nb, in agreement with its derivation from depleted mantle fluxed by subduction-related fluids. In contrast, the latter suite has composition similar to ocean island basalts (OIB) with variable contribution of ancient, recycled crustal material. We argue that both suites represent volcanic members of Ocean Plate Stratigraphy (OPS) and indicate that the oceanic realm consumed by the Cadomian subduction was a complex mosaic of intra-oceanic subduction zones, volcanic island arcs, and back-arc basins with mantle plume impinging the spreading centre. Hence, the basalt geochemistry implies that two distinct domains of oceanic lithosphere may have existed off the Gondwana’s continental edge: an outboard domain, made up of old and less buoyant oceanic lithosphere (remnants of the Mirovoi Ocean surrounding former Rodinia?) that was steeply subducted and generated the back-arcs, and young, hot, and more buoyant oceanic lithosphere generated in the back-arcs and later involved in accretionary complexes as dismembered OPS. Perhaps the best recent analogy of this setting is the Izu Bonin–Mariana arc–Philippine Sea in the western Pacific.  相似文献   

8.
Element interrelations, with particular emphasis on alkaline earth metals, have been studied quantitatively for three alkaline suites of the Eastern Ghats Precambrian belt. Geochemical characterisation brings the Koraput and the Kunavaram suites closer, relative to the Elchuru suite. K-Ba and K-Rb correlations vary during the fractionation process, being strongly positive for the early members and almost noncorrelatable for the late fractions. The covariant relation between Ba and Sr is not well developed in any of the suites. Significant positive correlation between Rb and the degree of differentiation has been observed for the Koraput and the Kunavaram suites but not for the Elchuru suite. Liappears to be fractionated with the early mafic phases and is negatively correlated with Na. Zr shows a significant positive correlation with differentiation in the Elchuru but not in the Koraput suite although Ti/Zr falls remarkably with advancing differentiation for both the suites. P and Ti are mutually positively correlated in all the three suites and both tend to manifest significant negative correlation with progressive fractionation. K-(P + Ti + Sr) seems to be a good indicator of the fractionation process in the suites investigated.  相似文献   

9.
Felsic alkalic rocks are a minor component of many ocean island volcanic suites, and include trachyte and phonolite as well as various types of alkaline and peralkaline rhyolite. However, there is considerable debate on the nature of their formation; for example, are they formed by partial melting of anomalous mantle or the final products of fractional crystallization of mafic magmas. The phonolites and foidal phonolites on Rarotonga were formed by low pressure crystal fractionation of two chemically distinct parental magmas. Low silica and high silica mafic magmas produced a basanite-foidal phonolite series and an alkali basalt-phonolite series, respectively. The foidal phonolite composition evolved from the low silica mafic magmas by approximately 60% fractionation of titanaugite + leucite + nepheline + magnetite + apatite. Fractionation continued with the crystallization of aegirine-augite + nepheline + kaersutite + magnetite + apatite. The phonolites formed from the alkali basalts by approximately 40% fractionation of kaersutite + titanaugite + Fe-Ti oxide + plagioclase + apatite and continued to evolve further by fractionation of anorthoclase + nepheline + aegerine-augite + Fe-Ti oxides. As the magmas fractionated in both suites, their overall viscosities (solid + liquid) increased until a point was reached whereby viscosity inhibited the eruption of magmas with compositions intermediate between the mafic rocks and the felsic rocks. However, the magmas continued to fractionate under static conditions with the residual fluid becoming foidal phonolitic in the low silica suite or phonolitic in the high silica suite. These phonolitic liquids, as a result of an increase in volatiles and enrichment of alkalis over aluminum, would actually have a lower viscosity than the intermediate liquids. This decrease in viscosity and the switch from a magma chamber being predominantly a liquid with suspended solids to a solid crystalline network with an interstitial liquid enabled phonolitic liquids to migrate, pool, and eventually erupt on the surface.  相似文献   

10.
Graphic intergrowths of alkali feldspar+quartz, and plagioclase+quartz, occur together in pegmatites in the eastern part of the Czechoslovak Moldanubicum. They form zones between the finer-grained wall zone and the central blocky feldspar+quartz core. The normative Or-Pig-Q compositions of the graphic intergrowths and the Or-Ab-An contents of their feldspars show broad variations generally, but have a restricted range within individual pegmatites. At two localities studied in more detail, coexisting feldspars show gradual changes in composition, from the margins up to the innermost graphic pegmatite, compatible with fractional crystallization along the feldspar solidus-solvus intersection in the Or-Ab-An-Q-H2O system, at different vapour pressures in different pegmatites. Two models are demonstrated for low and high pressure cases. The feldspar compositions from central blocky zones deviate from the magmatic fractional crystallizations paths; this corresponds with the general assumption that they crystallized from supercritical gaseous fluids.In these and in similar pegmatites, coexisting alkali feldspar+quartz and plagioclase + quartz intergrowths are interpreted as the last products of cotectic crystallization from an ultimately fractionated granitic magma. Positive correlation of Ab solid solution and quartz content in the potassic intergrowths suggests that these characteristics may be indicative of the relative pressure and temperature effective during their crystallization, when compared in pegmatites of the same bulk composition.  相似文献   

11.
Recent papers cite the similarity of rocks, particularly andesites,in continental and oceanic regions, but the similarity is primarilyone of name. The oceanic ‘andesites’ belong to thealkaline suite, whereas the typical continental andesites arecalc alkaline and hyperstheneor hornblende-bearing. To avoidfurther confusion it is suggested that the name ‘andesite’for the oceanic rocks be replaced by the names hawaiite andmugearite. Whatever name is used, it is essential to emphasizethe difference between the oceanic ‘andesites’ andthe andesites of continental orogenic regions. All members of the oceanic suite are present also in continentalregions, but the calc alkaline rocks characteristic of orogenicregions on the continents are absent within the true ocean basins,except in island arcs near the continents that were formerlyregarded as the continental border.  相似文献   

12.
Recent papers, cite the similarity of rocks, particularly andesites,in continental and oceanic regions, but the similarity is primarilyone of name. The oceanic ‘andesites’ belong to thealkaline suite, whereas the typical continental andesitesarecalc alkaline and hypersthene-or hornblende-bearing. To avoidfurther confusion it is suggested that the name ‘andesite’for the oceanic rocks be replaced by the names hawaiite andmugearite. Whatever name is used, it is essential to emphasizethe difference between the oceanic ‘andesites’ andthe andesites of continental orogenic regions. All members of the oceanic suite are present also in continentalregions, but the calc alkaline rocks characteristic of orogenicregions on the continents are absent within the true ocean basins,except in island arcs near the continets that were formerlyregarded as the continental border.  相似文献   

13.
Experimental simulation of incremental crystal fractionationof a hy-normative hawaiite indicates that the spectrum of compositionsfrom mildly alkalic hawaiite to sodic rhyolite found in silica-saturatedalkalic suites of the ocean islands and continental hotspotsand rifts can be produced by fractionation at 9·3 kbarwith bulk water contents >  相似文献   

14.
Trace and minor element concentrations in alkali feldspars fromthe layered syenite series in the Klokken gabbro-syenite complex,South Greenland have been measured using an ion microprobe.The technique has high precision, avoids problems of mineralseparation, and has allowed investigation of zoning and theeffects of deuteric alteration. Li, Be, B, Cs and Pb occur at< 1 p.p.m. levels, but Ba, Sr, Rb, Mg, Fe, Ti and P are presentin the 1–7000 p.p.m. range. Provided unaltered strain-controlledcrypto- or microperthitic feldspar is sampled and deutericallycoarsened material is avoided, all of the latter elements exceptMg show systematic variation. This confirms the evidence forin situ fractionation of a single syenitic magma-pulse affordedby major element variation in coexisting mafic minerals, particularlypyroxenes and olivines. The distinction between granular andlaminated syenites in the series is supported by the trace elements,which confirms the view that the granular syenites are a condensedroof-chill series with inverted cryptic variation, while thelaminated syenites are a bottom accumulated sequence. Using mainly experimentally determined partition coefficientsfrom the literature and a simple Rayleigh fractionation modelbased on the variation in Ba, Sr and Rb (elements whose concentrationin the melt is largely controlled by feldspar) we calculategeologically reasonable minimum thicknesses for the entire layeredseries of 1370–3260 m. Ti variation in the feldspars wascontrolled by Fe-Ti oxide fractionation, and Fe contents alsowere controlled by mafic phases. Controls of Mg, and particularlythe irregular P levels, are not clear. Behaviour of Ca, whichis present at < 6000 p.p.m. levels in the feldspars, is qualitativelyexplained in terms of the ternary feldspar phase diagram.  相似文献   

15.
The Kap Edvard Holm Layered Series forms part of the East GreenlandTertiary Province, and was emplaced at shallow crustal level(at depths corresponding to a pressure of 1–2 kbar) duringcontinental break-up. It consists of two suites: a gabbro suitecomprising olivine and oxide gabbros, leucocratic olivine gabbrosand anorthosites, and a suite of wehrlites that formed fromthe intrusion of the gabbros during their solidification bya hydrous, high-MgO magma. Ion microprobe analyses of clinopyroxenereveal chemical contrasts between the parental melt of the wehrlitesuite and that of the gabbro suite. Thin sills (1–2 mthick) of the wehrlite suite, however, have clinopyroxene compositionssimilar to the gabbro suite, and were formed by interactionwith interstitial melts from the host layered gabbros. All evolvedmembers of the gabbro suite have elevated Nd, Zr and Sr concentrationsand Nd/Yb ratios, relative to the melt parental to the gabbrosuite. These characteristics are attributed to establishmentof a magma chamber at depths corresponding to a pressure of10 kbar, where melts evolved before injection into the low-pressuremagma chamber. Anorthosites of the gabbro suite are believedto have crystallized from such injections. The melts becamesupersaturated in plagioclase by the pressure release that followedtransportation to the low-pressure magma chamber after initialfractionation at 10 kbar. The most evolved gabbros formed bysubsequent fractionation within the low-pressure magma chamber.Our results indicate that high-pressure fractionation may beimportant in generating some of the lithological variationsin layered intrusions. KEY WORDS: fractionation; ion microprobe; layered intrusions; rift processes; trace elements *Corresponding author.  相似文献   

16.
A radiochemical N.A.A. method was used to obtain new values on W distribution in some 125 volcanic rocks, mainly basalts and andesites, from different petrotectonic environments.These W data are below previously reported abundances. New median values in various types of rocks are suggested (ppm W). Basalts: ocean floor, 0.15; ocean islands subalkaline, 0.28; ocean islands alkaline, 0.60; island arc, 0.19: continental margin, 0.40; continental subalkaline, 0.30: continental alkaline, 1.35. Andesites: island arc, 0.23; continental margin, 1.05.Median values for all 91 basalts and all 20 andesites are 0.36 and 0.29 ppm respectively.  相似文献   

17.
陈绍海  陈汉林 《地质科学》1999,34(2):154-165
陈蔡群斜长角闪岩的基本组成矿物是斜长石和角闪石,不同样品中还可出现透辉石、黑云母、石英和碱性长石等。大多数斜长角闪岩显示石英拉斑和橄榄拉斑系列的特征,个别属于钙碱性系列。其稀土元素配分曲线显示不同程度的LREE富集特征,指示斜长角闪岩原岩在成岩过程方面的多样性。根据微量元素蛛网图的斜率和Nb、Ta异常情况以及Zr-TiO2相关性,斜长角闪岩主要分成岛弧和洋岛两种类型,指示陈蔡群的原岩形成于洋内俯冲或洋陆俯冲的环境。龙游八都群斜长角闪岩呈MORB的地球化学特征,与陈蔡群斜长角闪岩形成鲜明的对比  相似文献   

18.
A major alkali province of late Panafrican age occupies centralMadagascar and takes the form of a thick sequence of ‘stratoid’(sheet-like)granites emplaced in a mid-crustal gneissic basement This alkalinemagmatism has been interpreted as a consequence of extensionaltectonics accompanying the collapse of the Mozambique belt.The rocks belong to three petrographic types: subsolvus granites,hypersolvus alkaline granites and syenites. Major and traceelement analyses have typical A-type characteristics. Two distinctmagmatic suites are recognized: a mildly alkaline suite includingall the subsolvus granites and a strongly alkaline suite includingthe hypersolvus alkaline granites and the syenites. We proposethat the mildly alkaline suite was derived from a granodioriticcrustal protolith. Some of the strongly alkaline granites andthe quartz syenites display low 18O isotopic signatures of around+6.The parental magmas for this suite are most probably of mantlederivation. The more evolved compositions are consistent withcrystal fractionation processes. Contemporaneous alkaline silicicplutonismoccurs in many parts of the Panafrican belt of Eastern Africa;however, sheet-like intrusions have rarely been described. Asa large-scale province, the nearest analogues of the stratoidgranites of Madagascar are the rapakivi granites of earlierProterozoic age in Scandinavia and Greenland. KEY WORDS: alkaline granite; Madagascar; Panafrican; pastcollisional magmatism *Corresponding author  相似文献   

19.
Volcanic rocks in the Middle–Lower Yangtze River Valley (MLYRV) constitute a bimodal magmatic suite, with a significant compositional gap (between 50% and 63% SiO2) between the mafic and felsic members. The suite is characterized by a relatively wide spectrum of rock types, including basalts, trachytes, and rhyolites. The basaltic rocks have low-to-moderate SiO2 contents of 46.00–50.01%, whereas the trachytes and rhyolites possess SiO2 contents in the range of 63.08–77.61%. Rocks of the bimodal suite show moderate enrichment of LILEs, negative Nb, Ta, and Ti anomalies, and are significantly enriched in LREEs. The basalts were most likely generated by parental mafic magmas derived from enriched lithospheric mantle with minor assimilation of crustal materials involving coeval crystal fractionation during magma evolution. The results of energy-constrained assimilation and fractional crystallization simulations demonstrate that the felsic magma was produced by the mixing of 5–20% lower crustal anatectic melts with an evolved mafic magma (~48% SiO2) and accompanied by extensive clinopyroxene, plagioclase, biotite, and Fe–Ti oxide fractionation. Our model for the genesis of felsic rocks in bimodal suites is different from the traditional models of crustal melting and fractional crystallization or assimilation–fractional crystallization of basaltic liquids.  相似文献   

20.
Two suites of felsic eruptives and intrusives are represented in a set of samples from the summit region of the Plio-Pleistocene volcano, Mt. Kenya. Most of the samples are moderately or strongly undersaturated and have 87Sr/86Sr initial ratios in the range 0.70360–0.70368 (mean=0.70362). Members of this phonolitic suite are phonolites, nepheline syenites or kenytes and as a group they show a wide variation in TiO2, FeO, P2O5, Sr, Ba, Zr and Nb. The minor and trace element geochemistry reflect variation in the nature of the parental basaltic magmas from which the phonolitic rocks evolved and variation in the crystal fractionation process in individual cases. Crystal fractionation involving plagioclase, alkali feldspar, clinopyroxene, olivine and magnetite is the process by which most of the phonolitic rocks evolved and variation in the relative proportions of these phases in individual cases has led to a broad spectrum of trace and minor element behaviour. The second suite of felsic samples is critically saturated and consists of trachytes showing either slight oversaturation or slight undersaturation with respect to SiO2. This trachyte suite has lower initial 87Sr/86Sr ratios (mean=0.70355) and is derived from transitional alkalic basalts by low pressure (crustal) crystal fractionation involving feldspar, clinopyroxene, magnetite and olivine. The range in minor and trace element chemistry observed among the felsic rocks is a consequence of variation in the parental basalts which is related to mantle source variation and to the specific nature of the crystal fractionation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号