首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sources of sedimentary humic substances: vascular plant debris   总被引:1,自引:0,他引:1  
A modern Washington continental shelf sediment was fractionated densimetrically using either an organic solvent, CBrCl3, or aqueous ZnCl2. The resulting low density materials (<2.06 g/ml) account for only 1% of the sediment mass but contain 25% of the sedimentary organic carbon and 53% of the lignin. The C/N ratios (30–40) and lignin phenol yields (Λ = 8) and compositions indicate that the low density materials are essentially pure vascular plant debris which is slightly enriched in woody (versus nonwoody) tissues compared to the bulk sediment. The low density materials yield approximately one-third of their organic carbon as humic substances and contribute 23% and 14% of the total sedimentary humic and fulvic acids, respectively. Assuming that the lignin remaining in the sedimentary fraction is also contained in plant fragments that yield similar levels of humic substances, then 50% and 30% of the total humic and fulvic acids, respectively, arise directly from plant debris.Base-extraction of fresh and naturally degraded vascular plant materials reveals that significant levels of humic and fulvic acids are obtained using classical extraction techniques. Approximately 1–2% of the carbon from fresh woods and 10–25% from leaves and bark were isolated as humic acids and 2–4 times those levels as fulvic acids. A highly degraded hardwood yielded up to 44% of its carbon as humic and fulvic acids. The humic acids from fresh plants are generally enriched in lignin components relative to carbohydrates and recognizable biochemicals account for up to 50% of the total carbon. Humic and fulvic acids extracted directly from sedimentary plant debris could be responsible for a major fraction of the biochemical component of humic substances.  相似文献   

2.
Stable isotope ratios of C, N and H, elemental compositions and electron spin resonance (ESR) data of humic acids and proto-kerogens from twelve widely varying sampling locations are presented. Humic acids and proto-kerogens from algal sources are more aliphatic and higher in N than those from higher plant sources. Oxygen content appears to represent a measure of maturation, even in Recent sediments and S content may reflect redox conditions in the environment of deposition. The ESR data indicate that the transformation of humic substances to proto-kerogens in Recent sediments is accompanied by an increase in aromatic character. A combination of δ13C and HC ratio may be a simple but reliable source indicator which allows differentiation of marine-derived from terrestrially-derived organic matter. The δ15N values are useful indicators of nitrogen nutrient source. Deuterium/hydrogen isotope ratios appear to reflect variations in meteoric waters and are not reliable source indicators.  相似文献   

3.
The stoichiometric, KHA1, and apparent, K'HA, constants for the ionization of a number of weak acids (NH4+, HSO4?, HF, H2O, B(OH)3, H2CO3, HCO3?, H3PO4, H2PO4?, HPO42, H3AsO4 H2AsO4? and HAsO42?) in seawater at 25°C diluted with water have been fitted to equations of the form (Millero, 1979). In KHA1 = In KHA + AS12 + BS where In KHA is the thermodynamic constant in water, S is the salinity, A and B are adjustable parameters. The validity of this equation in estuarine waters has been examined by using an ion pairing model (Millero and Schreiber, 1981). The calculated values of KHA1 and K'HA at S = 35%. are in good agreement with the measured values for all the systems examined. The equation used to extrapolate the measured values to pure water KHA predicted values that agreed with those determined by using the ion pairing model. The exception was the ionization of HPO42? due to the strong interactions of Ca2+ and Mg2+ with PO43?. The differences in the predicted values of KHA1 in seawater diluted with pure water and average river water were very small for all the acids except HPO42? (the maximum ΔpK = 0.96 in average river water). The larger difference in the KHA1 for HPO42? in river waters is due to the strong interactions of Ca2+ and PO43?.  相似文献   

4.
《Organic Geochemistry》1999,30(8):901-909
Deuterium nuclear magnetic resonance spectroscopy (2H-NMR) spin–lattice relaxation (T1) experiments were used to measure noncovalent interactions between deuterated monoaromatic compounds (phenol-d5, pyridine-d5, benzene-d6) and fulvic acids isolated from the Suwannee River and Big Soda Lake. Noncovalent interactions, in aqueous solution, were examined as a function of monoaromatic hydrocarbon functional groups, fulvic acid concentration and identity, and solution pH. Phenol did not exhibit noncovalent interactions with either fulvic acid at any pH. Pyridine, in a pH range from 3 to 8, interacted with Suwannee River fulvic acid, forming a bond involving the lone pair of electrons on nitrogen. Conversely, no interactions were observed between pyridine and Big Soda Lake fulvic acid; the difference in noncovalent interactions is attributed to the structural and chemical differences of the two fulvic acids. The translational and rotational molecular motion of benzene increased in the presence of both fulvic acids, indicating that in aqueous solution, fulvic acids solubilize benzene rather than forming discrete bonds as with pyridine. The results of this study demonstrate that monoaromatic functional groups, solution pH, and identity and concentration of fulvic acid can influence the type and degree of noncovalent interactions with dissolved organic matter.  相似文献   

5.
Polyunsaturated fatty acids (C18:2 and C18:3ω3 were analyzed in the upper 20m layer of a 200 m long sediment core taken from Lake Biwa. Concentration maxima occur in layers at depths of 0.2, 1–5, 11–12, and 16m. The vertical changes in the (C18:2C(C18:0 ratio appear to correlate with paleoclimatic condition suggested from palynological evidence. On the basis of C18:2C18:0 ratios, it was suggested that it has been colder at 200, 1000–4000, 15,000 and 20,000 yr BP than at other times.  相似文献   

6.
The ability of six humic acids (HAs) to form pseudomicellar structures in aqueous solution was evaluated by five techniques: size exclusion chromatography; pyrene fluorescence enhancement; the pyrene I1/I3 ratio; the cloud point of dilute HA solutions; and the fluorescence anisotropy of HAs. Soil HAs were found to aggregate most easily, both on microscopic and macroscopic scales. The formation of amphiphilic structures was chiefly related to HA-solvent interactions: highly solvated HAs aggregated poorly, while a lignite derived material underwent intermolecular, rather than intramolecular, rearrangements. A newly discovered algal HA was found to have minimal aggregative properties.  相似文献   

7.
The present work describes the extraction of fulvic acids (FA) from Shilajit and its spectroscopic and mass spectrometric characterization. The spectral features obtained from FT-IR and 1HNMR were similar to those reported for humic substances from other sources. The molecular elemental composition analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in electrospray negative ion mode resulted in extraordinary high average O/C ratios (0.55) which might be caused by a significant contribution of carbohydrates in Shilajit. A very high average H/C ratio of 1.27 also points to dominant aliphatic or alicyclic structures and relatively low aromaticity. The average molecular formula of the nitrogen free elemental compositions measured by FT-ICR mass spectrometry is C18.2H23.0O10.0.  相似文献   

8.
Al26 and noble gas contents of 6 ordinary chondrites with He3Ne21 ratios above 6.0 or below 4.0 are used to infer the variability of the production rates of He3 and Ne21 (PHe3 and PNe21). The ratio of the observed Al26 content to a calculated, normal value is taken as a measure of the change of PNe21 from its normal value. The corresponding change in PHe3 is then computed from the observed He3Ne21 ratio and an average value of PHe3.According to these calculations which exclude orbital effects, PHe3 will be near the average value in meteorites with high He3Ne21 ratios, while PNe21 will be about 30 per cent below normal. In meteorites with low He3Ne21 ratios, PHe3 may be depressed by as much as 25 per cent from normal while PNe21 may be 15–20 per cent above the average.  相似文献   

9.
A preliminary attempt to fractionate amorphous kerogens from terrigenous bulk kerogen by a benzene-water two phase partition method under acidic condition was made. Microscopic observation revealed that amorphous kerogens and structured kerogens were fractionated effectively by this method. Characteristics of the amorphous and structured kerogens fractionated by this method were examined by some chemical analyses and compared with those of the bulk kerogen and humic acid isolated from the same rock sample (Haizume Formation, Pleistocene, Japan). The elemental and infrared (IR) analyses showed that the amorphous kerogen fraction had the highest atomicHC ratio and the lowest atomic NC ratio and was the richest in aliphatic structures and carbonyl and carboxyl functional groups. Quantities of fatty acids from the saponification products of each geopolymer were in agreement with the results of elemental and IR analyses. Distribution of the fatty acids was suggestive that more animal lipids participate in the formation of amorphous kerogens because of the abundance of relatively lower molecular weight fatty acids (such as C16 and C18 acids) in saponification products of amorphous kerogens. On the other hand, although the amorphous kerogen fraction tends to be rich in aliphatic structures compared with bulk kerogen of the same rock samples, van Krevelen plots of elemental compositions of kerogens from the core samples (Nishiyama Oil Field, Tertiary, Japan) reveal that the amorphous kerogen fraction is not necessarily characterized by markedly high atomic HC ratio. This was attributed to the oxic environment of deposition and the abundance of biodegraded terrestrial amorphous organic matter in the amorphous kerogen fraction used in this work.  相似文献   

10.
Eighteen basalts and some volcanic gases from the submarine and subaerial parts of Kilauea volcano were analyzed for the concentration and isotope ratios of sulfur. By means of a newly developed technique, sulfide and sulfate sulfur in the basalts were separately but simultaneously determined. The submarine basalt has 700 ± 100 ppm total sulfur with δ34SΣs of 0.7 ± 0.1 ‰. The sulfate/sulfide molar ratio ranges from 0.15 to 0.56 and the fractionation factor between sulfate and sulfide is +7.5 ± 1.5‰. On the other hand, the concentration and δ34SΣs values of the total sulfur in the subaerial basalt are reduced to 150 ± 50 ppm and ?0.8 ± 0.2‰, respectively. The sulfate to sulfide ratio and the fractionation factor between them are also smaller, 0.01 to 0.25 and +3.0‰, respectively. Chemical and isotopic evidence strongly suggests that sulfate and sulfide in the submarine basalt are in chemical and isotopic equilibria with each other at magmatic conditions. Their relative abundance and the isotope fractionation factors may be used to estimate the ?o2 and temperature of these basalts at the time of their extrusion onto the sea floor. The observed change in sulfur chemistry and isotopic ratios from the submarine to subaerial basalts can be interpreted as degassing of the SO2 from basalt thereby depleting sulfate and 34S in basalt.The volcanic sulfur gases, predominantly SO2, from the 1971 and 1974 fissures in Kilauea Crater have δ34S values of 0.8 to 0.9%., slightly heavier than the total sulfur in the submarine basalts and definitely heavier than the subaerial basalts, in accord with the above model. However, the δ34S value of sulfur gases (largely SO2) from Sulfur Bank is 8.0%., implying a secondary origin of the sulfur. The δ34S values of native sulfur deposits at various sites of Kilauea and Mauna Loa volcanos, sulfate ions of four deep wells and hydrogen sulfide from a geothermal well along the east rift zone are also reported. The high δ34S values (+5 to +6%.o) found for the hydrogen sulfide might be an indication of hot basaltseawater reaction beneath the east rift zone.  相似文献   

11.
A total of 268 thermal spring samples were analyzed for total soluble As using reduced molybdenum-blue; 27 of these samples were also analyzed for total Sb using flame atomic absorption spectrometry. At Yellowstone the ClAs atomic ratio is nearly constant among neutral-alkaline springs with Cl > 100 mg L?1, and within restricted geographic areas, indicating no differential effects of adiabatic vs. conductive cooling on arsenic. The ClAs ratio increases with silica and decreases with decreasing ClΣCO3; the latter relationship is best exemplified for springs along the extensively sampled SE-NW trend within the Lone Star-Upper-Midway Basin region. The relationship between ClAs and ClΣCO3 at Yellowstone suggests a possible rock leaching rather than magmatic origin for much of the Park's total As flux. Condensed vapor springs are low in both As and Cl. Very high ClAs ratios ( > 1000) are associated exclusively with highly diluted (Cl < 100 mg L?1) mixed springs in the Norris and Shoshone Basins and in the Upper White Creek and Firehole Lake areas of Lower Basin. The high ratios are associated with acidity and/or oxygen and iron; they indicate precipitation of As following massive dilution of the Asbearing high-Cl parent water.Yellowstone Sb ranged from 0.009 at Mammoth to 0.166 mg L?1 at Joseph's Coat Spring. Within basins, the ClSb ratio increases as the ClΣCO3 ratio decreases, in marked contrast to As. Mixed springs also have elevated ClSb ratios. White (1967) and Weissberg (1969) previously reported stibnite (Sb2S3), but not orpiment (As2S3), precipitating in the near surface zone of alkaline geothermal systems.  相似文献   

12.
The molecular environment of iodine in reference inorganic and organic compounds, and in dry humic and fulvic acids (HAs and FAs) extracted from subsurface and deep aquifers was probed by iodine L3-edge X-ray absorption spectroscopy. The X-ray absorption near-edge structure (XANES) of iodine spectra from HAs and FAs resembled those of organic references and displayed structural features consistent with iodine forming covalent bonds with organic molecules. Simulation of XANES spectra by linear combination of reference spectra suggested the predominance of iodine forming covalent bonds to aromatic rings (aromatic-bound iodine). Comparison of extended X-ray absorption fine structure (EXAFS) spectra of reference and samples further showed that iodine was surrounded by carbon shells at distances comparables to those for references containing aromatic-bound iodine. Quantitative analysis of EXAFS spectra indicated that iodine was bound to about one carbon at a distance d (I-C) of 2.01(4)-2.04(9) Å, which was comparable to the distances observed for aromatic-bound iodine in references (1.99(1)-2.07(6) Å), and significantly shorter than that observed for aliphatic-bound iodine (2.15(2)-2.16(2) Å). These results are in agreement with previous conclusions from X-ray photoelectron spectroscopy and from electrospray ionization mass spectrometry. These results collectively suggest that the aromatic-bound iodine is stable in the various aquifers of this study.  相似文献   

13.
Analysis of the Eu and Sr “anomalies” of eucrites and lunar rocks allows constraints to be placed on the bulk compositions of the eucrite parent body (EPB) and the Moon. The elements Al, REE, and Sr, all are essentially incompatible with the major minerals of these small, low-?(O2) bodies, except for plagioclase, into which Al, Sr, and Eu tend to concentrate. Therefore, the hypothesis that Al, REE, and Sr in the EPB and the Moon are all in proportions close to those in the bulk solar system (i.e., chondrites) leads to certain predictions about the concentrations of these elements in samples affected by plagioclase fractionation. The predictions are almost ideally fulfilled by eucrites and lunar samples. For the EPB, the ratios REEAl, SrAl, and SrREE are constrained to be probably within 10%, almost certainly within 20%, of the chondritic ratios. For the more complicated Moon, the constraints are less precise: REEAl is very probably within 25% of chondritic; SrAl and SrREE are probably within 35% of chondritic. These findings are proof that there is a strong similarity between the bulk compositions of the planets and the compositions of chondritic meteorites.The eucrites' Sm-Eu-Sr systematics are also valuable sources of constraints on the distribution coefficients for Eu and Sr into plagioclase, at low ?(O2). From the slope of data for noncumulate eucrites on a Eu-Sm plot, D(Eu,pl/liq) can be inferred to be 1.1?0.10.2. From the slope on a Sr-Sm plot, D(Sr,pl/liq)) can be inferred to be 1.5 ± 0.3. In the case of D(Eu), this is in excellent agreement with experimental data. In the case of D(Sr), the empirical result is probably more appropriate for eucritic systems than most experimental data, which, due to compositional effects, scatter widely.  相似文献   

14.
A rigorous mathematical expression for the dependence of colligative properties on acid dissociation of water soluble humic substances is presented. New data for number average molecular weights of a river derived humic material and its gel permeation Chromatographic fractions are compared with M?n values obtained by a reevaluation of previously published experimental observations on soil and water fulvic acids. The results reveal a remarkable similarity of fulvic acids from widely different sources with respect to number-average molecular weight.  相似文献   

15.
It is generally accepted that the compositions and properties of soil organic matter (SOM) are influenced by many factors. In order to reveal the effects of soil texture on characteristics and dynamics of SOM and its sub-fraction, humic acid (HA), along two soil profiles, a yellow soil profile and a purplish soil profile, under the same climate and vegetation conditions were determined. Results indicate that the decomposition and humification degrees of SOM and HA of the purplish soils are higher than those of the corresponding yellow soils indicated by A/O–A ratios of HAs, TOCs and HA yields of bulk soil samples, nevertheless, the development degree of the purplish soil is lower than that of the yellow soil. The variations of E4/E6 ratios of HAs along the soil profiles indicate the overall molecular sizes of HAs decreased downward along the soil profiles. A/O–A ratios of HAs decreased downward along both the soil profiles indicate that humification processes decrease downward along both the soil profiles. Leaching of SOM shows significant effects on the distribution and characteristics of HAs in the yellow soil profile but the purplish soil profile, which is consistent with the higher hydrophobicity of HAs in purplish soils, shows that the distribution characteristics of SOM along the soil profiles are a complex result of the combination of soil texture and characteristics of SOM itself. The remarkably different sand contents are concluded tentatively as one of reasons to the different distributions and dynamics of HAs along the soil profiles, however, to profoundly understand the evolution and transport of SOM along soil profiles needs more researches.  相似文献   

16.
Rapid accumulation of CaCO3 is occurring in Littlefield Lake, a marl lake located in central Michigan. The sediment, which is 95% CaCO3, primarily consists of eight different genetic groups of carbonate allochems. These include calcite muds, sands, algal oncoids and Chara encrustations, as well as the dominant aragonitic gastropods Valvota tricarinota. Gyraulus deflectus and Amnicola integra. and the dominant aragonitic pelecypod Sphaerium partumeium. Samples of each of these groups were analyzed for Ca, Sr and Mg. Molar MgCa ratios are primarily controlled by allochem mineralogy, with calcitic forms having MgCa ratios 5–10 times larger than aragonitic (shelled) forms. The SrCa ratios are primarily controlled by biochemical fractionation, and are significantly lower than SrCa ratios of inorganically precipitated aragonite from other settings. Partition coefficients were determined for both Sr and Mg for each carbonate allochem group and, based on comparisons with results reported by other workers, the partition coefficients determined here are generally considered ‘typical’ or representative values for biogeneous freshwater carbonates. An analysis of variance of the data indicates that most genera and species of carbonate-secreting organisms in marl lakes have highly characteristic SrCa and MgCa ratios. These ratios can potentially serve as geochemical tracers in future investigations of lacustrine carbonate diagenesis. Both Sr and Mg are influenced by grain size and/or surface area, probably due to the presence of these elements in non-lattice-held (exchangeable) positions.  相似文献   

17.
Extents of racemization (dl ratios) of amino acids in fossil Saxidomus giganteus (Deshayes) and Ostrea lurida Carpenter were measured on shell deposits exposed at 21 sites on the east side of Willapa Bay, Washington. Amino acids from Saxidomus show less variability in dSpl ratios and, therefore, are of greater use in correlation and age estimation than are amino acids from Ostrea. Shells of two different ages, about 120,000 ± 40,000 yr old and about 190,000 ± 40,000 yr old, are present. These ages correspond to Stages 5 and 7 of the marine isotope record defined by Shackleton and Opdyke in 1973 and hence the shell deposits likely formed during two different high stands of sea level. The stratigraphic record at Willapa Bay is consistent with this interpretation.  相似文献   

18.
Calcium-45 was used as a radiotracer to measure self-diffusion coefficients for Ca in a sodium-calcium-aluminosilicate melt (29% Na2O, 5% CaO, 10% Al2O3, 56% SiO2) at temperatures in the range 1100–1400°C and pressures to 30 kbar. Calcium diffusivity (DCa) was found to depend upon both temperature and pressure in a complex but systematic manner: (?DCa?P)T is always negative and has a larger absolute value at lower temperatures; (?DCa?T)P is positive and increases with increasing pressure. The overall dependence of DCa upon T and P is given approximately by DcaT.P = [0.0025 exp(-23,107RT)] exp [P(0.7297T ? 1261.32)RT]. When expressed in terms of volume (Va) and energy (E) of activation, the results are as follows: Va ranges from 2.2 cm3/mole at 1400°C to 11.9 cm3/mole at 1100°C. and E ranges from 25.4 kcal/mole (1 kban to 49.8 kcal/mole (20 kbar).From the systematic dependence of DCa upon T and P, it is concluded that diffusion of Ca2+ in silicate melts does not take place by means of a vacant site mechanism, but is controlled instead by the amount and distribution of free volume in the melt structure.If it is assumed that the viscosity of the melt used in this study decreases with increasing pressure (Kushiro, 1976, J. Geophys. Res.81, 6351–6356) as DCa does, then the Stokes-Einstein inverse relation between viscosity and diffusivity is clearly violated, and its validity for silicate melts must be questioned. Thus, it appears that in silicate melts, unlike many liquids, viscous flow and diffusion are fundamentally different transport processes, involving different structural units.The effect of pressure on calcium diffusion is too small to invalidate kinetic models of upper mantle processes that have been based upon diffusivity values measured at 1 atm. Pressure may, however, induce significant reductions in the diffusion rates of large ions such as Rb+ or SiO4?4 in silicate melts.  相似文献   

19.
The apparent molal volume, φV of boric acid, B(OH)3 and sodium borate, NaB(OH)4, have been determined in 35%. salinity seawater and 0·725 molal NaCl solutions at 0 and 25°C from precise density measurements. Similar to the behavior of nonelectrolytes and electrolytes in pure water, the φV of B(OH)3 is a linear function of added molality and the φV of NaB(OH)4 is a linear function of the square root of added molarity in seawater and NaCl solutions. The partial molal volumes, V?1, of B(OH)3 and NaB(OH)4 in seawater and NaCl were determined from the φV's by extrapolating to infinite dilution in the medium. The V?1 of B(OH)3 is larger in NaCl and seawater than pure water apparently due to the ability of electrolytes to dehydrate the nonelectrolyte B(OH)3. The V?1 of NaB(OH)4 in itself, NaCl and seawater is larger than the expected value at 0·725 molal ionic strength due to ion pair formation [Na+ + B(OH)4?NaB(OH)40]. The volume change for the formation of NaB(OH)40 in itself and NaCl was found to be equal to 29·4 ml mol?1 at 25°C and 0·725 molal ionic strength. These large ΔV?1's indicate that at least one water molecule is released when the ion pair is formed [Na+ + B(OH)4?H2O + NaOB(OH)20]. The observed V?1 in seawater and the ΔV?1 (NaB0) in water and NaCl were used to estimate ΔV?1 (MgB+) = ΔV?1 (CaB+) = 38·4 ml mol?1 for the formation of MgB+ and CaB+. The volume change for the ionization of B(OH)3 in NaCl and seawater was determined from the molal volume data. Values of ΔV?1 = ?29·2 and ?25·9 ml mol?1 were found in seawater and ΔV?1 = ?21·6 and ?26·4 in NaCl, respectively, at 0 and 25°C. The effect of pressure on the ionization of B(OH)3 in NaCl and seawater at 0 and 25°C determined from the volume change is in excellent agreement with direct measurements in artificial seawater (culberson and Pytkowicz, 1968; Disteche and Disteche, 1967) and natural seawater (Culberson and Pytkowicz, 1968).  相似文献   

20.
1H NMR spectra of humic (HA) and fulvic (FA) acids and their oxidative degradation products are reported. The HA shows the presence of -(CH2)n - CH3 (n > 6) chemical fragments belonging to n-alkanes and/or n-fatty acids physically adsorbed onto the macromolecule structure. These fragments are absent in the FA fraction. Both humic fractions reveal the presence of similar amounts of aromatic protons which partly undergo exchange phenomena. The importance of this experimental observation is discussed. Oxidative degradation seems to cause partial cleavage of aromatic rings, more pronounced in the FA than in the HA. The degraded FA shows a higher total acidity and a higher phenolic OH content than the degraded HA. Both degraded fractions display some sharp singlet signals at 1.9 and 3.9 ppm arising from protons belonging to repetitive chemical fragments probably formed during the oxidation reaction. Tentative assignments of these signals are given. A general analysis of the HA and FA degraded spectra seems to indicate that the chemical fragments which undergo peracetic oxidation are substantially similar. The extent of oxidation of the two humic fractions is different. The HA degradation products reveal the presence of oligomeric structures, whereas the degraded FA appears less resistant to the oxidizing agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号