首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have investigated the structural and dynamical properties of triaxial stellar systems whose surface brightness profiles follow the   r 1/ n   luminosity law – extending the analysis by Ciotti, who explored the properties of spherical   r 1/ n   systems. A new analytical expression that accurately reproduces the spatial (i.e., deprojected) luminosity density profiles (error less than 0.1 per cent) is presented for detailed modelling of the Sérsic family of luminosity profiles. We evaluate both the symmetric and the non-axisymmetric components of the gravitational potential and force, and compute the torques as a function of position. For a given triaxiality, stellar systems with smaller values of n have a greater non-axisymmetric gravitational field component . We also explore the strength of the non-axisymmetric forces produced by bulges with differing n and triaxiality on systems having a range of bulge-to-disc ratios. The increasing disc-to-bulge ratio with increasing galaxy type (decreasing n ) is found to greatly reduce the amplitude of the non-axisymmetric terms, and therefore reduce the possibility that triaxial bulges in late-type systems may be the mechanism or perturbation for non-symmetric structures in the disc.
Using seeing-convolved   r 1/ n   -bulge plus exponential-disc fits to the K -band data from a sample of 80 nearby disc galaxies, we probe the relations between galaxy type, Sérsic index n and the bulge-to-disc luminosity ratio. These relations are shown to be primarily a consequence of the relation between n and the total bulge luminosity. In the K band, the trend of decreasing bulge-to-disc luminosity ratio along the spiral Hubble sequence is predominantly, though not entirely, a consequence of the change in the total bulge luminosity; the trend between the total disc luminosity and Hubble type is much weaker.  相似文献   

3.
I present a method to deproject the observed intensity profile of an axisymmetric bulge with arbitrary flattening to derive the three-dimensional luminosity density profile, and to calculate the contribution of the bulge to the rotation curve. I show the rotation curves for a family of fiducial bulges with Sérsic surface brightness profiles and with various concentrations and intrinsic axis ratios. Both parameters have a profound impact on the shape of the rotation curve. In particular, I show how the peak rotation velocity, as well as the radius where it is reached, depends on both parameters.
I also discuss the implications of the flattening of a bulge for the decomposition of a rotation curve and use the case of NGC 5533 to show the errors that result from neglecting it. For NGC 5533, neglecting the flattening of the bulge leads to an overestimate of its mass-to-light ratio by approximately 30 per cent and an underestimate of the contributions from the stellar disc and dark matter halo in the regions outside the bulge-dominated area.  相似文献   

4.
We investigate the orbital structure in a class of three-dimensional (3D) models of barred galaxies. We consider different values of the pattern speed, of the strength of the bar and of the parameters of the central bulge of the galactic model. The morphology of the stable orbits in the bar region is associated with the degree of folding of the x1 characteristic. This folding is larger for lower values of the pattern speed. The elongation of rectangular-like orbits belonging to x1 and to x1-originated families depends mainly on the pattern speed. A detailed investigation of the trees of bifurcating families in the various models shows that major building blocks of 3D bars can be supplied by families initially introduced as unstable in the system, but becoming stable at another energy interval. In some models without radial and vertical 2:1 resonances we find, except for the x1 and x1-originated families, also families related to the z -axis orbits, which support the bar. Bifurcations of the x2 family can build a secondary 3D bar along the minor axis of the main bar. This is favoured in the slowly rotating bar case.  相似文献   

5.
6.
7.
8.
In this series of papers we investigate the orbital structure of three-dimensional (3D) models representing barred galaxies. In the present introductory paper we use a fiducial case to describe all families of periodic orbits that may play a role in the morphology of three-dimensional bars. We show that, in a 3D bar, the backbone of the orbital structure is not just the x1 family, as in two-dimensional (2D) models, but a tree of 2D and 3D families bifurcating from x1. Besides the main tree we have also found another group of families of lesser importance around the radial 3:1 resonance. The families of this group bifurcate from x1 and influence the dynamics of the system only locally. We also find that 3D orbits elongated along the bar minor axis can be formed by bifurcations of the planar x2 family. They can support 3D bar-like structures along the minor axis of the main bar. Banana-like orbits around the stable Lagrangian points build a forest of 2D and 3D families as well. The importance of the 3D x1-tree families at the outer parts of the bar depends critically on whether they are introduced in the system as bifurcations in z or in   z˙   .  相似文献   

9.
The complex-shift method is applied to the Kuzmin–Toomre family of discs to generate a family of non-axisymmetric flat distributions of matter. These are then superposed to construct non-axisymmetric flat rings. We also consider triaxial potential–density pairs obtained from these non-axisymmetric flat systems by means of suitable transformations. The use of the imaginary part of complex-shifted potential–density pairs is also discussed.  相似文献   

10.
11.
12.
13.
We study the dynamical interactions of mass systems in equilibrium under their own gravity that mutually exert and ex‐perience gravitational forces. The method we employ is to model the dynamical evolution of two isolated bars, hosted within the same galactic system, under their mutual gravitational interaction. In this study, we present an analytical treatment of the secular evolution of two bars that oscillate with respect to one another. Two cases of interaction, with and without geometrical deformation, are discussed. In the latter case, the bars are described as modified Jacobi ellipsoids. These triaxial systems are formed by a rotating fluid mass in gravitational equilibrium with its own rotational velocity and the gravitational field of the other bar. The governing equation for the variation of their relative angular separation is then numerically integrated, which also provides the time evolution of the geometrical parameters of the bodies. The case of rigid, non‐deformable, bars produces in some cases an oscillatory motion in the bodies similar to that of a harmonic oscillator. For the other case, a deformable rotating body that can be represented by a modified Jacobi ellipsoid under the influence of an exterior massive body will change its rotational velocity to escape from the attracting body, just as if the gravitational torque exerted by the exterior body were of opposite sign. Instead, the exchange of angular momentum will cause the Jacobian body to modify its geometry by enlarging its long axis, located in the plane of rotation, thus decreasing its axial ratios. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We study the dynamics of a model for the late-type barred-spiral galaxy NGC 3359 by using both observational and numerical techniques. The results of our modelling are compared with photometric and kinematical data. The potential used is estimated directly from observations of the galaxy. It describes with a single potential function, a barred-spiral system with an extended spiral structure. Thus, the study of the dynamics in this potential has an interest by itself. We apply orbital theory and response models for the study of the stellar component, and smoothed particle hydrodynamics for modelling the gas. In particular, we examine the pattern speed of the system and the orbital character (chaotic or ordered) of the spiral arms. We conclude that the spiral pattern rotates slowly, in the sense that its corotation is close to or even beyond the end of the arms. Although a single, slow pattern speed could, under certain assumptions, characterize the whole disc, the comparison with the observational data indicates that probably the bar and the spirals have different angular velocities. In our two pattern speeds model, the best fit is obtained with a bar ending close to its 4:1 resonance and a more slowly rotating spiral. Assuming an 11 Mpc distance to the galaxy, a match of our models with the observed data indicates a pattern speed of about  39 km s−1 kpc−1  for the bar and about  15 km s−1 kpc−1  for the spiral. We do not find any indication for a chaotic character of the arms in this barred-spiral system. The flow in the region of the spirals can best be described as a regular 'precessing-ellipses flow'.  相似文献   

15.
We have tested the applicability of the global modal approach in the density wave theory of spiral structure for a sample of spiral galaxies with measured axisymmetric background properties. We report here the results of the simulations for four galaxies: NGC 488, NGC 628, NGC 1566, and NGC 3938. Using the observed radial distributions for the stellar velocity dispersions and the rotation velocities we have constructed the equilibrium models for the galactic disks in each galaxy and implemented two kinds of stability analyses - the linear global analysis and 2D-nonlinear simulations. In general, the global modal approach is able to reproduce the observed properties of the spiral arms in the galactic disks. The growth of spirals in the galactic disks can be physically understood in terms of amplification by over-reflection at the corotation resonance. Our results support the global modal approach as a theoretical explanation of spiral structure in galaxies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
This paper explores the phenomenon of energy relaxation for stars in a galaxy embedded in a high-density environment that is subjected continually to perturbations reflecting the presence of other nearby galaxies and/or incoherent internal pulsations. The analysis is similar to earlier analyses of energy relaxation induced by binary encounters between nearby stars and between stars and giant molecular clouds in that the perturbations are idealized as a sum of near-random events which can be modelled as diffusion and dynamical friction. However, the analysis differs in one important respect: because the time-scale associated with these perturbations need not be short compared with the characteristic dynamical time t D for stars in the original galaxy, the diffusion process cannot be modelled as resulting from a sequence of instantaneous kicks, i.e. white noise. Instead, the diffusion is modelled as resulting from random kicks of finite duration, i.e. coloured noise, characterized by a non-zero autocorrelation time t c. A detailed analysis of coloured noise generated by sampling an Ornstein–Uhlenbeck process leads to a simple scaling in terms of t c and an effective diffusion constant D . Interpreting D and t c following early work by Chandrasekhar (the 'nearest neighbour approximation') implies that, for realistic choices of parameter values, energy relaxation associated with an external environment and/or internal pulsations could be important on times short compared with the age of the Universe.  相似文献   

17.
18.
19.
We present a method for recovering the distribution functions of edge-on thin axisymmetric discs directly from their observable kinematic properties. The most generally observable properties of such a stellar system are the line-of-sight velocity distributions of the stars at different projected radii along the galaxy. If the gravitational potential is known, then the general two-integral distribution function can be reconstructed using the shapes of the high-velocity tails of these line-of-sight distributions. If the wrong gravitational potential is adopted, then a distribution function can still be constructed using this technique, but the low-velocity parts of the observed velocity distributions will not be reproduced by the derived dynamical model. Thus, the gravitational potential is also tightly constrained by the observed kinematics.  相似文献   

20.
We investigate the morphological relation between the orbits of the central family of periodic orbits ( x 1 family) and the bar itself using models of test particles moving in a barred potential. We show that different bar morphologies may have as a backbone the same set of x 1 periodic orbits. We point out that by populating initially axisymmetric stellar discs exponentially with test particles in circular, or almost circular motion, we may end up with a response bar which reveals a shape different in crucial details from that of the individual stable x 1 orbits. For example, a bar model in which the x 1 orbits are pure ellipses may have a much more complicated response morphology. This depends on the particular invariant curves around x 1, which are populated in each model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号