首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The catalogue by Grünthal et al. (J Seismol 13:517?C541, 2009a) of earthquakes in central, northern, and north-western Europe with M w????3.5 (CENEC) has been expanded to cover also southern Europe and the Mediterranean area. It has also been extended in time (1000?C2006). Due to the strongly increased seismicity in the new area, the threshold for events south of the latitude 44°N has here been set at M w????4.0, keeping the lower threshold in the northern catalogue part. This part has been updated with data from new and revised national and regional catalogues. The new Euro-Mediterranean Earthquake Catalogue (EMEC) is based on data from some 80 domestic catalogues and data files and over 100 special studies. Available original M w and M 0 data have been introduced. The analysis largely followed the lines of the Grünthal et al. (J Seismol 13:517?C541, 2009a) study, i.e., fake and duplicate events were identified and removed, polygons were specified within each of which one or more of the catalogues or data files have validity, and existing magnitudes and intensities were converted to M w. Algorithms to compute M w are based on relations provided locally, or more commonly on those derived by Grünthal et al. (J Seismol 13:517?C541, 2009a) or in the present study. The homogeneity of EMEC with respect to M w for the different constituents was investigated and improved where feasible. EMEC contains entries of some 45,000 earthquakes. For each event, the date, time, location (including focal depth if available), intensity I 0 (if given in the original catalogue), magnitude M w (with uncertainty when given), and source (catalogue or special study) are presented. Besides the main EMEC catalogue, large events before year 1000 in the SE part of the investigated area and fake events, respectively, are given in separate lists.  相似文献   

2.
本文基于匹配滤波技术,通过SEPD(Seismic Events and Phase Detection)对2018年11月25日新疆博乐MS4.9地震序列进行检测,检测出遗漏地震32条,84.4%地震为ML0.0—1.0,9.4%地震小于ML0.0,较地震目录中原有15条地震多213%,检测出的遗漏地震事件使地震目录更加完整。检测后的最小完整性震级由检测前的ML1.6减至ML0.8,地震目录最小完整性震级的减小有利于地震工作者对区域地震活动性作出更准确全面的结论,并使地震危险性分析更可靠。  相似文献   

3.
This paper provides a generic equation for the evaluation of the maximum earthquake magnitude mmax for a given seismogenic zone or entire region. The equation is capable of generating solutions in different forms, depending on the assumptions of the statistical distribution model and/or the available information regarding past seismicity. It includes the cases (i) when earthquake magnitudes are distributed according to the doubly-truncated Gutenberg-Richter relation, (ii) when the empirical magnitude distribution deviates moderately from the Gutenberg-Richter relation, and (iii) when no specific type of magnitude distribution is assumed. Both synthetic, Monte-Carlo simulated seismic event catalogues, and actual data from Southern California, are used to demonstrate the procedures given for the evaluation of mmax.The three estimates of mmax for Southern California, obtained by the three procedures mentioned above, are respectively: 8.32 ± 0.43, 8.31 ± 0.42 and 8.34 ± 0.45. All three estimates are nearly identical, although higher than the value 7.99 obtained by Field et al. (1999). In general, since the third procedure is non-parametric and does not require specification of the functional form of the magnitude distribution, its estimate of the maximum earthquake magnitude mmax is considered more reliable than the other two which are based on the Gutenberg-Richter relation.  相似文献   

4.
Data from 25 local catalogues and 30special studies of earthquakes in central,northern and northwestern Europe have beenincorporated into a Databank. The dataprocessing includes discriminating eventtypes, eliminating fake events and dupletsand converting different magnitudes andintensities to Mw if this is not givenby the original source. The magnitudeconversion is a key task of the study andimplies establishment of regressionequations where no local relations exist.The Catalogue contains tectonic events fromthe Databank within the area44°N–72°N,25°W–32°E and the time period1300–1993. The lower magnitude level forthe Catalogue entries is setat Mw == 3.50. The area covered by thedifferent catalogues are associated withpolygons. Within each polygon only datafrom one or a small number of the localcatalogues, supplemented by data fromspecial studies, enter the Catalogue. Ifthere are two or more such catalogues orstudies providing a solution for an event,a priority algorithm selects one entry forthe Catalogue. Then Mw is calculatedfrom one of the magnitude types, or frommacroseismic data, given by the selectedentry according to another priority scheme.The origin time, location, Mw magnitude and reference are specified for eachentry of the Catalogue. So is theepicentral intensity, I0, if providedby the original source. Following thesecriteria, a total of about 5,000earthquakes constitute the Catalogue.Although originally derived for the purposeof seismic hazard calculation within GSHAP,the Catalogue provides a data base for manytypes of seismicity and seismic hazardstudies.  相似文献   

5.
New databases motivate improvements and extensions of the catalogue by Grünthal and Wahlström (J Seismol 7:507–531, 2003a) – G&;W03 – of earthquakes in central, northern, and northwestern Europe with M w?≥?3.50. Data from over 30 regional catalogues, the International Seismological Centre and U.S. National Earthquake Information Center bulletins for the NE Atlantic Ocean, and many special studies were analysed, largely along the lines of the previous study. Non-tectonic, non-seismic, and non-existing as well as duplicate events were identified and removed according to our current stage of knowledge. If not given by the original source, the moment magnitude, M w, was calculated for each event with a specified epicentral location and a given strength measure (i.e., an original magnitude of any type or, for onshore events only, an intensity). The calculations follow transformation relations derived in the present or in our previous study. The investigated area is subdivided into 22 polygons, in each of which one or more local catalogues, supplemented by data from special studies, are used. If more than one catalogue lists an event, one entry was selected according to a priority algorithm specific for each polygon. If the selected catalogue entry contains more than one strength type, one was selected for the M w calculation according to another priority scheme. The final catalogue, CENEC, is confined to the time period 1000–2004 and magnitudes M w?≥?3.50. This is an extension of the time period covered by G&;W03 (1300–1993). The number of events has increased from about 5,000 to about 8,000. For each entry, available information on the date, time, location (including focal depth), intensity I 0, magnitude M w, and source (i.e., the local catalogue or special study) are given. The strength type and value from which M w was calculated are also indicated. The catalogue is available on the website of the GFZ German Research Centre of Geosciences.  相似文献   

6.
We use 576 earthquakes of magnitude, M w, 3.3 to 6.8 that occurred within the region 33° N–42.5° N, 19° E–30° E in the time period 1969 to 2007 to investigate the stability of the relation between moment magnitude, M w, and local magnitude, M L, for earthquakes in Greece and the surrounding regions. We compare M w to M L as reported in the monthly bulletins of the National Observatory of Athens (NOA) and to M L as reported in the bulletins of the Seismological Station of the Aristotle University of Thessaloniki. All earthquakes have been analyzed through regional or teleseismic waveform inversion, to obtain M w, and have measured maximum trace amplitudes on the Wood–Anderson seismograph in Athens, which has been in operation since 1964. We show that the Athens Wood–Anderson seismograph performance has changed through time, affecting the computed by NOA M L by at least 0.1 magnitude units. Specifically, since the beginning of 1996, its east–west component has been recording systematically much larger amplitudes compared to the north–south component. From the comparison between M w and M L reported by Thessaloniki, we also show that the performance of the sensors has changed several times through time, affecting the calculated M L’s. We propose scaling relations to convert the M L values reported from the two centers to M w. The procedures followed here can be applied to other regions as well to examine the stability of magnitude calculations through time.  相似文献   

7.
针对九寨沟MS7.0地震之后不同时间段的余震序列目录,利用推定最大余震震级,给出了实际最大余震震级的估计值。结果表明,推定最大余震震级随主震后时间尺度的延长而趋于稳定,且该值与实际发生的最大余震的震级一致。需要强调的是,就九寨沟地震序列而言,当余震数据较为完备时,采用主震后较短时间段内(1~2天)的余震目录就可以较准确地估算出主震区域内可能发生的最大余震震级。实际上,主震后12h(0.5天)的余震数据已完全可以给出最大余震震级的有效下限。此外,计算中我们采用了里氏震级ML和面波震级MS的余震目录,结果显示,2种震级类型目录的估算结果完全一致,表明利用推定最大余震震级估算实际最大余震震级的方法不受震级类型的影响。据此,该最大余震震级快速评估方法可进一步推广应用于我国大陆地区中强震后强余震灾害分析评估中。目前的拟合技术也显示出随着测震技术的不断进步以及余震识别能力的提高,快速评估方法可以在主震后短时间(<1天)内准确地预测可能发生的最大余震震级。  相似文献   

8.
Let {Y, Y i , −∞ < i < ∞} be a doubly infinite sequence of identically distributed and asymptotically linear negative quadrant dependence random variables, {a i , −∞ < i < ∞} an absolutely summable sequence of real numbers. We are inspired by Wang et al. (Econometric Theory 18:119–139, 2002) and Salvadori (Stoch Environ Res Risk Assess 17:116–140, 2003). And Salvadori (Stoch Environ Res Risk Assess 17:116–140, 2003) have obtained Linear combinations of order statistics to estimate the quantiles of generalized pareto and extreme values distributions. In this paper, we prove the complete convergence of under some suitable conditions. The results obtained improve and generalize the results of Li et al. (1992) and Zhang (1996). The results obtained extend those for negative associated sequences and ρ*-mixing sequences. CIC Number O211, AMS (2000) Subject Classification 60F15, 60G50 Research supported by National Natural Science Foundation of China  相似文献   

9.
We have developed a community velocity model for the Pacific Northwest region from northern California to southern Canada and carried out the first 3D simulation of a Mw 9.0 megathrust earthquake rupturing along the Cascadia subduction zone using a parallel supercomputer. A long-period (<0.5 Hz) source model was designed by mapping the inversion results for the December 26, 2004 Sumatra–Andaman earthquake (Han et al., Science 313(5787):658–662, 2006) onto the Cascadia subduction zone. Representative peak ground velocities for the metropolitan centers of the region include 42 cm/s in the Seattle area and 8–20 cm/s in the Tacoma, Olympia, Vancouver, and Portland areas. Combined with an extended duration of the shaking up to 5 min, these long-period ground motions may inflict significant damage on the built environment, in particular on the highrises in downtown Seattle.  相似文献   

10.
The area south and east of the Baltic Sea has very minor seismic activity. However, occasional events occur as illustrated by four events in recent years, which are analysed in this study: near Wittenburg, Germany, on May 19, 2000, M w = 3.1, near Rostock, Germany, on July 21, 2001, M w = 3.4 and in the Kaliningrad area, Russia, two events on September 21, 2004 with M w = 4.6 and 4.7. Locations, magnitudes (M L and M w) and focal mechanisms were determined for the two events in Germany. Synthetic modeling resulted in a well-confined focal depth for the Kaliningrad events. The inversion of macroseismic observations provided simultaneous solutions of the location, focal depth and epicentral intensity. The maximum horizontal compressive stress orientations obtained from focal mechanism solutions, approximately N–S for the two German events and NNW–SSE for the Kaliningrad events, show a good agreement with the regionally oriented crustal stress field.  相似文献   

11.
Directivity effects are a characteristic of seismic source finiteness and are a consequence of the rupture spread in preferential directions. These effects are manifested through seismic spectral deviations as a function of the observation location. The directivity by Doppler effect method permits estimation of the directions and rupture velocities, beginning from the duration of common pulses, which are identified in waveforms or relative source time functions. The general model of directivity that supports the method presented here is a Doppler analysis based on a kinematic source model of rupture (Haskell, Bull Seismol Soc Am 54:1811–1841, 1964) and a structural medium with spherical symmetry. To evaluate its performance, we subjected the method to a series of tests with synthetic data obtained from ten typical seismic ruptures. The experimental conditions studied correspond with scenarios of simple and complex, unilaterally and bilaterally extended ruptures with different mechanisms and datasets with different levels of azimuthal coverage. The obtained results generally agree with the expected values. We also present four real case studies, applying the method to the following earthquakes: Arequipa, Peru (M w = 8.4, June 23, 2001); Denali, AK, USA (M w = 7.8; November 3, 2002); Zemmouri–Boumerdes, Algeria (M w = 6.8, May 21, 2003); and Sumatra, Indonesia (M w = 9.3, December 26, 2004). The results obtained from the dataset of the four earthquakes agreed, in general, with the values presented by other authors using different methods and data.  相似文献   

12.
In this paper, the seismicity indexes of global earthquakesM ≥ 6 during 1964–1983 were calculated, using data of ISC and USGS. The authors suggested a method suitable to make a set of regression formulas betweenm bandM s. Calculation showed that the level of global seismicity of shallow earthquakes during the years 1964–1965, 1968, 1971, 1975–1976 was higher than normal, especially the peak for the years 1975–1976 was more conspicuous. The year 1984 took the place of the year 1954 in the 20th century as the year of lowest global shallow focus seismicity. According to the actual value ofA(b) calculated, the level of deep focus seismicity reached the highest point in 1971 and dropped to the lowest point in 1977. In the time interval of 1977–1983 the global shallow focus seismicity decreased continuously whereas the deep focus seismicity increased with fluctuations.  相似文献   

13.
The earthquakes in Uttarkashi (October 20, 1991, M w 6.8) and Chamoli (March 8, 1999, M w 6.4) are among the recent well-documented earthquakes that occurred in the Garhwal region of India and that caused extensive damage as well as loss of life. Using strong-motion data of these two earthquakes, we estimate their source, path, and site parameters. The quality factor (Q β ) as a function of frequency is derived as Q β (f) = 140f 1.018. The site amplification functions are evaluated using the horizontal-to-vertical spectral ratio technique. The ground motions of the Uttarkashi and Chamoli earthquakes are simulated using the stochastic method of Boore (Bull Seismol Soc Am 73:1865–1894, 1983). The estimated source, path, and site parameters are used as input for the simulation. The simulated time histories are generated for a few stations and compared with the observed data. The simulated response spectra at 5% damping are in fair agreement with the observed response spectra for most of the stations over a wide range of frequencies. Residual trends closely match the observed and simulated response spectra. The synthetic data are in rough agreement with the ground-motion attenuation equation available for the Himalayas (Sharma, Bull Seismol Soc Am 98:1063–1069, 1998).  相似文献   

14.
利用模板匹配方法对2015年11月23日青海省祁连县M_S5.2地震进行遗漏地震检测研究,由于主震后短时间内目录中遗漏事件较多,故对主震后1天的连续波形进行检测。主震后1天内青海测震台网记录到的余震个数(包括单台)共62个,选取主震后M_L1.0以上余震30个作为模板事件,通过匹配滤波的方式扫描出遗漏地震31个,约为台网目录给出的0.5倍。基于包络差峰值振幅与震级的线性关系估测检测事件的震级参数,最后将检测后的余震目录与台网余震目录在主震后1天内的最小完备震级进行对比分析,结果发现检测后最小完备震级从M_L1.2降到了M_L0.7,得到青海测震台网在祁连地区最小完整性震级为M_L0.7。  相似文献   

15.
A catalog for northeast India and the adjoining region for the period 1897–2009 with 4,497 earthquakes events is compiled for homogenization to moment magnitude M w,GCMT in the magnitude range 3–8.7. Relations for conversion of m b and M s magnitudes to M w,GCMT are derived using three different methods, namely, linear standard regression, inverted standard regression (ISR) and orthogonal standard regression (OSR), for different magnitude ranges based on events data for the catalog period 1976–2006. The OSR relations for M s to M w,GCMT conversion derived in this paper have significantly lower errors in regression parameters compared to the relations reported in other studies. Since the number of events with magnitude ≥7 for this region is scanty, we, therefore, considered whole India region to obtain the regression relationships between M w,GCMT and M s,ISC. A relationship between M w,GCMT and M w,NEIC is also obtained based on 17 events for the range 5.2 ≤ magnitude ≤ 6.6. A unified homogeneous catalog prepared using the conversion relations derived in this paper can serve as a reference catalog for seismic hazard assessment studies in northeast India and the adjoining region.  相似文献   

16.
Data from 753 earthquakes are used to determine a relationship between surface-wave magnitude (M s) and bodywave magnitude (m b), and from 541 earthquakes to determine a relationship between surface-wave magnitude (M s) and local magnitude (M L) for China and vicinity: M s=0.9883 m b-0.0420, M s=0.9919 M L-0.1773. The relationship of M s versus m b is obtained for 292 events occurred in the Chinese mainland in the time period from 1964 to 1996, 291 events occurred in Taiwan in the time period from 1964 to 1995 and 170 events occurred in the surrounding area. Standard deviation of the fitting is 0.445. Relationship of M s versus M L is obtained for 36 events occurred in the Chinese mainland, 293 events occurred in Taiwan, China and 212 events occurred in the surrounding area. The total amount is 541 events. Standard deviation of the fitting is 0.4673. The uncertainties of the converted M s in different magnitude intervals can be estimated using complementary cumulative distribution function (CCDF). In the relationship of M s versus m b, taking ±0.25 as a range of uncertainties, in magnitude interval m b 4.0–4.9, the probabilities for the converted M s taken value less than (M s-0.25) and more than (M s+0.25) are 17% and 27% respectively. Similarly, we have probabilities for m b 5.0–5.9 are 34% and 20% and that for m b 6.0–6.9 are 11% and 47%. In the relationship of M s versus M L, if the range of uncertainties is still taken as ±0.25, the corresponding probabilities for magnitude interval M L 4.0–4.9 are 22% and 38%, for M L 5.0–5.9 are 20% and 15% and for magnitude interval M L 6.0–6.9, are 15% and 29%, respectively. The relationships developed in this paper can be used for the conversion of one magnitude scale into another magnitude scales conveniently. The estimation of uncertainties described in this paper is more accurate and more objective than the usual estimation expressed by deviation. The estimations described in this paper indicate various dispersions in different magnitude intervals of original data. The estimations of uncertainties described by probabilities can be well connected with the total estimations of uncertainties in seismic hazard assessment.  相似文献   

17.
Using 116 earthquakes over M_L3.8 in the Inner Mongolia region from 2008 to 2015, the local earthquake magnitude M_L and surface wave magnitude M_S are remeasured. Based on norm linear regression(SR1 and SR2) and norm(OR) orthogonal regression method, we established the conversion relationship between M_L and M_S. The results were tested with Gaussian disturbance. The result shows that the orthogonal regression method(OR) result has the best fitting curve, and the conversion relation is M_S=0.96 M_L-0.10. The difference between our result and Guo Lücan's(M_S=1.13 M_L-1.08) may be caused by regional tectonic characteristics. M_(S Inner Mongolia) value is significantly higher than the M_(S empirical) value, with an average difference of 0.23, the difference distribution of empirical relation and the rectified relation is in the range of 0.2-0.3.  相似文献   

18.
A method for the determination of consistent local magnitude M L values (Richter scale, or M WA) for earthquakes with epicentral distances ranging from 10 km through 1000 km is demonstrated. The raw data consists of nearly 1300 amplitude readings from a network of six digital seismographs in Baden–Württemberg (Southwestern Germany) during 26 months starting in 1995, later extended by another 1000 amplitude readings until 1999. Relying on most of the basics introduced by C.F. Richter a three-parameter attenuation curve (distance correction, magnitude-distance relation) for Baden–Württemberg and adjacent areas is presented. Station corrections are evaluated and the attenuation curve is calibrated with respect to other agencies for distances greater than 650 km. Reasonable parametrisations are discussed and meaningful error bars are attributed. Finally, a seventh station is incorporated by means of its station correction alone, without needing to update the attenuation curve.  相似文献   

19.
Probabilistic seismic hazard analysis (PSHA) has been carried out for Iraq. The earthquake catalogue used in the present study covers an area between latitude 29°–38.5° N and longitude 39°–50° E containing more than a thousand events for the period 1905–2000. The entire Iraq region has been divided into thirteen seismogenic sources based on their seismic characteristics, geological setting and tectonic framework. The completeness of the seismicity catalogue has been checked using the method proposed by Stepp (1972). The analysis of completeness shows that the earthquake catalogue is not complete below Ms=4.8 for all of Iraq and seismic source zones S1, S4, S5, and S8, while it varies for the other seismic zones. A statistical treatment of completeness of the data file was carried out in each of the magnitude classes. The Frequency Magnitude Distributions (FMD) for the study area including all seismic source zones were established and the minimum magnitude of complete reporting (Mc) were then estimated. For the entire Iraq the Mc was estimated to be about Ms=4.0 while S11 shows the lowest Mc to be about Ms=3.5 and the highest Mc of about Ms=4.2 was observed for S4. The earthquake activity parameters (activity rate , b value, maximum regional magnitude mmax) as well as the mean return period (R) with a certain lower magnitude mmin m along with their probability of occurrence have been determined for all thirteen seismic source zones of Iraq. The maximum regional magnitude mmax was estimated as 7.87 ± 0.86 for entire Iraq. The return period for magnitude 6.0 is largest for source zone S3 which is estimated to be 705 years while the smallest value is estimated as 9.9 years for all of Iraq.The large variation of the b parameter and the hazard level from zone to zone reflects crustal heterogeneity and the high seismotectonic complexity. The seismic hazard near the source boundaries is directly and strongly affected by the change in the delineation of these boundaries. The forces, through which the geological structure along the plate boundary in Eastern and Northeastern Iraq are evolved, are still active causing stress-strain accumulation, deformation and in turn producing higher probabilities of earthquake activity. Thus, relatively large destructive earthquakes are expected in this region. The study is intended to serve as a reference for more advanced approaches and to pave the path for the probabilistic assessment of seismic hazard in this region.  相似文献   

20.
The issue addressed in this paper is the objective selection of appropriate ground motion models for seismic hazard assessment in the Pyrenees. The method of Scherbaum et al. (2004a) is applied in order to rank eight published ground motion models relevant to intraplate or to low deformation rate contexts. This method is based on a transparent and data-driven process which quantifies the model fit and also measures how well the underlying model assumptions are met. The method is applied to 15 accelerometric records obtained in the Pyrenees for events of local magnitude between 4.8 and 5.1, corresponding to moment magnitudes ranging from 3.7 to 3.9. Only stations at rock sites are considered. A total of 720 spectral amplitudes are used to rank the selected ground motion models. Some control parameters of these models, such as magnitude and distance definitions, may vary from one model to the other. It is thus important to correct the selected models for their difference with respect to the magnitude and distance definitions used for the Pyrenean data. Our analysis shows that, with these corrections, some of the ground motion models successfully fit the data. These are the Lussou et al. (2001) and the Berge-Thierry et al. (2003) models. According to the selected ground motion models, a possible scenario of a magnitude 6 event is proposed; it predicts response spectra accelerations of 0.08–0.1 g at 1 Hz at a hypocentral distance of 10 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号