首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 506 毫秒
1.
Experiments in the systems diopside-albite (Di-Ab) and diopside-albite-dolomite (Di-Ab-Dmt), doped with a wide range of trace elements, have been used to characterise the difference between clinopyroxene-silicate melt and clinopyroxene-carbonate melt partitioning. Experiments in Di-Ab-Dmt yielded clinopyroxene and olivine in equilibrium with CO2-saturated dolomitic carbonate melt at 3 GPa, 1375 °C. The experiments in Di-Ab were designed to bracket those conditions (3 GPa, 1640 °C and 0.8 GPa, 1375 °C), and so minimise the contribution of differential temperature and pressure to partitioning. Partition coefficients, determined by SIMS analysis of run products, differ markedly for some elements between Di-Ab and Di-Ab-Dmt systems. Notably, in the carbonate system clinopyroxene-melt partition coefficients for Si, Al, Ga, heavy REE, Ti and Zr are higher by factors of 5 to 200 than in the silicate system. Conversely, partition coefficients for Nb, light REE, alkali metals and alkaline earths show much less fractionation (<3). The observed differences compare quantitatively with experimental data on partitioning between immiscible carbonate and silicate melts, indicating that changes in melt chemistry provide the dominant control on variation in partition coefficients in this case. The importance of melt chemistry in controlling several aspects of element partitioning is discussed in light of the energetics of the partitioning process. The compositions of clinopyroxene and carbonate melt in our experiments closely match those of near-solidus melts and crystals in CMAS-CO2 at 3 GPa, suggesting that our partition coefficients have direct relevance to melting of carbonated mantle lherzolite. Melts so produced will be characterised by elevated incompatible trace element concentrations, due to the low degrees of melting involved, but marked depletions of Ti and Zr, and fractionated REE patterns. These are common features of natural carbonatites. The different behaviour of trace elements in carbonate and silicate systems will lead to contrasted styles of trace element metasomatism in the mantle. Received: 15 July 1999 / Accepted: 18 February 2000  相似文献   

2.
The distribution of rare earth elements (REE) between clinopyroxene (cpx) and basaltic melt is important in deciphering the processes of mantle melting. REE and Y partition coefficients from a given cpx-melt partitioning experiment can be quantitatively described by the lattice strain model. We analyzed published REE and Y partitioning data between cpx and basaltic melts using the nonlinear regression method and parameterized key partitioning parameters in the lattice strain model (D 0, r 0 and E) as functions of pressure, temperature, and compositions of cpx and melt. D 0 is found to positively correlate with Al in tetrahedral site (Al T ) and Mg in the M2 site (MgM2) of cpx and negatively correlate with temperature and water content in the melt. r 0 is negatively correlated with Al in M1 site (AlM1) and MgM2 in cpx. And E is positively correlated with r 0. During adiabatic melting of spinel lherzolite, temperature, Al T , and MgM2 in cpx all decrease systematically as a function of pressure or degree of melting. The competing effects between temperature and cpx composition result in very small variations in REE partition coefficients along a mantle adiabat. A higher potential temperature (1,400°C) gives rise to REE partition coefficients slightly lower than those at a lower potential temperature (1,300°C) because the temperature effect overwhelms the compositional effect. A set of constant REE partition coefficients therefore may be used to accurately model REE fractionation during partial melting of spinel lherzolite along a mantle adiabat. As cpx has low Al and Mg abundances at high temperature during melting in the garnet stability field, REE are more incompatible in cpx. Heavy REE depletion in the melt may imply deep melting of a hydrous garnet lherzolite. Water-dependent cpx partition coefficients need to be considered for modeling low-degree hydrous melting.  相似文献   

3.
The partitioning of the rare earth elements between a peraluminous monzogranitic melt and a chloride-bearing, sulfur- and carbon dioxide-free, aqueous volatile phase was examined experimentally as a function of chloride and major element concentrations at 800 °C and 200 MPa. The light rare earth elements (e.g. La, Ce) partition into the aqueous volatile phase to a greater extent than the heavy rare earth elements (e.g. Yb, Lu). Distribution of the rare earth elements and the major elements H, Na, K, Ca, and Al between the melt phase (mp) and aqueous volatile phase (aq) is a function of the chlorine concentration in the system, and our data are consistent with the rare earth and major elements occurring as chloride complexes in the aqueous volatile phase. Apparent equilibrium constants for experiments at 800 °C and 200 MPa, K REE,Na aq/mp , expressed as the ratio of the concentration of a given rare earth element in the aqueous volatile phase to the concentration of the same element in the melt phase, divided by the cubed ratio of sodium in the aqueous volatile phase to the concentration of sodium in the melt phase, decrease systematically with increasing atomic number from K La,Na aq/mp = 0.41(±0.03) to K Lu,Na aq/mp =0.11(±0.01), except for Eu. These experimentally derived apparent equilibrium constants for the rare earth elements can be used in a numerical simulation of magmatic volatile exsolution. The simulation gave results consistent with the elemental distribution in the potassic alteration zone of a deep porphyry copper deposit, but higher concentrations of heavy rare earth elements are released into the magmatic aqueous solution than are captured in the secondary mineralization. Received: 1 November 1999 / Accepted: 7 June 2000  相似文献   

4.
Trace element distribution in Central Dabie eclogites   总被引:16,自引:0,他引:16  
Coesite-bearing eclogites from Dabieshan (central China) have been studied by ion microprobe to provide information on trace element distributions in meta-basaltic mineral assemblages during high-pressure metamorphism. The primary mineralogy (eclogite facies) appears to have been garnet and omphacite, usually with coesite, phengite and dolomite, together with high-alumina titanite or rutile, or both titanite and rutile; kyanite also occurs occasionally as an apparently primary phase. It is probable that there was some development of quartz, epidote and apatite whilst the rock remained in the eclogite facies. A later amphibolite facies overprint led to partial replacement of some minerals and particularly symplectitic development after omphacite. They vary from very fine-grained dusty-looking to coarser grained Am + Di + Pl symplectites. The eclogite facies minerals show consistent trace element compositions and partition coefficients indicative of mutual equilibrium. Titanite, epidote and apatite all show high concentrations of REE relative to clinopyroxene. The compositions of secondary (amphibolite facies) minerals are clearly controlled by local rather than whole-rock equilibrium, with the composition of amphibole in particular depending on whether it is replacing clinopyroxene or garnet. REE partition coefficients for Cpx/Grt show a dependence on the Ca content of the host phases, with D REE Cpx/Grt decreasing with decreasing D Ca . This behaviour is very similar to that seen in mantle eclogites, despite differences in estimated temperatures of formation of 650–850 °C (Dabieshan) and 1000–1200 °C (mantle eclogites). With the exception of HREE in garnet, trace elements in the eclogites are strongly distributed in favour of minor or accessory phases. In particular, titanite and rutile strongly concentrate Nb and Zr, whilst LREE–MREE go largely into epidote, titanite and apatite. If these minor/accessory minerals behave in a refractory manner during melting or fluid mobilisation events and do not contribute to the melt/fluid, then the resultant melts and fluids will be strongly depleted in LREE–MREE. Received: 11 February 1999 / Accepted: 31 January 2000  相似文献   

5.
 Mantle peridotites of the Internal Liguride (IL) units (Northern Apennines) constitute a rare example of the depleted lithosphere of the Jurassic Ligurian Tethys. Detailed chemical (ICP-MS and SIMS techniques) and isotopic investigations on very fresh samples have been performed with the major aim to constrain the timing and mechanism of their evolution and to furnish new data for the geodynamic interpretation. The data are also useful to discuss some general geochemical aspects of oceanic-type mantle. The studied samples consist of clinopyroxene-poor spinel lherzolites, showing incipient re-equilibration in the plagioclase-facies stability field. The spinel-facies assemblage records high (asthenospheric) equilibration temperatures (1150–1250° C). Whole rocks, and constituent clinopyroxenes, show a decoupling between severe depletion in highly incompatible elements [light rare earth elements (LREE), Sr, Zr, Na, Ti] and less pronounced depletion in moderate incompatible elements (Ca, Al, Sc, V). Bulk rocks also display a relatively strong M(middle)REE/H(heavy)REE fractionation. These compositional features indicate low-degree (<10%) fractional melting, which presumably started in the garnet stability field, as the most suitable depletion mechanism. In this respect, the IL ultramafics show strong similarity to abyssal peridotites. The Sr and Nd isotopic compositions, determined on carefully handpicked clinopyroxene separates, indicate an extremely depleted signature (87Sr/86Sr=0.702203–0.702285; 143Nd/144Nd=0.513619–0.513775). The Sm/Nd model ages suggest that the IL peridotites melted most likely during Permian times. They could record, therefore, the early upwelling and melting of mid ocean ridge basalt (MORB) type asthenosphere, in response to the onset of extensional mechanisms which led to the opening of the Western Tethys. They subsequently cooled and experienced a composite subsolidus evolution testified by multiple episodes of gabbroic intrusions and HT-LP retrograde metamorphic re-equilibration, prior to their emplacement on the sea floor. The trace element chemistry of IL peridotites also provides useful information about the composition of oceanic-type mantle. The most important feature concerns the occurrence of Sr and Zr negative anomalies (relative to “adjacent” REE) in both clinopyroxenes and bulk rocks. We suggest that such anomalies reflect changes in the relative magnitude of Sr, Zr and REE partition coefficients, depending on the specific melting conditions. Received: 15 February 1995/Accepted: 4 August 1995  相似文献   

6.
The Dokhan volcanics are represented by a thick stratified lava flows succession of basalt, andesite, imperial porphyry, dacite, rhyodacite, rhyolite, ignimbrites, and tuffs. These lavas are interbanded with their pyroclastics in some places including banded ash flow tuffs, lithic tuffs, crystal lapilli tuffs, and agglomerates. They are typical calc–alkaline and developed within volcanic arc environment. All rocks show moderate enrichment of most large ion lithophile elements relative to high field strength elements (HFSE). The incompatible trace elements increase from basalt through andesite to rhyolite. The felsic volcanics are characterized by moderate total rare earth elements (REE) contents (162 to 392 ppm), less fractionated patterns {(Ce/Yb)N = (1.24 to 10.93)}, and large negative Eu anomaly {(Eu/Eu*) = (0.15 to 0.92)}. The mafic volcanics have the lowest REE contents (61 to 192 ppm) and are relatively steep {(Ce/Yb)N = (3.2 to 8.5)}, with no negative Eu anomalies {(Eu/Eu*) = (0.88 to 1)}. The rhyolite displays larger negative Eu anomaly (Eu/Eu* = 0.28) than those of other varieties, indicating that the plagioclase was an early major fractionating phase. The mineralogical and chemical variations within volcanics are consistent with their evolution by fractional crystallization of plagioclase and clinopyroxene.  相似文献   

7.
Garnet + liquid equilibrium   总被引:1,自引:0,他引:1  
New experiments were performed to determine saturation conditions for garnet and silicate liquid. Starting compositions were natural basalt powders ranging from komatiite to nephelinite, which were partially melted at pressures between 25 and 100 kbar. Rounded grains of natural pyrope or grossular were added to some experiments to induce garnet saturation, and to aid the segregation of liquid pools for microprobe analysis. Simple expressions describing K eq as a function of P, T and liquid composition were calibrated by linear least squares analysis of the data from this, and other, studies. Since garnets do not often occur as phenocrysts, equations were designed to predict garnet compositions when P, T and a silicate liquid composition are given. The regression data have a pressure range of 20–270 kbar, and compositions as diverse as nephelinite and komatiite. These models should thus apply to a broad range of geological problems. The majorite component in garnet was found to increase with increasing P, but compositional effects are also important. A garnet saturation surface applied to liquids with chondritic compositions shows that such liquids crystallize garnet with Mj contents of 0.27–0.42 at 200 kbar. Models of Earth differentiation thus need to account not only for fractionation of majorite, but also for Fe-, Ca-, Na- and Ti-bearing garnet components, which occur in non-trivial quantities at high pressure. Since many models of igneous petrogenesis rely on mineral-melt partition coefficients for the minor elements Na, Ti, and Cr, partition coefficients for these elements were also examined. The K d gar/liq for Na was found to be P-sensitive; Na contents of basalts may thus potentially yield information regarding depths of partial melting. Received : 28 May 1997 / 25 November 1997  相似文献   

8.
Higher Himalayan Crystalline (HHC) complex of the Sikkim Himalaya predominantly consists of high-grade pelitic migmatites. In this study, reaction textures, mineral/bulk rare earth elements (REE), trace element partition coefficients and trace element zoning profiles in garnet are used to demonstrate a complex petrogenetic process during crustal anatexis. With the help of equilibrium REE and trace element partitioning model, it is shown that strong enrichment of Effective Bulk Composition (EBC) is responsible for the zoning in garnet in these rocks. The data strongly support disequilibrium element partitioning and suggest that the anatectic melts associated with mafic selvedges are likely produced by disequilibrium melting because of fast melt segregation process.  相似文献   

9.
Partial fusion experiments with basic granulites (S6, S37) believed to represent the lower crust beneath the Eifel region (Germany) were performed at pressures from 5 to 15 kbar. Water-undersaturated experiments were carried out in the presence of 1 wt% H2O plus 2.44 or 0.81 wt% CO2 equivalent to mole fractions of H2O/(H2O + CO2) of 0.5 and 0.75, respectively, of the volatile components added. At temperatures from 850 to 1100 °C the weight proportions of melt range from 7 to 30 %. Melt compositions change from trondhjemitic over tonalitic to dioritic with increasing degree of partial melting. Crystalline residua are plagioclase/pyroxene dominated at 5 kbar to garnet/pyroxene dominated at 15␣kbar. Dehydration melting was studied in granulite S35 similar in composition to S6. The magmatic precursors of the granulite xenoliths used in this study had geochemical characteristics of cumulate gabbro (metagabbro S37) and evolved melts (metabasalts S6, S35), respectively. Melts from granulite S37 match the major element compositions of natural trondhjemites and tonalites. At 5 kbar, their Al2O3 is relatively low, similar to tonalites from ophiolites. At 15 kbar, Al2O3 in the melts is high due to the near absence of plagioclase in the crystalline residua. The Al2O3 concentrations in 15 kbar melts from S6 (˜20 wt%) are higher than in natural tonalites. Depth constraints on the formation of tonalitic magmas in the continental crust are provided by REE (rare earth element) patterns of the synthetic melts calculated from the known REE abundances in metagabbro S37 and metabasalt S6 assuming batch melting and using partition coefficients from the literature. The REE patterns of tonalites from active continental margins and Archean trondhjemite-tonalite-granodiorite␣associations low in REE with LaN (chondrite normalised) from 10 to 30 and YbN from 1 to 2 are reproduced at pressures of 10 and 12.5 kbar from metagabbro S37 which displays a slightly L(light)REE enriched pattern with LaN = 8 and YbN = 3. Natural tonalites with LaN from 30 to 100 require a source richer in REE than granulite S37. At 15 kbar, H(heavy)REEN in melts from granulite S37 are depressed below the level observed in natural tonalites due to the high proportion of garnet (>30 wt%) in the residue. Melts from metabasalt S6 (enriched in REE with LaN = 38 and YbN = 16) do not match the REE characteristics of natural tonalites under any conditions. Received: 1 July 1994 / Accepted: 11 September 1996  相似文献   

10.
Abundances of rare earth elements, Hf, Sc, Co, Cr and Th in garnet megacrysts and their volcanic hosts or matrices are used to estimate garnet/liquid partition coefficients for these elements. Samples include pyropes from kimberlite and highly alkalic basalts, almandines from basalt andesite, dacite, rhyodacite and rhyolite and a spessartine-almandine from alaskite. The pyrope/host partition coefficients are fairly uniform and agree with experimental data within a factor of 2. The almandine/matrix data show more scatter (due in part to impurities in the garnet separates) but the partition coefficients tend to increase with increasing SiO ratio of the matrix. The almandine/matrix partition coefficients are up to a factor of 10 higher than the pyrope/host partition coefficients. The spessartine-almandine is strongly enriched in heavy rare earths (~ 5000 times chondrites), Y, Sc and Co. The wide variation in garnet/liquid partition coefficients from kimberlites to rhyolites cannot be explained as an effect of temperature and we conclude that a major factor is the composition of the melt from which the garnet crystallized.  相似文献   

11.
Isobaric partial melting experiments were performed on an Fe-free synthetic composition to simulate partial melting of subducted oceanic crust. Nominally anhydrous experiments at 3.0 GPa yielded melts in equilibrium with garnet (13 to 16 mol.% grossular) and aluminous clinopyroxene (14 to 16 wt.% Al2O3). Melt compositions show decreasing Si and alkalis and increasing Ca, Mg, and Ti contents with increasing temperatures. Experiments at 1200 and 1300°C were rutile saturated, whereas experiments at 1400°C contained no residual rutile. We argue that during the initial stages of subduction, accessory rutile is likely to be stable in subsolidus eclogites of average midocean ridge basalt composition and that only large degrees of partial melting will eradicate rutile from an eclogitic source. At 3 GPa, any eclogites with a bulk TiO2 content of ≥1.5 wt.% rutile will produce rutile-saturated partial melts, except at very high degrees of melting. At higher pressures, all bulk Ti may dissolve in clinopyroxene and garnet, leaving no accessory rutile.Trace element partition coefficients for 24 trace elements between clinopyroxene, garnet, and melt were determined by secondary-ion mass spectrometry analysis of experimental run products at 1400°C and 3 GPa. Partition coefficients for the rare earth elements agree well with previous studies and have been evaluated using the lattice strain model. Partitioning data for high-field strength elements indicate complementary DZr/DHf for clinopyroxene and garnet. Partial melting of an eclogitic component of different modal compositions may therefore explain both subchondritic and superchondritic Zr/Hf ratios. Superchondritic Zr/Hf has recently been observed in some ocean island basalts (OIB), and this may be taken as further evidence for components of recycled oceanic crust in OIB. The data also indicate slight Nb/Ta fractionation during partial melting of bimineralic eclogite, which is not, however, sufficient to explain some recently observed Nb/Ta fractionation in island arc rocks. Accessory rutile, however, can explain such fractionation.  相似文献   

12.
The major part of the Peninsular Gneiss in Dharwar craton is made up of Trondjhemite-Tonalite-Granodiorite (TTG) emplaced at different periods ranging from 3.60 to 2.50 Ga. The sodic-silicic magma precursors of these rocks have geochemical features characteristic of partial melting of hydrated basalt. In these TTGs, enclaves of amphibolites (± garnet) are abundant. These restites are considered to be the residue of a basaltic crust after its partial melting. A detailed study of these (residue) enclaves reveals textures formed due to the process of partial melting. Major, trace and REE analysis of these residue enclaves and the melt TTGs and microprobe analysis of the coexisting minerals show partitioning of REE and HFSE between the precursor melt of TTGs and the upper amphibolite facies residues. Formation of garnetiferous amphibolites with biotite, Cpx and plagioclase consequent to melting, has squeezed the original MORB type of basaltic crust and given rise to the TTGs, depleted in Y, Yb, K2O, MgO, FeO, TiO2 and enriched in La, Th, U, Zr and Hf. Coevally during the process of melting, the hydrated basalt was depleted in Na2O, Al2O3, LREE, Th, U and enriched in K2O, MgO, Nb, Ti, Yb, Y, Sc, Ni, Cr and Co. Mineral chemistry of co-existing garnet-biotite and amphibole-plagioclase in these amphibolitic (restite) enclaves indicates an average temperature of 700 ± 50° C and pressure of 5 ± 1 Kbar. These data are inferred to indicate that during the garnet stability field metamorphism, effective fractionation of HREE and HFSE has taken place between the restites having Fe-Mg silicates, ilmenites and the extracted melt generated from the MORB type of hydrated basalt. These results are strongly substantiated by the reported melting experiments on hydrated basalts.  相似文献   

13.
Peak metamorphism (800–850°C, 8–10 kbar) inthe Harts Range Meta-Igneous Complex (Harts Range, central Australia)was associated with localized partial melting by the reactionhornblende + plagioclase + quartz + H2O = garnet + clinopyroxene+ titanite + melt. In situ trace-element determinations of prograde,peak and retrograde minerals in migmatitic metabasites and associatedtonalitic melts using laser-ablation ICP–MS has allowedmonitoring of a range of partial-melting processes (melting,melt segregation and back-reaction between crystallizing meltand restitic minerals). Mass balance calculations indicate thattitanite is a major carrier of trace elements such as Ti, Nb,Ta, Sm, U and Th, and therefore may be an important accessoryphase to control the redistribution of these elements duringthe partial melting of amphibolites. Titanite preferentiallyincorporates Ta over Nb and, hence, residual titanite mightassist in the formation of melts with high Nb/Ta. The fact thatsingle minerals record different rare earth element (REE) patterns,from prograde to peak to retrograde conditions, demonstratesthat REE diffusion is not significant up to 800°C. Therefore,trace-element analysis in minerals can be a powerful tool toinvestigate high-grade metamorphic processes beyond the limitsgiven by major elements. KEY WORDS: Harts Range; laser-ablation ICP–MS; metabasites; partial melting; trace elements  相似文献   

14.
A suite of basanitoids and alkali olivine basalts from Grenada, Lesser Antilles were analyzed for rare earth elements. The REE concentrations of these rocks are characterized by a small variation in the heavy REE (7 to 9 times chondrite) and a large variation in the light REE (17 to 93 times chondrite). Among the possible mechanisms to account for the REE variations, fractional crystallization processes at low and high pressures, and partial melting processes (both batch melting and fractional melting) were examined, using the partition relationships of REE among silicate minerals and melts. It is suggested that the observed REE variations are best explained by variable degrees of batch partial melting, in which garnet is present as one of the solid phases through 2 to 17% melting of a garnet lherzolite parent rock.  相似文献   

15.
The partitioning of rare earth elements (REE) between zircon, garnet and silicate melt was determined using synthetic compositions designed to represent partial melts formed in the lower crust during anatexis. The experiments, performed using internally heated gas pressure vessels at 7 kbar and 900–1000 °C, represent equilibrium partitioning of the middle to heavy REE between zircon and garnet during high‐grade metamorphism in the mid to lower crust. The DREE (zircon/garnet) values show a clear partitioning signature close to unity from Gd to Lu. Because the light REE have low concentrations in both minerals, values are calculated from strain modelling of the middle to heavy REE experimental data; these results show that zircon is favoured over garnet by up to two orders of magnitude. The resulting general concave‐up shape to the partitioning pattern across the REE reflects the preferential incorporation of middle REE into garnet, with DGd (zircon/garnet) ranging from 0.7 to 1.1, DHo (zircon/garnet) from 0.4 to 0.7 and DLu (zircon/garnet) from 0.6 to 1.3. There is no significant temperature dependence in the zircon–garnet REE partitioning at 7 kbar and 900–1000 °C, suggesting that these values can be applied to the interpretation of zircon–garnet equilibrium and timing relationships in the ultrahigh‐T metamorphism of low‐Ca pelitic and aluminous granulites.  相似文献   

16.
We determined the diffusion coefficient of Sm in almandine garnet as function of temperature at 1 bar and fO2 corresponding to that of wüstite-iron buffer, and to a limited extent, that of a few other selected rare earth elements in almandine and pyrope garnets. Both garnets were demonstrated to have metastably survived the diffusion annealing at conditions beyond their stability fields. The experimental diffusion profiles were analyzed by secondary ion mass spectrometry, and in addition, by Rutherford back scattering spectroscopy for two samples. Transmission electron microscopic study of an almandine crystal that was diffusion-annealed did not reveal any near-surface fast diffusion path. Using reasonable approximations and theoretical analysis of vacancy diffusion, the experimental data were used to develop an expression of rare earth element (REE) diffusion coefficient in garnet as a function of temperature, pressure, fO2, ionic radius, and matrix composition. Calculation of the closure temperature for the Sm-Nd decay system in almandine garnet in a metamorphic terrain shows very good agreement with that constrained independently. Modeling of the REE evolution in melt and residual garnet suggests that for dry melting condition, the REE pattern in the melt should commonly conform closely to that expected for equilibrium melting. However, for much lower solidus temperatures that would prevail in the presence of a H2O-CO2 fluid, the concentration of light REE in the melt could be significantly lower than that under equilibrium melting condition. A reported core and rim differences in the REE content of a garnet crystal in a mantle xenolith in kimberlite have been reproduced by assuming that the REE zoning was a consequence of entrapment in a magma derived from an external source for ∼32,000 yr before the eruption.  相似文献   

17.
Analyses of trace elements in the mineral phases of granulites provide important information about the trace element distribution in the lower crust. Since granulites are often considered residues of partial melting processes, trace element characteristics of their mineral phases may record mineral/melt equilibria thus giving an opportunity to understand the nature and composition of melts in the lower continental crust. This study provides an extensive set of mineral trace element data obtained by LA-ICP-MS analyses of mafic and intermediate granulites from Central Finland. Mass balance calculations using the analytical data indicate a pronounced contribution of the accessory minerals apatite for the REE and ilmenite for the HFSE. Coherent mineral/mineral ratios between samples point to a close approach to equilibrium except for minerals intergrown with garnet porphyroblasts. Mineral trace element data were used for the formulation of a set of D mineral/melt partition coefficients that is applicable for trace element modelling under lower crustal conditions. D mineral/melt were derived by the application of predictive models and using observed constant mineral/mineral ratios. The comparison of the calculated D mineral/melt with experimental data as well as the relationship between mineral trace element contents and a leucosome with a composition close to an equilibrium melt provides additional constraints on mineral/melt partitioning. The D values derived in this study are broadly similar to magmatic partition coefficients for intermediate melt compositions. They provide a first coherent set of D values for Sc, V, Cr and Ni between clinopyroxene, amphibole, garnet, orthopyroxene, ilmenite and melt. In addition, they emphasize the strong impact that ilmenite exerts on the distribution of Nb and Ta.  相似文献   

18.
The Shuanghe garnet-bearing paragneiss from the Dabie ultra-high–pressure (UHP) orogen occurs as an interlayer within partially retrogressed eclogite. A first UHP metamorphic stage at 680°C, 3.8–4.1 GPa is documented by Zr-in-rutile temperatures coupled with phengite inclusions (Si = 3.55) in clinozoisite and grossular-rich garnet. Relic matrix phengite and phengite inclusions in zircon rims display lower Si of 3.42. Combined with garnet compositions and Ti-in-zircon temperatures, they provide evidence for a second UHP metamorphic stage at 800–850°C, ~3.8 GPa. Such isobaric heating at UHP conditions has not been documented so far from the adjacent eclogites and other rock types in the Dabie orogen and indicates proximity to the hot, convecting mantle wedge. The dominant mineral assemblage consisting of plagioclase, epidote, biotite, and amphibole provides evidence for widespread retrogression during the exhumation of the UHP paragneiss. Several types of polyphase mineral inclusions were identified. Phengite inclusions hosted by clinozoisite are partially replaced by kyanite and K-feldspar, whereas inclusions in host garnet consist of relic phengite, K-feldspar, and garnet, indicating limited sub-solidus dehydration of phengite by the reaction Ph→Kfs+Ky±Grt+fluid. Tightly intergrown K-feldspar and quartz are preserved as inclusions with sharp boundaries and radial cracks in garnet. Analyses of whole inclusions also show small enrichments in light rare earth elements. These inclusions are interpreted to be derived from melting of an inclusion assemblage consisting of Ph+Coe±Czo. A third type of polyphase inclusion consists of typical nanogranite (Ab+Kfs+Qz±Ep) inclusions in recrystallized metamorphic zircon. Ti-in-zircon thermometry and the Si content of phengite included in these zircon domains indicate that melting occurred at 800–850°C and 3.8–4.0 GPa during isobaric heating at UHP conditions. The partial melting event led to an equilibration of trace elements in garnet, phengite, and apatite. Using published partition coefficients between these minerals and hydrous granitic melt, the trace element composition of the UHP anatectic melt can be constrained. The melts are characterized by high LILE contents and pronounced relative enrichments of U over Th and Ta over Nb. The REE are below primitive mantle values, likely due to the presence of residual clinozoisite and garnet during partial melting. So far, no major granitic bodies have been found that share the same trace element pattern as the partial melts from the UHP anatexis of the Shuanghe paragneiss.  相似文献   

19.
20.
This experimental study examines the mineral/melt partitioning of incompatible trace elements among high-Ca clinopyroxene, garnet, and hydrous silicate melt at upper mantle pressure and temperature conditions. Experiments were performed at pressures of 1.2 and 1.6 GPa and temperatures of 1,185 to 1,370 °C. Experimentally produced silicate melts contain up to 6.3 wt% dissolved H 2O, and are saturated with an upper mantle peridotite mineral assemblage of olivine+orthopyroxene+clinopyroxene+spinel or garnet. Clinopyroxene/melt and garnet/melt partition coefficients were measured for Li, B, K, Sr, Y, Zr, Nb, and select rare earth elements by secondary ion mass spectrometry. A comparison of our experimental results for trivalent cations (REEs and Y) with the results from calculations carried out using the Wood-Blundy partitioning model indicates that H 2O dissolved in the silicate melt has a discernible effect on trace element partitioning. Experiments carried out at 1.2 GPa, 1,315 °C and 1.6 GPa, 1,370 °C produced clinopyroxene containing 15.0 and 13.9 wt% CaO, respectively, coexisting with silicate melts containing ~1–2 wt% H 2O. Partition coefficients measured in these experiments are consistent with the Wood-Blundy model. However, partition coefficients determined in an experiment carried out at 1.2 GPa and 1,185 °C, which produced clinopyroxene containing 19.3 wt% CaO coexisting with a high-H 2O (6.26±0.10 wt%) silicate melt, are significantly smaller than predicted by the Wood-Blundy model. Accounting for the depolymerized structure of the H 2O-rich melt eliminates the mismatch between experimental result and model prediction. Therefore, the increased Ca 2+ content of clinopyroxene at low-temperature, hydrous conditions does not enhance compatibility to the extent indicated by results from anhydrous experiments, and models used to predict mineral/melt partition coefficients during hydrous peridotite partial melting in the sub-arc mantle must take into account the effects of H 2O on the structure of silicate melts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号