首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of Mn(II) oxidation by the bacterium Leptothrix discophora SS1 was investigated in this research. Cells were grown in a minimal mineral salts medium in which chemical speciation was well defined. Mn(II) oxidation was observed in a bioreactor under controlled conditions with pH, O2, and temperature regulation. Mn(II) oxidation experiments were performed at cell concentrations between 24 mg/L and 35 mg/L, over a pH range from 6 to 8.5, between temperatures of 10°C and 40°C, over a dissolved oxygen range of 0 to 8.05 mg/L, and with L. discophora SS1 cells that were grown in the presence of Cu concentrations ranging from zero to 0.1 μM. Mn(II) oxidation rates were determined when the cultures grew to stationary phase and were found to be directly proportional to O2 and cell concentrations over the ranges investigated. The optimum pH for Mn(II) oxidation was approximately 7.5, and the optimum temperature was 30°C. A Cu level as low as 0.02 μM was found to inhibit the growth rate and yield of L. discophora SS1 observed in shake flasks, while Cu levels between 0.02 and 0.1 μM stimulated the Mn(II) oxidation rate observed in bioreactors. An overall rate law for Mn(II) oxidation by L. discophora as a function of pH, temperature, dissolved oxygen concentration (D.O.), and Cu concentration is proposed. At circumneutral pH, the rate of biologically mediated Mn(II) oxidation is likely to exceed homogeneous abiotic Mn(II) oxidation at relatively low (≈μg/L) concentrations of Mn oxidizing bacteria.  相似文献   

2.
Vertical and horizontal distributions of dissolved and suspended particulate Fe and Mn, and vertical fluxes of these metals (obtained with sediment traps) were determined throughout the Pacific Ocean. In general, dissolved Fe is low in surface and deep waters (0.1 to 0.7 nmol/kg), with maxima associated with the intermediate depth oxygen minimum zone (2.0 to 6.6 nmol/kg). Vertical distributions of dissolved Mn are similar to previous reports, exhibiting a surface maximum, a subsurface minimum, a Mn maximum layer coincident with the oxygen minimum zone, and lowest values in deep waters.Near-shore removal processes are more intense for dissolved Fe than for dissolved Mn. Dissolved Mn in the surface mixed layer remains elevated much farther offshore than dissolved Fe. Elevated near-surface dissolved Mn concentrations occur in the North Pacific Equatorial Current, suggesting transport from the eastern boundary. Near-surface mixed-layer dissolved Mn concentrations are higher in the North Pacific gyre reflecting enhanced northern hemisphere aeolian sources.Residence time estimates for the settling of refractory paniculate Fe and Mn from the upper water column are 62–220 days (Fe), and 105–235 days (Mn). In contrast, residence times for the scavenging of dissolved Fe and Mn are 2–13 years (Fe) and 3–74 years (Mn). Scavenging residence times for dissolved Mn based on horizontal mixing in the surface mixed layer of the northeast Pacific are 0.4 years (nearshore) to 19 years (1000 km offshore).There is no evidence for in situ Fe redox dissolution within sub-oxic waters in the eastern tropical North Pacific. Dissolved Fe appeared to be controlled by dissolution from sub-oxic sediments, with oxidative scavenging in the water column or upper sediment layers. However, in situ Mn dissolution within the oxygen minimum zone was evident.  相似文献   

3.
Data are presented describing the changes in the distribution of dissolved and particulate Mn observed over a 16-month period in the periodically anoxic waters of Saanich Inlet, a fjord located on the coast of Vancouver Island, British Columbia. During the spring and summer when the bottom waters were anoxic, a dense cloud of particulate Mn was found at mid-depths where Mn2+ enriched anoxic bottom waters were mixing with oxygenated waters; then, during the autumn aand winter following an intrusion which reoxygenated the bottom water, an intense precipitation of Mn was observed throughout the entire water column. During this latter period, dissolved Mn concentrations in the bottom water, which exceeded 1000 nmol/l under anoxic conditions, decreased towards a lower limit of 1.6 nmole/l, a value comparable to that observed in Pacific Ocean waters of similar pH and dissolved oxygen content. Mn in the particulate matter collected just above the oxic-anoxic interface was found to have an average oxidation number of +3.05; and, on this basis, it is proposed that dissolved Mn concentrations in oceanic waters are controlled by the precipitation of the metastable oxide mineral manganite (γ-MnOOH), a hypothesis consistent with the fact that dissolved Mn values in subsurface Pacific Ocean waters closely approach the equilibrium solubility of this phase. Temporal and spatial gradients in the particulate Mn distribution were used to calculate the in situ rate of Mn precipitation, and the results of these calculations then were fitted to theoretical rate equations which suggest that the precipitation of Mn is controlled by 2 parallel processes: bacterial oxidation and an inorganic autocatalytic oxidation reaction.  相似文献   

4.
Concentrations of total and dissolved elements were determined in 35 water samples collected from rivers in Sardinia, a Mediterranean island in Italy. The overall composition did not change for waters sampled in both winter and summer (i.e., January at high-flow condition and June at low-flow condition), but the salinity and concentrations of the major ions increased in summer. Concentrations of elements such as Li, B, Mn, Rb, Sr, Mo, Ba and U were higher in summer with only small differences between total and dissolved (i.e., in the fraction <0.4 μm) concentrations. The fact that these elements are mostly dissolved during low flow periods appears to be related to the intensity of water–rock interaction processes that are enhanced when the contribution of rainwater to the rivers is low, that is during low-flow conditions. In contrast, the concentrations of Al and Fe were higher in winter during high flow with total concentrations significantly higher than dissolved concentrations, indicating that the total amount depends on the amount of suspended matter. In waters filtered through 0.015 μm pore-size filters, the concentrations of Al and Fe were much lower than in waters filtered through 0.4 μm pore-size filters, indicating that the dissolved fraction comprises very fine particles or colloids. Also, Co, Ni, Cu, Zn, Cd and Pb were generally higher in waters collected during the high-flow condition, with much lower concentrations in 0.015 μm pore-size filtered waters; this suggests aqueous transport via adsorption onto very fine particles. The rare earth elements (REE) and Th dissolved in the river waters display a wide range in concentrations (∑REE: 0.1–23 μg/L; Th: <0.005–0.58 μg/L). Higher REE and Th concentrations occurred at high flow. The positive correlation between ∑REE and Fe suggests that the REE are associated with very fine particles (>0.015 and <0.4 μm); the abundance of these particles in the river controls the partitioning of REE between solution and solid phases.Twenty percent of the water samples had dissolved Pb and total Hg concentrations that exceeded the Italian guidelines for drinking water (>10 μg/L Pb and >1 μg/L Hg). The highest concentrations of these heavy metals were observed at high-flow conditions and they were likely due to the weathering of mine wastes and to uncontrolled urban wastes discharged into the rivers.  相似文献   

5.
The distribution of Mn was examined in the bottom sediments and water column (suspended paniculate matter) of the Laurentian Trough. Gulf of St. Lawrence. A characteristic profile of Mn with depth in the sediment consisted of a Mn-enriched surface oxidized zone, less than 20 mm thick, and a Mn-depleted subsurface reducing zone. A subsurface Mn maximum occurred within the oxidized zone. Below this maximum the concentration dropped sharply to nearly constant residual levels in the reducing zone. The accumulating estuarine sediments are deficient in Mn compared to the river input of suspended matter and are definitely not the ultimate sink for manganese. Manganese escapes from the sediment by diffusion and resuspension, forming Mn-enriched, fine-grained particles which are flushed out in the estuarine circulation. 5.0 × 109gyr?1 of Mn, or 50% more than the river input of dissolved Mn. are exported to the open ocean. In spite of the efficient mobilization and export of Mn, the quantity exported is a small fraction (0.2%) of the total flux to the deep-sea sediments. This is related to the low levels of paniculate matter transported by the St. Lawrence River. The export phénomenon, however, is probably true of many coastal regions of muddy sediments and thus has interesting implications for the oceanic budget of Mn.  相似文献   

6.
Manganese has been measured in size-fractionated paniculate matter profiles obtained by large volume in situ filtration of the upper 1000 m of the N.W. Atlantic as part of the Warm Core Rings Experiment (WCRE) in 1982. Environments sampled included Warm Core Rings (WCR) 82B and 82H, the entrainment zone at the edge of these rings, the Slope Water surrounding rings, and the Gulf Stream (GS) and Sargasso Sea (SS) from which the rings formed.Manganese concentrations ranged from 10 pmol kg−1 to 10,000 pmol kg−1 with the extreme values observed in the quasi-isolated core waters of WCR 82B and in a tongue of shelf water at the periphery of WCR 82B, respectively. The majority of the Mn was in the 1–53 μm particle size fraction and most Mn was probably close to 1 μm in size. Mn showed no correlation with major biogenic phases indicating that formation by local biological processes was not an important source. Instead, most paniculate Mn present in the waters sampled originated in reducing sediments at the continental margin.A manganese budget for the quasi-isolated core waters of WCR 82B between February and June 1982 showed that most Mn removal was by the aggregation of the small Mn-oxyhydroxide particles into fecal material, followed by sedimentation.Calculations show that WCRs cause offshore particulate Mn transports from the continental margin between 66°W and Cape Hatteras of 8.5 × 104 to 14 × 104 mol d−1 with most derived from the continental shelf. Only 4% of the shelf derived Mn becomes entrained into WCRs and the rest is left to disperse in the Slope Water or enter the circulation of the Gulf Stream. The WCR-induced offshore Mn transports may account for a large fraction of the Mn flux to sediments on the continental slope and upper continental rise.  相似文献   

7.
Montmorillonite, kaolinite, goethite, and particulate and soluble natural organic materials influence the rate of Mn(II) oxidation. While surfaces accelerate the reaction, apparently by bonding Mn2+ in a manner which fulfills the requirements of the transition state, soluble organic materials retard the reaction by complexing the oxidizable species. It is doubtful whether particulate matter would influence the oxidation process under natural loading conditions since 50–500 mg l?1quantities are required to produce measurable changes in the reaction rate. Complexation by humic materials, however, might be expected to reduce the rate of oxidation by an amount proportional to the dissolved organic carbon concentration. Oxidation followed by precipitation is predicted to be an important mechanism for Mn2+ removal in oceanic waters. The situation is less predictable in lake waters.  相似文献   

8.
Due to the varying toxicity of different Al species, information about Al concentration and speciation is important when assessing water quality. Modelling Al speciation can support operational monitoring programmes where Al speciation is not measured directly. Modelling also makes it possible to retroactively speciate older samples where laboratory fractionation was not undertaken. Organic-rich waters are a particular challenge for both laboratory analysis and models. This paper presents the modelling of Al speciation in Swedish surface waters using the Windermere Humic Acid Model (WHAM). The model was calibrated with data from operational monitoring, the Swedish national survey of lakes and rivers, and covers a broad spectrum of physical and chemical conditions. Calibration was undertaken by varying the amount of DOC active in binding Al. A sensitivity analysis identified the minimum parameters required as model input variables primarily to be total Al, organic C, pH, F, and secondly Fe, Ca and Mg. The observed and modelled Ali had no significant differences (Spearman rank, p < 0.01), however, lake samples modelled better than rivers. Samples were placed in the correct toxicological category in 89–95% of the cases. The importance of the size of the calibration data set was assessed, and reducing the calibration data set resulted in poorer correlations, but had little impact on the toxicological placement. Overall, the modelling gave satisfactory results from samples covering a broad spectrum of physical and chemical conditions. This indicates the potential value of WHAM as a tool in operational monitoring of surface waters.  相似文献   

9.
The balance between physicochemical processes, influencing vertical and temporal distributions of metal compounds in one relatively isolated anoxic environment, constitutes the objective of the present work. Ion activity product (IAP) was calculated for manganese and iron sulfides, in order to define the metal sulfide forms that control Fe and Mn solubility in the bottom waters of anoxic lagoons. Iron solubility depended on amorphous FeS formation, while manganese sulfides were a minor component in a solid solution lowering its solid-phase activity. A theoretical physicochemical model was developed for the iron speciation, based on experimental pH and redox potential data. A very good match was achieved for the measured and the theoretical total dissolved iron, at all depths. The dominance of oxidant iron species Fe(OH) 3 ? in the surface waters and their sequence by FeSH+ and FeSaq in the deeper layers brings out the influence of physicochemical parameters (dissolved oxygen, sulfide, pH and Eh) in vertical distribution of dissolved metal species, in anoxic/hypoxic basins. Based on these findings, we can conclude that the distribution of manganese and iron is of special interest, not only because these are the indicators of redox conditions but also for the role of their oxidized/reduced forms in the formation of the biogeochemical structure of redox zone.  相似文献   

10.
The objective of this research is to assess critically the experimental rate data for O2 oxidation of dissolved Mn(II) species at 25°C and to interpret the rates in terms of the solution species of Mn(II) in natural waters. A species kinetic rate expression for parallel paths expresses the total rate of Mn(II) oxidation as Σki aij, where ki is the rate constant of species i and aij is the species concentration fraction in solution j. Among the species considered in the rate expression are Mn(II) hydrolysis products, carbonate complexes, ammonia complexes, and halide and sulfate complexes, in addition to the free aqueous ion. Experiments in three different laboratory buffers and in seawater yield an apparent rate constant for Mn(II) disappearance, kapp,j ranging from 8.6 × 10−5 to 2.5 × 10−2 (M−1s−1), between pH 8.03 and 9.30, respectively. Observed values of kapp exceed predictions based on Marcus outer-sphere electron transfer theory by more than four orders of magnitude, lending strong support to the proposal that Mn(II) + O2 electron transfer follows an inner-sphere path. A multiple linear regression analysis fit of the observed rates to the species kinetic rate expression yields the following oxidation rate constants (M−1s−1) for the most reactive species: MnOH+, 1.66 × 10−2; Mn(OH)2, 2.09 × 101; and Mn(CO3)22−, 8.13 × 10−2. The species kinetic rate expression accounts for the influence of pH and carbonate on oxidation rates of Mn(II), through complex formation and acid-base equilibria of both reactive and unreactive species. At pH ∼8, the greater fraction of the total rate is carried by MnOH+. At pH greater than ∼8.4, the species Mn(OH)2 and Mn(CO3)22− make the greater contributions to the total rate.  相似文献   

11.
Analytical methods of dissolved Se species in river water and seawater were established and applied to study dissolved Se speciation in the Kaoping and Erhjen rivers and estuaries, southwestern Taiwan. The Kaoping and Erhjen rivers and estuaries were respectively in relatively oxygenated and oxygen-deficient conditions as revealed from the distributions of dissolved oxygen, DOC, nutrients, and dissolved Mn. Concentrations of dissolved total Se increased downstream in the riverine sections, ranging from 0.6 nM to 1.2 nM for the Kaoping River and from 0.8 nM to 1.05 nM for the Erhjen River. The dissolved total Se was only slightly higher in the Erhjen middle estuary than in the Kaoping middle estuary in spite of heavier pollution in the former. The dissolved total Se behaved rather conservatively in the Kaoping estuary but nonconservatively in the Erhjen estuary resulting from anthropogenic inputs, and in this respect showed similarities with the behavior of redox-sensitive Mn. The predominant species of selenium were Se(VI) and organic Se in the Kaoping River and Se(VI) in the Kaoping estuary. The elevated concentration of Se(VI) in the Kaoping estuary may stem from the degradation of organic Se and oxidation of Se(IV). On the other hand, Se(IV) and organic Se were equally dominant in the Erhjen River, and Se(IV) was predominant through most of the Erhjen estuary. The elevated distribution of Se(IV) in the Erhjen middle estuary may result mostly from partial decomposition of organic Se, but further oxidation of Se(IV) was inhibited in reducing waters. However, Se(VI) became dominant at Erhjen outer estuary where water was oxygenated by the replacement of intruded coastal seawater. Apparently, the speciation of dissolved Se was mainly controlled by the biological and redox processes in the Kaoping and Erhjen rivers and estuaries.  相似文献   

12.
Water samples from eight major Texas rivers were collected at different times during 1997–1998 to determine the dissolved and particulate trace metal concentrations, expected to show differences in climate patterns, river discharge and other hydrochemical conditions, and human activities along the different rivers. Specifically, two eastern Texas rivers (Sabine, Neches) lie in a region with high vegetation, flat topography, and high rainfall rates, while four Central Texas rivers (Trinity, Brazos, Colorado, and San Antonio) flow through large population centers. Relatively high dissolved organic carbon (DOC) concentrations in the eastern Texas rivers and lower pH led to higher Fe and Mn concentrations in river waters. The rivers that flow through large population centers showed elevated trace metal (e.g., Cd, Pb, Zn) concentrations partly due to anthropogenically produced organic ligands such as ethylenediaminetetraacetic acid (EDTA) present in these rivers. Trace metal levels were reduced below dams/reservoirs along several Texas rivers. Statistical analysis revealed four major factors (suspended particulate matter [SPM], EDTA, pH, and DOC) that can explain most of the observed variability of trace metal concentrations in these rivers. SPM concentrations directly controlled particulate metal contents. Variation in pH correlated with changes of dissolved Co, Fe, Mn, and Ni, and particulate Mn concentrations, while DOC concentrations were significantly related to dissolved Fe concentrations. Most importantly, it was found that, more than pH, EDTA concentrations exerted a major control on dissolved concentrations of Cd and Zn, and, to a lesser extent, Cu, Ni, and Pb.  相似文献   

13.
A preliminary assessment of the Wujiangdu Reservoir examined nutrient distribution and transport. Water samples were collected in the summer (July) of 2004, during the high-flow season. Inorganic nutrients (N, P, Si) and chlorophyll a (chl a) concentrations of the Wujiangdu Reservoir and its inflow rivers were analyzed. Other water parameters (dissolved oxygen, pH, temperature, and electrical conductivity) were measured as well. The results show gradually decreasing concentrations of NO3 ?-N and dissolved silicate in the surface water moving downstream to the dam of the Wujiangdu Reservoir. Additionally, soluble reactive phosphorus concentrations measured very low, with most falling below the sensitivity threshold of the method used in surface waters. Particulate phosphorus and NO3 ?-N were the predominant species of phosphorus and nitrogen in the reservoir, respectively. The concentration of nutrients in the Yeji River was the largest of all inflow rivers. The maximum concentration of chl a was found near the dam. These results reflect upstream conditions similar to that of a river, and reservoir conditions near the dam similar to that of a natural lake system.  相似文献   

14.
《Applied Geochemistry》2000,15(9):1345-1367
Rare Earth Elements (REEs), and Sr and Nd isotope distributions, have been studied in mineralized waters from the Massif Central (France). The CO2-rich springs are characterized by a neutral pH (6–7) associated with total dissolved solids (TDS) from 1 to 7 g l−1. The waters result from the mixing of very mineralized water pools, thought to have equilibrated at a temperature of around 200°C with superficial waters. These two mineral water pools evidenced by Sr isotopes and dissolved REEs could reflect 2 different stages of water–rock interaction and an equilibrium with different mineral assemblages.The concentrations of individual dissolved REEs and total dissolved REEs (ΣREE), in the mineral waters examined, vary over several orders of magnitude but are not dependent on the main parameters of the waters (TDS, T°C, pH, Total Organic C). The dissolved REE concentrations presented as upper continental crust normalized patterns show HREE enrichment in most of the samples. The time evolution of REE patterns does not show significant fluctuations except in 1 borehole, located in the Limagne d’Allier area, which was sampled on 16 occasions over an 18 month period. Ten samples are HREE-enriched, whereas 6 samples show flat patterns.The aqueous speciation of REEs shows that CO2−3 complexes dominate (>80%) over the free metal, F, SO2−4 and HCO3 complexes. The detailed speciation demonstrates that the fractionation of REEs (i.e. the HREE enrichment) in CO2-rich and pH neutral fluids is due essentially to the predominance of the CO2−3 complexes.The Sr isotopic composition of the mineral waters in the Massif Central shows different mixing processes; in the Cézallier area at least 3 end-member water types exist. The most dilute end-member is likely to originate as poorly mineralized waters with minimal groundwater circulation. Two other mineralized end-members are identified, although the link between the geographical location of spring outflow and the mixing proportion between the 2 end-members is not systematic. The range in ϵNd(0) for mineralized waters in the Massif Central correlates well with that of the known parent rocks except for 4 springs. One way to explain the ϵNd(0) in these instances is a contribution from drainage of volcanic rocks. The isotopic systematics help to constrain the hydrogeological models for this area.  相似文献   

15.
The rates of Fe(II) oxidation and precipitation from groundwater are highly pH dependent. Elevated levels of dissolved CO2 can depress pH and cause difficulty in removing dissolved Fe and associated metals during treatment of ferruginous water. This paper demonstrates interdependent changes in pH, dissolved inorganic C species, and Fe(II) oxidation rates that occur as a result of the removal (degassing) of CO2 during aeration of waters discharged from abandoned coal mines. The results of field monitoring of aeration cascades at a treatment facility as well as batchwise aeration experiments conducted using net alkaline and net acidic waters in the UK are combined with geochemical modelling to demonstrate the spatial and temporal evolution of the discharge water chemistry. The aeration cascades removed approximately 67% of the dissolved CO2 initially present but varying the design did not affect the concentration of Fe(II) leaving the treatment ponds. Continued removal of the residual CO2 by mechanical aeration increased pH by as much as 2 units and resulted in large increases in the rates of Fe(II) oxidation and precipitation. Effective exsolution of CO2 led to a reduction in the required lime dose for removal of remaining Fe(II), a very important factor with regard to increasing the sustainability of treatment practices. An important ancillary finding for passive treatment is that varying the design of the cascades had little impact on the rate of CO2 removal at the flow rates measured.  相似文献   

16.
Mn, Sr, Ba, Rb, Cu, Zn, Pb and Cd concentrations have been measured seasonally in the water and deposited sediments of the system comprising: Zala river (main input) — Lakes Kis-Balaton 1 and 2 (small artificial lakes created in a former bay of Lake Balaton) — Keszthely bay (hypertrophic part of Lake Balaton). The concentrations of the trace elements together with pH, alkalinity, dissolved cations (Ca2+, Mg2+, Na+, and K+), dissolved inorganic ligands (Cl, SO4 2–), particulate Al, Ca, inorganic and organic carbon are used to assess the contamination of the study area and biogeochemical processes controlling trace element concentrations. Thermodynamic speciation calculations have also been utilized to enhance our understanding of the system. In the sediments Rb, Ba, Cu and Zn concentrations were mainly controlled by the abundance of the aluminosilicate fraction. Strontium was mainly associated with the calcium carbonate fraction. The aluminosilicate fraction constitutes a major sink for Mn and Cd but the concentration of these elements are also strongly related to calcite precipitation. The main processes that control the dissolved distribution of trace elements in the Balaton system were: solid phase formation (carbonate) for Mn; coprecipitation with calcite for Sr, Ba, Rb and possibly Mn and Cd; adsorption/desorption processes (pH dependent) for Zn and Pb; solubilization of Mn and precipitation of Cd and Cu in reed covered wetland areas where anoxic conditions were probably existing during the warm season. A preliminary budget of atmospheric and river input to Lake Balaton has also been outlined. Although Lake Balaton, is subjected to anthropogenic inputs mainly from agricultural and domestic activities, their impact on trace element concentrations in the Balaton system is very limited due to the efficiency of removal processes (i.e. adsorption and co-precipitation) and to high sedimentation rates and strong sediment re-suspension. Anthropogenic inputs are only detected for Pb.  相似文献   

17.
《Applied Geochemistry》2003,18(9):1297-1312
The concentrations of As in surface- and up to 90 °C ground waters in a tholeiite flood basalt area in N-Iceland lie in the range <0.03–10 μg/kg. With few exceptions surface waters contain <0.5 μg/kg As whereas ground waters generally contain >0.5 μg/kg As. The As content of ground waters increases on the whole with rising temperature. Arsenic is highly mobile in the basalt-water environment of the study area. An insignificant fraction of the As dissolved from the rock is taken up into secondary minerals. Arsenic is less mobile than B but considerably more mobile than Na which has the highest mobility among the major aqueous components. A significant fraction of the As in the basalt occurs in an easily soluble form. The As hosted in the primary minerals is expected to be concentrated in the titano-magnetite. This mineral is stable in contact with both surface- and ground waters and does not, therefore, supply As to the water, explaining the difference in mobility between As and B. Aqueous As concentrations are a reflection of water/rock ratios, i.e. how much rock a given quantity of water has dissolved. This ratio increases with increasing temperature and increasing residence time of the water in contact with the rock. The distribution of As species has been calculated on the assumption of equilibrium at the redox potential retrieved from measurement of aqueous Fe(II) and Fe(III) concentrations. These calculations indicate that pentavalent As is stable in surface waters and in ground waters with an in situ pH of <10 and would occur mostly as H2AsO4 and HAsO4−2. In higher pH ground waters the concentrations of the arsenite species H2AsO3 is significant at equilibrium, up to 65% of the total dissolved As.  相似文献   

18.
The reductive capacity of Fe(II) present in anoxic sediment pore waters affects biogeochemically significant processes that occur in these environments, such as metal speciation, mineral solubility, nutrient bioavailability, and the transformation of anthropogenic organic compounds. We studied the reduction of pentachloronitrobenzene (PCNB) in natural pore waters to elucidate the reductive capacity of Fe(II) complexes, and monitored the redox-active species responsible for the observed kinetics. Differential pulse polarography (DPP) scans of sediment pore waters from a coastal Lake Erie wetland (Old Woman Creek National Estuarine Research Reserve, Huron, OH) revealed an increase in both Fe(III)-organic and Fe(II) species to a depth of ∼30 cm below the sediment-water interface. Concentrations of dissolved organic matter (DOM) in pore waters increased while pH decreased with depth. We found that Fe(II) was necessary for rapid PCNB reduction (<24 h), and observed faster reduction with increased pH. PCNB reduction in preserved pore waters (acidified to pH 2.5 after pore water extraction and raised to the native pH (6.7-7.6) prior to reaction) was similar to that observed in a model system containing Fe(II) and fulvic acid isolated from this site. Conversely, PCNB reduction in unaltered pore water was significantly slower than that observed in preserved pore water, indicating that the Fe(II) speciation and its reductive capacity differed. DPP scans of pore waters used for kinetic studies confirmed that pH-adjustment affected FeT speciation in the pore waters, as the Fe(III)-DOM peak current was lowered or disappeared completely in the preserved pore water samples. These data show that pH-adjustment of pore waters presumably alters both their complexation chemistry and reactivity towards PCNB, and shows how small changes in Fe complexation can potentially affect redox chemistry in anoxic environments. Our results also show that reactive organic Fe(II) complexes are naturally present in wetland sediment pore waters, and that these species are potentially important mediators of Fe(II)/Fe(III) redox biogeochemistry in anoxic sedimentary environments.  相似文献   

19.
Four cores of anoxic sediments were collected from the Seine estuary to assess the early diagenesis pathways leading to the formation of previously reactive phase. Pore waters were analyzed for dissolved iron (Fe) and manganese (Mn) and different ligands (e.g., sulfate, chloride, total inorganic carbon). The anoxic zone is present up to the first centimeter depth, in these conditions the reduction of Mn and Fe oxides and SO4 2− was verified. The sulfate reduction was well established with a subsequent carbon mineralization in the NORMAI94 core. The chemical speciation of Mn and Fe in the dissolved and solid phases was determined. For the dissolved phase, thermodynamic calculations were used to characterize and illustrate the importance of carbonate and phosphate phases as sinks for Fe and Mn. The ion activity product (IAP) of Fe and Mn species was compared to the solubility products (Ks) of these species. In the solid phase, the presence of higher concentration of calcium carbonate in the Seine sediments is an important factor controlling Mn cycle. The carbonate-bound Mn can reach more than 75% of the total concentration. This result is confirmed by the use of electron spin resonance (ESR) spectroscopy. The reduction of Fe is closely coupled to the sulfate reduction by the formation of new solid phases such as FeS and FeS2, which can be regarded as temporal sinks for sulfides. These forms were quantified in all cores as acid volatile sulfide (AVS: FeS+ free sulfide) and chromium reducible sulfide (CRS: FeS2+elemental sulfur S0).  相似文献   

20.
The development of podzols in lateritic landscapes of the upper Amazon basin contributes to the exportation of organic carbon and associated metals in the black waters of the Negro River watershed. We have investigated the distribution of FeIII in the clay-size fraction of eight organic-rich horizons of waterlogged plateau podzols, to unravel the weathering conditions and mechanisms that control its transfer to the rivers. The speciation and amount of FeIII stored in residual mineral phases of laterites, or bound to organic compounds of weakly and well-expressed podzols, were determined by electron paramagnetic resonance spectroscopy combined with chemical analyses.Reducing conditions restrict the production of organo-Fe complexes in the subsoil B-horizons of waterlogged podzols and most of the Fe2+ released from the dissolution of Fe-oxides is exported to the rivers via the perched groundwater. However, significant amounts of diluted FeIII bound to organic ligands (FeIIIOM) and nano Fe-oxides are produced at the margin of the depression in the topsoil A horizons of weakly expressed podzols due to shorter periods of anoxia. The downward translocation of organically bound metals from topsoil A to subsoil B-horizons of podzols occurs in shorter distances for Fe than it does for Al. This separation of secondary Fe species from Al species is attributed to the physical fractionation of their organic carriers in texture contrasted B-horizons of podzols, as well as to the effect of pH on metal speciation in soil solutions and metal binding onto soil organic ligands (mostly for Al). This leads us to consider the topsoil A horizons of weakly expressed podzols, as well as the subsoil Bh horizon of better-expressed ones, as the main sources for the transfer of FeIIIOM to the rivers. The concentration of FeIIIOM rises from soil sources to river colloids, suggesting drastic biogeochemical changes in more oxygenated black waters of the Negro River watershed. The contribution of soil organic matter to the transfer of Fe to rivers is likely at the origin of the peculiar Fe isotope pattern recently recognized in podzolic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号