首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Binary or dual active galactic nuclei (DAGN) are expected from galaxy formation theories. However, confirmed DAGN are rare and finding these systems has proved to be challenging. Recent systematic searches for DAGN using double-peaked emission lines have yielded several new detections, as have the studies of samples of merging galaxies. In this paper, we present an updated list of DAGN compiled from published data. We also present preliminary results from our ongoing Expanded Very Large Array (EVLA) radio study of eight double-peaked emission-line AGN (DPAGN). One of the sample galaxy shows an S-shaped radio jet. Using new and archival data, we have successfully fitted a precessing jet model to this radio source. We find that the jet precession could be due to a binary AGN with a super-massive black-hole (SMBH) separation of \(\sim \) 0.02 pc or a single AGN with a tilted accretion disk. We have found that another sample galaxy, which is undergoing a merger, has two radio cores with a projected separation of 5.6 kpc. We discuss the preliminary results from our radio study.  相似文献   

4.
Black holes release energy via the production of photons in their accretion discs but also via the acceleration of jets. We investigate the relative importance of these two paths over cosmic time by determining the mechanical luminosity function (LF) of radio sources and by comparing it to a previous determination of the bolometric LF of active galactic nuclei (AGN) from X-ray, optical and infrared observations. The mechanical LF of radio sources is computed in two steps: the determination of the mechanical luminosity as a function of the radio luminosity and its convolution with the radio LF of radio sources. Even with the large uncertainty deriving from the former, we can conclude that the contribution of jets is unlikely to be much larger than ∼10 per cent of the AGN energy budget at any cosmic epoch.  相似文献   

5.
In this paper, we extend the study of instabilities in flows driven by the radiation pressure of an ionizing continuum to flows that are not plane parallel. It is well known that the plane-parallel instability leads eventually to the formation of continuum-driven shocks backed by a sonic transition. If these structures are thin, we find that they are unstable to a corrugation mode, and evolve to form sharp-peaked triangular profiles. Once this has occurred, the thin-shock approximation is no longer valid.
We study the further development of the shocks by numerical hydrodynamic simulations. The flow tends to break up into numerous discrete bow-shaped components. The speed of these components through the upstream material is almost constant. As a result, the maximal velocity of radiatively driven shocks through the upstream gas may be determined by instabilities rather than by other physical effects. Interactions between gas in the wings of neighbouring bowshocks can, however, form subsequent generations of bowshocks that are faster and more acute than their predecessors.
One likely location where continuum-driven shocks may occur is in the broad-line regions of active nuclei. We discuss the application of our results to such flows.  相似文献   

6.
Echo mapping makes use of the intrinsic variaibility of the continuum source in active galactic nuclei to map out the distribution and kinematics of line‐emitting gas from its light travel time‐delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line‐emitting region in about three dozen AGNs. The dynamics of the line‐emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black‐hole masses in AGNs. We discuss requirements for future echo‐mapping experiments that will yield the high‐quality velocity–delay maps of the broad‐line region that are needed to determine its physical nature. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Uryson  A. V. 《Astronomy Letters》2004,30(12):816-823
Astronomy Letters - We computed the energy spectra of the incident (on an air shower array) ultrahigh-energy (E&;gt;4×1019eV) cosmic rays (CRs) that were accelerated in nearby Seyfert...  相似文献   

8.
9.
The coefficients of synchrotron emission and absorption and of Compton extinction in a gas of ultrarelativistic electrons containing a random magnetic field are represented by rapidly converging power series for a power- law distribution of electron energy having any exponent. Exact and approximate expressions are given for the frequency redistribution function. The results will be used to calculate the emission from jets of active galactic nuclei. Translated from Astrofizika, Vol. 41, No. 2. pp. 197–216, April-June, 1998.  相似文献   

10.
Rapid flux density variations on timescales of the order of a day or less (Intraday Variability, IDV) in the radio regime are a common phenomenon within the blazar class. Observations with the Effelsberg 100-m telescope of the MPIfR showed that the variations occur not only in total intensity, but also in the polarized intensity and in polarization angle. Here we present an overview of our IDV-observations and discuss briefly some models which may explain the effect.  相似文献   

11.
In this paper, we present an evolutionary unification scenario, involving supermassive black holes (SMBHs) and starbursts (SBs) with outflow (OF), that seems capable of explaining most of the observational properties (of at least part) of active galactic nuclei (AGN).
The scenario includes a nuclear/circumnuclear SB closely associated with the AGN where the narrow-line region (NLR), broad-line region (BLR) and broad absorption line (BAL) region are produced in part by the OF process with shells and in compact supernova remnants (cSNRs).
The OF process in BAL quasi-stellar objects (QSOs) with extreme infrared (IR) and Fe  ii emission is studied. In addition, the Fe  ii problem regarding the BLR of AGN is analysed. The correlations between the BAL, IR emission, Fe  ii intensity and the intrinsic properties of the AGN are not clearly understood. We suggest here that the behaviour of the BAL, IR and Fe  ii emission in AGN can be understood within an evolutionary and composite model for AGN.
In our model, strong BAL systems and Fe  ii emission are present (and intense) in young IR objects. Parameters like the BALs, IR emission, Fe  ii /Hβ intensity ratio, Fe  ii equivalent width (EW), broad-line width, [O  iii ]λ5007-Å intensity and width, NLR size, X-ray spectral slope in radio quiet (RQ) AGN plus lobe separation, and lobe to core intensity ratio in radio loud (RL) AGN are proposed to be fundamentally time-dependent variables inside time-scales of the order of 108 yr. Orientation/obscuration effects take the role of a second parameter providing the segregation between Seyfert 1/Seyfert 2 galaxies (Sy1/Sy2) and broad-/narrow-line radio galaxies (BLRG/NLRG).  相似文献   

12.
Continuum radiation from active galactic nuclei   总被引:1,自引:0,他引:1  
Summary Active galactic nuclei (AGN) can be divided into two broad classes, where the emitted continuum power is dominated either by thermal emission (radio-quiet AGN), or by nonthermal emission (blazars). Emission in the 0.01–1 m range is the primary contributor to the bolometric luminosity and is probably produced through thermal emission from an accretion disk, modified by electron scattering and general relativistic effects. The 1–1000 m continuum, the second most important contributor to the power, is generally dominated by thermal emission from dust with a range of temperatures from 40 K to 1000–2000 K. The dust is probably reemitting 0.01–0.3 m continuum emission, previously absorbed in an obscuring cone (or torus) or an extended disk. The 1–10 keV X-ray emission is rapidly variable and originates in a small region. This emission may be produced through Compton scattering by hot thermal electrons surrounding an accretion disk, although the observations are far from being definitive. The weak radio emission, which is due to the nonthermal synchrotron process, is usually elongated in the shape of jets and lobes (a core may be present too), and is morphologically distinct from the radio emission of starburst galaxies.In the blazar class, the radio through ultraviolet emission is decidedly non-thermal, and apparently is produced through the synchrotron process in an inhomogeneous plasma. The plasma probably is moving outward at relativistic velocities within a jet in which the Lorentz factor of bulk motion (typically 2–6) increases outward. This is inferred from observations indicating that the opening angle becomes progressively larger from the radio to the optical to the X-ray emitting regions. Shocks propagating along the jet may be responsible for much of the flux variability. In sources where the X-ray continuum is not a continuation of the optical-ultraviolet synchrotron emission, some objects show variability consistent with Compton scattering by relativistic electron in a large region (in BL Lacertae), while other objects produce their X-ray emission in a compact region, possibly suggesting pair production.When orientation effects are included, all AGN may be decomposed into a radio-quiet AGN, a blazar, or a combination of the two. Radio-quiet AGN appear to have an obscuring cone or torus containing the broad emission line clouds and an ionizing source. Most likely, the (non-relativistic) directional effects of this obscuring region give rise to the difference between Seyfert 1 and 2 galaxies or narrow and broad line radio galaxies. For different orientations of the nonthermal jet, relativistic Doppler boosting can produce BL Lacertae objects or FR I radio galaxies, or at higher jet luminosities, flat-spectrum high-polarization quasars or FR II radio galaxies.  相似文献   

13.
Variability of the central region in active galactic nuclei   总被引:3,自引:0,他引:3  
Summary We review implications of the observed optical and X-ray variability (periodicities and light-curves), relevant for the understanding of physical conditions in the deep interiors of active galactic nuclei. We discuss in detail kinematical, hydrodynamical, thermal and radiative transfer effects which may be responsible for observed variability patterns. We put emphasis on theoretical options which can predict basic accretion parameters, such as the mass of the central black hole, the accretion rate and the inclination angle, in terms of observable quantities. Closed analytical results are given whenever available.  相似文献   

14.
15.
16.
We consider the production of high energy neutrinos and cosmic rays in radio-quiet active galactic nuclei (AGN) or in the central regions of radio-loud AGN. We use a model in which acceleration of protons takes place at a shock in an accretion flow onto a supermassive black hole, and follow the cascade that results from interactions of the accelerated protons in the AGN environment. We use our results to estimate the diffuse high energy neutrino intensity and cosmic ray intensity due to AGN. We discuss our results in the context of high energy neutrino telescopes under construction, and measurements of the cosmic ray composition in the region of the “knee” in the energy spectrum at 107 GeV.  相似文献   

17.
A total of 235 active galactic nuclei (AGN) from two different soft X-ray surveys [the ROSAT Deep Survey (DRS) and the ROSAT International X-ray Optical Survey (RIXOS)] with redshifts between 0 and 3.5 are used to study the clustering of X-ray selected AGN and its evolution. A 2σ significant detection of clustering of such objects is found on scales < 40–80 h −1 Mpc in the RIXOS sample, while no clustering is detected on any scales in the DRS sample. Assuming a single power-law model for the spatial correlation function (SCF), quantitative limits on the AGN clustering have been obtained: a comoving correlation length 1.5 ≲  r 0 ≲ 3.3  h −1 Mpc is implied for comoving evolution, while 1.9 ≲  r 0 ≲ 4.8 for stable clustering and 2.2 ≲  r 0 ≲ 5.5 for linear evolution. These values are consistent with the correlation lengths and evolutions obtained for galaxy samples, but imply smaller amplitude or faster evolution than recent ultraviolet and optically selected AGN samples. We also constrain the ratio of bias parameters between X-ray selected AGN and IRAS galaxies to be ≲ 1.7 on scales ≲ 10  h −1 Mpc, a somewhat smaller value than is inferred from local large-scale dynamical studies.  相似文献   

18.
19.
A high density of massive dark objects (MDOs), probably supermassive black holes, in the centres of nearby galaxies has been inferred from recent observations. There are various indications that much of the accretion responsible for producing these objects took place in dust-enshrouded active galactic nuclei (AGNs). If so, then measurements of the intensity of background radiation and the source counts in the far-infrared and submillimetre wavebands constrain the temperature of dust in these AGNs. An additional constraint comes from the hard X-ray background, if this is produced by accretion. One possibility is that the dust shrouds surrounding the accreting AGNs are cold, about 30 K. In this event, the dusty AGNs could be some subset of the population of luminous distant sources discovered at 850 μm using the SCUBA array on the James Clerk Maxwell Telescope, as proposed by Almaini, Lawrence & Boyle. An alternative is that the dust shrouds surrounding the accreting AGNs are much hotter (>60 K). These values are closer to the dust temperatures of a number of well-studied low-redshift ultraluminous galaxies that are thought to derive their power from accretion. If the local MDO density is close to the maximum permitted, then cold sources cannot produce this density without the submillimetre background being overproduced if they accrete at high radiative efficiency, and thus a hot population is required. If the dust-enshrouded accretion occurred at similar redshifts to that taking place in unobscured optical quasars, then a significant fraction of the far-infrared background radiation measured by COBE at 140 μm, but very little of the submillimetre background at 850 μm, may have been produced by hot dust-enshrouded AGNs which may have already been seen in recent Chandra X-ray surveys.  相似文献   

20.
An explanation for the soft X-ray excess in active galactic nuclei   总被引:1,自引:0,他引:1  
We present a large sample of type 1 active galactic nuclei (AGN) spectra taken with XMM–Newton , and fit them with both the conventional model (a power law and blackbody) and the relativistically blurred photoionized disc reflection model of Ross & Fabian. We find that the disc reflection model is a better fit. The disc reflection model successfully reproduces the continuum shape, including the soft excess, of all the sources. The model also reproduces many features that would conventionally be interpreted as absorption edges. We are able to use the model to infer the properties of the sources, specifically that the majority of black holes in the sample are strongly rotating, and that there is a deficit in sources with an inclination >70°. We conclude that the disc reflection model is an important tool in the study of AGN X-ray spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号