首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We explore the nature of X-ray sources with  70 μm  counterparts selected in the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) fields: ELAIS-N1, Lockman Hole and Chandra Deep Field South, for which Chandra X-ray data are available. A total of 28 X-ray/  70 μm  sources in the redshift interval  0.5 < z < 1.3  are selected. The X-ray luminosities and the shape of the X-ray spectra show that these sources are active galactic nuclei (AGN). Modelling of the optical to far-infrared (IR) spectral energy distribution indicates that most of them (27/28) have a strong starburst component  (>50 M yr−1)  that dominates in the IR. It is found that the X-ray and IR luminosities of the sample sources are broadly correlated, consistent with a link between AGN activity and star formation. Contrary to the predictions of some models for the co-evolution of AGN and galaxies, the X-ray/  70 μm  sources in the sample are not more obscured at X-ray wavelengths compared to the overall X-ray population. It is also found that the X-ray/  70 μm  sources have lower specific star formation rates compared to the general  70 μm  population, consistent with AGN feedback moderating the star formation in the host galaxies.  相似文献   

4.
We present near-infrared observations of a sample of mainly interacting ultraluminous infrared galaxies, comprising H - and K -band spectra. Our main aims are to investigate the power source of these extremely luminous objects and the various excitation mechanisms of the strong molecular hydrogen emission often seen in such objects. Broadened emission lines were only detected in one object, IRAS 23498, consistent with the previous results for this galaxy. The [Si  vi ] emission line was detected in IRAS 17179 and 20210, both classified as Sy2s. Two of the samples were unclassified, IRAS 00150 and 23420, which exhibit neither [Si  vi ] emission nor broadened H  i emission. However this does not rule out the presence of an obscured AGN. Analysis of the molecular hydrogen emission showed that the major excitation mechanism for most objects was thermal. Modelling of the more luminous objects indicates that for IRAS 20210 10 per cent, and for both IRAS 23365 and IRAS 23420 30 per cent, of the 1–0 S(1) line emission has a non-thermal origin.  相似文献   

5.
6.
7.
8.
We present 0.5-arcsec-resolution near-infrared images of six ultraluminous infrared galaxies with known redshifts. Six of the eight bright nuclei are resolved on kiloparsec scales, suggesting that there is significant circumnuclear star formation or close progenitor nuclei. At this spatial resolution, the nuclei have very red colours that cannot in general be reproduced by reddening stellar light, but require an additional component of hot dust emission. In five of the six primary nuclei more than 20 per cent of the K -band continuum originates in hot dust, but the temperature cannot be determined by JHK broad-band colours alone. Comparison with the spectral shapes, however, does allow the temperature to be constrained, and we find in every case that it is at the upper end of the permissible range, ≳1000 K. This does not necessarily imply that there is an active galactic nucleus present, since there is evidence that stellar processes can also generate dust this hot via stochastic heating of small grains. The quantities of hot dust we have found here can make up to 0.5-mag difference to the K -band magnitude even at     , with implications for observations and population synthesis models of higher-redshift objects. Observations in the L or M bands, where hot dust is most important at     , could help to discriminate between models of dusty starbursts and ellipticals.  相似文献   

9.
The dust‐to‐gas ratios in three different samples of luminous, ultraluminous, and hyperluminous infrared galaxies are calculated by modelling their radio to soft X‐ray spectral energy distributions (SED) using composite models which account for the photoionizing radiation from H II regions, starbursts, or AGNs, and for shocks. The models are limited to a set which broadly reproduces the mid‐IR fine structure line ratios of local, IR bright, starburst galaxies. The results show that two types of clouds contribute to the IR emission. Those characterized by low shock velocities and low preshock densities explain the far‐IR dust emission, while those with higher velocities and densities contribute to the mid‐IR dust emission. Clouds with shock velocities of 500 km s–1 prevail in hyperluminous infrared galaxies. An AGN is found in nearly all of the ultraluminous infrared galaxies and in half of the luminous infrared galaxies of the sample. High IR luminosities depend on dust‐to‐gas ratios as high as ∼0.1 by mass, however most hyperluminous IR galaxies show dustto‐gas ratios much lower than those calculated for the luminous and ultraluminous IR galaxies. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
It has been claimed by Taylor et al. that the low-redshift end of the K – z relation for radio galaxies is too bright by about half a magnitude owing to contributions from the obscured quasar nuclei. Such a result has major implications for the use of the K -band Hubble diagram in understanding the cosmological evolution of radio galaxies. In this paper we present 1–5-μm imaging data of a nearly complete sample of low-redshift radio galaxies; this approach allows us to determine accurately the strengths of any unresolved nuclear components in the galaxies. We detect nuclear sources in five targets, whose broad-band colours are consistent with reddened quasar spectra. In all the five cases the ratio of the inferred intrinsic near-infrared luminosity to the narrow-line luminosity is typical of quasars. We find a correlation between the inferred nuclear extinction and core-to-lobe ratio, which places constraints on the geometry of the torus. We find evidence for a shift of the K – z relation to fainter magnitudes, but by a much smaller amount (∼0.1 mag) than determined by Taylor et al. Under the assumption that the nuclear sources in radio galaxies have the same intrinsic near-infrared spectra as quasars, our multiwavelength images allow us to limit any possible shift to less than 0.3 mag.  相似文献   

11.
We present a quantitative estimate of the relative active galactic nucleus (AGN)/starburst content in a sample of 59 nearby  ( z < 0.15)  infrared bright ultraluminous infrared galaxies (ULIRGs) taken from the 1-Jy sample, based on infrared L -band (3–4 μm) spectra. By using diagnostic diagrams and a simple deconvolution model, we show that at least 60 per cent of local ULIRGs contain an active nucleus, but the AGN contribution to the bolometric luminosity is relevant only in  ∼15–20  per cent of the sources. Overall, ULIRGs appear to be powered by the starburst process, responsible for >85 per cent of the observed infrared luminosity. The subsample of sources optically classified as low-ionization nuclear emission-line regions (LINERs; 31 objects) shows a similar AGN/starburst distribution as the whole sample, indicating a composite nature for this class of objects. We also show that a few ULIRGs, optically classified as starbursts, have L -band spectral features suggesting the presence of a buried AGN.  相似文献   

12.
13.
We present high spatial resolution X-ray Chandra HRC and HST WFPC2 H α observations of the prototypical infrared-luminous galaxy NGC 6240. The central region of this system shows a remarkably complex morphology, with filaments and loops observed in the optical and X-rays. The total X-ray luminosity is dominated by the extended emission. Both nuclei are clearly detected in the HRC image and both appear to be extended. The energetics of the nuclei imply that the southern nucleus is the more plausible counterpart to the obscured active galactic nucleus. The overall spectral energy distribution of the galaxy is in good agreement with a blend of starburst and AGN components that have similar bolometric luminosities,   L bol∼5×1045 erg s-1  , with the starburst dominating the observed continuum in the near-infrared ( K band), optical and soft X-ray bands.  相似文献   

14.
15.
The characteristics of the starburst galaxies from the Pico dos Dias survey (PDS) are compared with those of the nearby ultraviolet (UV) bright Markarian starburst galaxies, having the same limit in redshift ( v h < 7500 km s−1) and absolute B magnitude ( MB < −18). An important difference is found: the Markarian galaxies are generally undetected at 12 and 25 μm in IRAS . This is consistent with the UV excess shown by these galaxies and suggests that the youngest star-forming regions dominating these galaxies are relatively free of dust.
The far-infrared selection criteria for the PDS are shown to introduce a strong bias towards massive (luminous) and large size late-type spiral galaxies. This is contrary to the Markarian galaxies, which are found to be remarkably rich in smaller size early-type galaxies. These results suggest that only late-type spirals with a large and massive disc are strong emitters at 12 and 25 μm in IRAS in the nearby Universe.
The Markarian and PDS starburst galaxies are shown to share the same environment. This rules out an explanation of the differences observed in terms of external parameters. These differences may be explained by assuming two different levels of evolution, the Markarian being less evolved than the PDS galaxies. This interpretation is fully consistent with the disc formation hypothesis proposed by Coziol et al. to explain the special properties of the Markarian SBNG.  相似文献   

16.
17.
18.
19.
We present an X-ray spectroscopic study of the prototype far-infrared galaxy NGC 6240 from ASCA . The soft X-ray spectrum (below 2 keV) shows clear signatures of thermal emission well described by a multitemperature optically thin plasma, which probably originates in a powerful starburst. Strong hard X-ray emission is also detected with ASCA and its spectrum above 3 keV is extremely flat with a prominent iron K line complex, very similar to that seen in the Seyfert 2 galaxy NGC 1068 but about an order of magnitude more luminous ( L 3−10keV ≈ 1.4 × 1042 erg s−1). The hard X-ray spectrum indicates that only reflected X-rays of an active galactic nucleus (AGN) buried in a heavy obscuration ( N H > 2 × 1024 cm−2) are visible. This is evidence for an AGN in NGC 6240, emitting possibly at a quasar luminosity (∼ 1045 erg s−1), and suggests its significant contribution to the far-infrared luminosity.  相似文献   

20.
We study the central (inner few hundred parsecs) stellar populations of four starburst galaxies (NGC 34, 1614, 3310 and 7714) in the near-infrared (NIR), from 0.8 to 2.4 μm, by fitting combinations of stellar population models of various ages and metallicities. The NIR spectra of these galaxies feature many absorption lines. For the first time, we fit simultaneously as much as 15 absorption features in the NIR. The observed spectra are best explained by stellar populations containing a sizable amount (20–56 per cent by mass) of ∼1-Gyr-old stellar population with thermally pulsing asymptotic giant branch stars. We found that the metallicity of the stars which dominates the light is solar. Metallicities substantially different from solar give a worse fit. Though the ages and metallicities we estimate using the NIR spectroscopy are in agreement with values from the literature based on the ultraviolet/optical, we find older ages and a larger age spread. This may be due to the fact that the optical is mostly sensitive to the last episode of star formation, while the NIR better maintains the record of previous stellar generations. Another interesting result is that the reddening estimated from the whole NIR spectrum is considerably lower than that based on emission lines. Finally, we find a good agreement of the free emission-line spectrum with photoionization models, using as input spectral energy distribution the synthetic composite template we derived as best fit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号