共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
针对目前高光谱图像分类数据冗余度高,计算效率低下,且易丢失光谱信息等问题,该文提出一种可以有效地利用光谱信息通过多尺度样本熵提取图像特征的方法。先描述多尺度样本熵计算过程,并对参数进行分析,选取最优参数。在此基础上,分析多尺度样本熵曲线变化规律,设计最优多尺度样本熵特征选择方法。将选取的最优多尺度样本熵特征矢量代入支持向量机分类器(SVM),实现高光谱图像分类。将该文算法与深度特征融合网络(DFFN)算法和基于自适应波段选择(ABS)算法在PaviaU图像和Indian Pines图像上进行对比实验,并对其结果进行定量精度评价。实验结果表明,对于两组高光谱图像,该文算法在总体分类精度上分别达到了98.64%和96.49%,明显高于两种对比算法,同时在时间效率上也有了显著提升。 相似文献
3.
高光谱影像的引导滤波多尺度特征提取 总被引:1,自引:0,他引:1
为了解决高光谱遥感影像分类中单一尺度特征无法有效表达地物类间差异和区分地物边界的不足,提高影像分类精度和改善分类目视解译效果,提出了采用引导滤波提取多尺度的空间特征的方法。首先,利用主成分分析对高光谱影像进行降维,移除噪声并突出主要特征;然后,将第1主成分作为引导影像,将包含信息量最多的若干主成分分别作为输入影像,应用依次增加的滤波半径分别进行引导滤波处理提取多个尺度的特征,获得影像不同尺度的结构信息;最后,将多尺度特征输入分类器中进行影像监督分类。采用仿真数据和帕维亚大学(Pavia University)、帕维亚城区(Pavia Centre)等3幅高光谱实验数据,提取了基于引导滤波的多尺度特征、多尺度形态特征和多尺度纹理特征,输入到支持向量机、随机森林和K近邻分类器中,进行了实验。实验结果表明:采用支持向量机分类Pavia University数据,相对于采用多尺度形态特征的分类结果,引导滤波特征的总体精度提高了6.5%;Pavia Centre和Salinas两幅影像最高分类精度均由引导滤波特征实现,分别达到98.51%和98.39%。实验证实基于引导滤波提取的多尺度特征能有效地描述地物结构,进而获得更高的分类精度和改善目视解译效果。 相似文献
4.
5.
基于卷积神经网络的高光谱图像分类是当前的研究热点,先后发展了空洞卷积、可形变卷积等先进模型。然而,现有可形变卷积只在空间维偏移,忽略了高光谱图像光谱之间的差异信息。为此,本文将可形变卷积从空间维扩展到光谱维,设计了光谱可形变卷积,提出了光谱可形变卷积网络SDCNN (Spectral Deformable Convolutional Neural Network)。首先,利用全连接层学习光谱可形变卷积的偏移量,采用线性差值对图像光谱维进行特征校准;其次,采用多层1×1卷积进行光谱维特征聚合;最后,使用三维卷积层提取光谱—空间联合特征。不同于空间可形变卷积,光谱可形变卷积只在光谱维上进行偏移,可以为不同类别选择更合适的特征波段,提升模型的判别性。在国际通用测试数据Indian Pines、University of Pavia以及University of Houston上进行了实验,结果表明:本文提出的SDCNN方法优于其他深度学习方法,在相同样本条件下取得了更高的分类精度,总体精度达到了98.86%(Indian Pines,10%/类)、99.81%(University of P... 相似文献
6.
7.
针对高光谱图像分类中对光谱信息利用不足的问题,提出一种基于卷积神经网络在光谱域开展的分类算法。该算法通过构建五层网络结构,逐像素对光谱信息开展分析,将全光谱段集合作为输入,利用神经网络展开代价函数值的计算,实现对光谱特征的提取与分类。实验中采用三组高光谱遥感影像数据进行对比分析,以India Pines数据集为例,提出的基于卷积神经网络的分类方法的分类正确率达到90.16%,比RBF-SVM方法高出2.56%,相比三种传统的深度学习方法高出1%~3%,训练速度也较为理想。实验结果表明,本文所提出的算法充分利用了高光谱图像中逐像素点的光谱域信息,能够有效提高分类正确率。与传统学习算法相比,在较少训练样本的情况下,更能发挥其良好的分类性能。 相似文献
8.
为了实现地物精准分类,需要有效地提取与分析高光谱遥感图像中丰富的空—谱信息。提出一种适用于高光谱遥感图像分类的变异系数与卷积神经网络相结合(CV-CNN)的方法。这种新方法引入变异系数的思想来衡量高光谱遥感图像不同波段之间的相似性和差异性,从而提出类间变异系数(CVIE)和类内变异系数(CVIA)的概念。通过计算(CVIE)~2/CVIA的值来剔除高光谱遥感图像中的低效波段,然后提取每个像素的空一谱信息,并对其进行2维矩阵化操作,转化为便于卷积神经网络(CNN)输入的灰度图像,最后采用自行构建的适合于高光谱遥感图像分类的CNN模型进行分类。Indian Pines和Pavia University两组数据的实验结果表明,该方法在两种数据集下的总体精度分别达到98.69%和99.66%,有效地改善了高光谱遥感图像的分类精度。 相似文献
9.
针对遥感多光谱影像处理,提出一种立足于多尺度像斑模型,应用数据挖掘中的特征构造来实现跨尺度特征构造的方法,将最佳尺度选择问题隐含在特征构造中,而不直接进行最佳尺度选择.从而在区分地物方面更加准确,分类精度更高. 相似文献
10.
高光谱影像特征的利用率对提高其分类精度具有重要意义。为充分利用影像的特征,提出了一种特征重标定网络的高光谱影像分类方法。该方法通过全局平均池化将特征图转换为具有全局信息的实数,利用全连接层与非线性层生成能够代表各通道相对重要性的权值,进而采取加权法完成初始特征的重标定。为验证该方法的有效性,选取PaviaU和KSC两组高光谱影像数据进行实验。结果表明,提出方法总体分类精度分别达到98.38%和95.61%,可为高光谱影像提供有效的类别判定特征,有助于提高影像分类精度并获取平滑的分类结果图。 相似文献
11.
12.
高光谱遥感图像的监督分类 总被引:1,自引:0,他引:1
图像分类是高光谱遥感图像分析与应用的重要手段。总结了目前用于高光谱图像监督分类的主要方法,包括最小距离法、最大似然法、神经元网络法和支持向量机法,分析了上述方法的特点,并探讨了高光谱遥感图像分类方法的发展趋势。 相似文献
13.
提出了一种光谱相似性测度用于高光谱图像分类方法。通过将光谱向量进行归一化处理,将计算得到的欧氏距离与光谱角余弦的值域归化到相同区间,得到光谱角余弦与欧氏距离联合测度值(SAC-NED)。在对图像像元进行分类时,以距离加权的方式将邻域像元参与中心像元SAC-NED值的计算,将像元分到SAC-NED值最大的类别。通过与其他5种常用相似性测度方法的实验结果对比表明:该算法能够提升高光谱图像分类的准确性和稳定性。 相似文献
14.
提高混合像元线性分解精度的一个关键点在于改善端元光谱矩阵的构成。本文提出一种基于光谱多尺度分割特征的混合像元分解方法。首先在分割段内离差平方和最小准则下,对高光谱影像的光谱进行多尺度分割,并以各分割段中对应像元的光谱平均值为光谱特征,最后以限制性的最小二乘方法估计出混合像元的组分。模拟与真实数据的实验结果表明,本文方法能够较大的提高遥感影像混合像元的分解精度,并且优于光谱维小波特征的分解。 相似文献
15.
16.
基于BP神经网络高光谱图像分类研究 总被引:1,自引:0,他引:1
遥感影像常常存在"异物同谱"现象,影响了遥感影像的分类精度。为了提高分类精度,本文提出了基于BP神经网络的分类算法。采用环境一号卫星HJ-1A星上搭载的超光谱成像仪(HSI)获取的高光谱数据,利用BP神经网络对黄岛区进行遥感图像分类,根据得到的分类结果对原图像进行"异物同谱"现象纠正后重新选取训练样本,然后利用BP神经网络再分类,从而有效解决了"异物同谱"现象。实验结果表明,经处理后的高光谱影像的分类精度得到显著提高,分类总体精度为92.386 5%,比异物同谱纠正前提高了7.83%,Kappa系数也从0.768 2提升到了0.885 8。 相似文献
17.
联合空-谱信息的高光谱影像深度三维卷积网络分类 总被引:2,自引:2,他引:2
针对高光谱影像分类高维和小样本的特点,提出一种基于深度三维卷积神经网络的高光谱影像分类方法。首先,该方法直接以高光谱数据立方体为输入,利用三维卷积操作提取高光谱数据立方体的三维空-谱特征。然后,利用残差学习构建深层网络,提取更高层次的特征表达,以提高分类精度。最后,采用Dropout正则化方法防止过拟合。利用Pavia大学、Indian Pines和Salinas 3组高光谱数据进行试验验证,结果表明,与支持向量机和现有的基于深度学习的高光谱影像分类方法相比,该方法能有效提高高光谱影像的地物分类精度。 相似文献
18.
卷积神经网络CNN(Convolutional Neural Networks)具有强大的特征提取能力,应用于高光谱图像特征提取取得了良好的效果,双通道CNN模型能够分别提取高光谱图像的光谱特征和空间特征,并实现了特征的决策级融合。局部二值模式LBP(Local Binary Patterns)是一种简单但有效的空间特征描述算子,能够减轻CNN特征提取的压力并提高分类精度。为了充分利用CNN的特征提取能力及LBP特征的判别能力,提出一种双通道CNN和LBP相结合的高光谱图像分类方法,首先,采用1维CNN(1D-CNN)模型处理原始高光谱数据提取深层光谱特征,同时采用另一个1D-CNN模型处理LBP特征数据进一步提取深层空间特征,然后,将两个CNN模型的全连接层进行连接,实现深层光谱特征和空间特征的融合,并将融合特征输入到分类层中完成分类。实验结果表明,该方法在Indian Pines数据、Pavia University数据及Salinas数据上能够分别取得98.54%、99.73%、99.56%的分类精度,甚至在有限数量的训练样本条件下也能取得较好的分类效果。 相似文献
19.
随着遥感技术的发展,以及对湿地分类研究的不断深入,如何提高分类精度成为一大研究方向。分类方法、影像数据源、影像的特征提取都影响着分类结果的精度。目前,利用影像数据进行湿地分类,精度难以提高主要是受影像像源的制约,其中,不同湿地类型波谱特性之间的混淆是制约精度提高的直接原因。高光谱(Hyperspectral)遥感是20世纪末对地观测系统中较重要的技术突破之一,随着定量化研究的发展,高光谱遥感技术以其光谱分辨率较高的特点受到国内外广泛关注,并在资源、环境、城市、生态等领域得到了广泛应用。本文比较了湿地分类中hyperion的数据与landset TM数据的分类精度。在进行分类时,使用监督分类的方法(SVM)对南京新济州、新生州、江心洲的湿地地物类型进行分类。结果表明,在训练样本合适的前提下,用高光谱数据进行分类可以得到更高的分类精度。 相似文献
20.
高光谱图像分类将每个像素分类至预设的地物类别,对环境测绘等各类地球科学任务有着至关重要的意义。近年来,学者们尝试利用深度学习框架进行高光谱图像分类,取得了令人满意的效果。然而这些方法在光谱特征的提取上仍存在一定缺陷。本文提出一个基于自注意力机制的层级融合高光谱图像分类框架(hierarchical self-attention network, HSAN)。首先,构建跳层自注意力模块进行特征学习,利用Transformer结构中的自注意力机制捕获上下文信息,增强有效信息贡献。然后,设计层级融合方式,进一步缓解特征学习过程中的有效信息损失,增强各层级特征联动。在Pavia University及Houston2013数据集上的试验表明,本文提出的框架相较于其他高光谱图像分类框架具有更好的分类性能。 相似文献