首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tentative mass balance of dissolved Li in the oceans suggests that basalt-seawater reactions play an important role in the Li cycle. However, removal of dissolved Li by basalt during reactions at low or moderate temperatures cannot compensate totally for inputs owing to basalt-seawater reactions at high temperatures and to continental run-off. We propose that the Li budget in the oceans is balanced by incorporation of Li into authigenic clay minerals. Li concentration profiles in the water column support this model. Basalt-seawater reactions at high temperatures seem to affect strongly the distribution of dissolved Li in interstitial waters of overlying sediments, suggesting that this element can be used as an indicator of hydrothermal reactions in the basaltic basement.  相似文献   

2.
Glauconite is widely distributed in space and time.In China glauconite-bearing strata are extensive occurrence ranging from Late Cretaceous to Middle Proterozoic in age.X-ray powder analysis,X-ray diffracition analysis and differential thermal analysis revealed that glauconite has a mica-type structure between dioctahedron and trioctahedron.Its chemical composition is:Al2O310.6%,SiO249.23%,MgO3.24%,Fe2O317.40%,FeO1.8%,and K2O7.92%,Its crystal form and thermal properties are very similar to those of mica-like clay minerls.According to isotopic age determinations of glauconite in modern oceans (including the East China Sea,the South China Sea and the Yellow Sea),we consider that in the extreme case glauconite is an authigenic mineral.It is generally formed in sedimentary rocks.Is has further proved that glauconite can be used to determine the ages of sedimentary rocks.  相似文献   

3.
Six Deep Sea Drilling Project (DSDP) Sites (252, 285, 315, 317, 336, 386) were examined for the chemical composition of the dissolved salts in interstitial waters, the oxygen isotopic composition of the interstitial waters, and the major ion composition of the bulk solid sediments. An examination of the concentration-depth profiles of dissolved calcium, magnesium, potassium, and H218O in conjunction with oxygen isotope mass balance calculations confirms the hypothesis that in DSDP pelagic drill sites concentration gradients in Ca. Mg. K, and H218O are largely due to alteration reactions occurring in the basalts of Layer 2 and to alteration reactions involving volcanic matter dispersed in the sediment column. Oxygen isotope mass balance calculations require substantial alteration of Layer 2 (up to 25% of the upper 1000 m). but only minor exchange of Ca, Mg, and K occurs with the overlying ocean. This implies that alteration reactions in Layer 2 are almost isochemical.  相似文献   

4.
Problem of the distribution of clay minerals in water areas of the World Ocean and their relation to different (humid, arid, and volcanosedimentary) types of lithogenesis is considered. It is shown that layer silicates can be used as index minerals for distinguishing types of lithogenesis under conditions of marine sedimentation. Humid marine lithogenesis is represented by sediments of the White, Baltic, Black, and Mediterranean seas. Genetic link of marine clay formation with soil-climatic zones is clearly manifested in recent sediments of the World Ocean. Accumulation of statistic data on the mineral composition of clays allowed us to distinguish two modes of spatial-latitudinal distribution of clay minerals: maximal concentrations of illites and chlorites are confined to high latitudes, whereas kaolinite and smectite accumulate in the equatorial zone. In the arid lithogenesis, the dependence of clay formation on drainage areas is practically absent. The whole process is realized in surficial sediments and bottom waters: under conditions of intense evaporation, especially in closed water basins, the concentration of elements in the medium is enough for the synthesis of layer silicates, such as palygorskite and sepiolite. The processes were studied based on the Paleogene Fergana Bay and bottom sediments of the Sea of Aral, as well as DSDP core materials from the Atlantic (near the western coast of Africa) and Indian (the Arabian Peninsula area) oceans. The investigation of processes of volcanosedimentary lithogenesis was carried out within the East Pacific Rise (on the basis of core materials obtained during cruises of R/V Dmitry Mendeleev and Akademik Kurchatov). The results obtained made it possible to establish authigenic (primarily celadonite) K-Fe mineralization in the most active geothermal zones. The formation of clay minerals has specific features in each of the studied (humid, arid, and volcanosedimentary) types of lithogenesis. This should be taken into consideration during the lithological investigations and the study of clay mineralogy of past geological epochs. Clay minerals (particularly, unstable mixed-layered phases) are actively used as index minerals for paleogeographic and climatologic reconstructions.  相似文献   

5.
Laboratory experiments indicate that clay particles of the <2-üm fraction can be considerably degraded by the bivalve Mytilus edulis: dickite, kaolinite, smectite, chlorite and illite particles are partially dissolved and rounded by the digestive processes. Structural changes and a decrease in crystallinity of kaolinites, dickites and illites are striking. Investigations of clay minerals from tidal flat sediments highly populated by marine invertebrates, from marine suspensions and samples from profiles across Mytilis edulis beds on the North Sea coast of Germany show, however, that these materials have a uniform mineral composition. This uniformity of clay mineralogy can be explained by the hydrodynamic conditions in the nearshore area, where tidal currents and waves cause a periodic resuspension and transport of sediments introduced into the Wadden Sea from different sources (glacial, fluviatile). Processes of bioturbation also redistribute the sedimentary material. These mixing processes effectively erase any evidence of local enrichment of the biogenically degraded clays. However, the disordered clays should react more sensitively (i.e. have higher adsorption capacities for organic substances, hydroxides and metals) in sediments than untreated materials, so that biodegradation is of basic importance for clay diagenesis. During these processes, Pb, V, Ni and Fe are dissolved from the digested particles.  相似文献   

6.
Pore water samples from seven nearshore areas in Bermuda were obtained under in situ conditions and analyzed for dissolved organic carbon, dissolved carbohydrates, dissolved free amino acids and dissolved humic substances. The concentration of dissolved organic carbon is higher than in the overlying nearshore waters indicating significant diagenetic remobilization of carbon in these recently deposited carbonate sediments. Dissolved carbohydrates decrease with depth due to microbial utilization.  相似文献   

7.
An unusual association of authigenic pyrite and authigenic gypsum has been found in silty clays recovered from the South West African continental slope. Nannofossil content suggests that the sediments are Upper Miocene-Lower Pliocene in age. Pyrite occurs as (1) granular masses, (2) ‘worm’tubes, (3) foraminiferal infillings, and (4) framboids. Gypsum occurs as euhedral single or twinned crystals of selenite. ‘Worm’tubes and foraminiferal infillings of pyrite are partially or completely enclosed in some gypsum crystals. Electron microprobe analyses show a relatively high concentration of manganese in both the granular masses and tubes. Present-day waters off this coast are dominated by the upwelling of cold, nutrient-enriched waters (the Benguela Current). These rich waters support an enormous population of plankton. Death and decomposition of these plankton consume oxygen, thereby creating a belt of anaerobic sediments close to shore. An Upper Miocene-Lower Pliocene regression (Dingle & Scrutton, 1974) lowered sea level and shifted an older analogue of this upwelling zone seaward, eventually establishing an anaerobic environment in places on the present continental slope. Anaerobic bacteria thrived in these conditions. They reduced SO4 dissolved in sea water, initiating the formation of H2S. The H2S reacted with iron minerals present in the sediment to form FeS. Addition of elemental sulphur produced pyrite. This strongly reducing, low pH, environment became saturated with calcium obtained by the dissolution of planktonic calcareous organisms. Gypsum was precipitated once the product of the concentrations of dissolved calcium and SO4 exceeded the gypsum solubility product.  相似文献   

8.
Deltaic environments are commonly assumed to be relatively minor sites of biogenic silica burial because of the small quantities of opaline silica detected by most operational analytical techniques. Rapid conversion of biogenic silica into authigenic silicates is also often discounted as a significant control on oceanic silica budgets. A variety of evidence for extensive early diagenetic alteration of biogenic silica in rapidly accumulating Amazon delta sediments indicates that both of these general assumptions are unjustified. Apparent lack of significant biogenic silica storage in deltaic environments, particularly in the tropics, may be largely an artifact of operational definitions that do not include early diagenetic products of biogenic silica. Biogenic silica particles buried in suboxic Amazon delta deposits can be unaltered, partially dissolved, covered with aluminosilicate or metal-rich coatings, or completely reconstituted into authigenic K-Fe-rich aluminosilicate minerals. Pore water (K, Mg, F, Si) and solid-phase distributions, direct observations of particles, laboratory experiments, and depositional context indicate that authigenic clays form rapidly (<1 yr) in the seasonally reworked surface layer (∼ 0.5-2 m) of the delta topset and are disseminated during sediment remobilization. Fe, Al-oxide rich debris derived from the tropical drainage basin is an abundant reactant, and thus the supply of biogenic silica is a major control on the amount of clay formed.The mild 1% Na2CO3 alkaline leach procedure commonly used to estimate biogenic silica was modified to include an initial mild leach step with 0.1N HCl to remove metal oxide coatings and to activate poorly crystalline authigenic phases for alkaline dissolution. Well-crystallized clays are not significantly affected by this modification nor is bulk Amazon River bed sediment. The two-step procedure indicates that ∼90% of the biogenic silica originally present in deposits is converted to clay or otherwise altered, raising the effective quantity of biogenic silica stored from ∼33 to ∼296 μmol Si g−1 (∼1.8% SiO2). Biogenic Si stored in the delta increases away from the river mouth, across shelf and along the dispersal system where primary production is highest. The K/Si ratio of labile authigenic material is ∼0.19 mol mol−1, far higher than Amazon River suspended matter (∼0.07 mol mol−1). Diagenetic models indicate formation rates in the mobile sediment layer of ∼2.8 μmol K g−1 yr−1 (∼16 μmol Si g−1 yr−1). Inclusion of authigenic alteration products of biogenic silica in estimates of reactive Si burial increases the deltaic storage of riverine Si to ∼22% of the Amazon River input. The rapid formation of aluminosilicates from biogenic SiO2, seawater solutes, and remobilized Fe, Al-oxides represents a form of reverse weathering. Rapid reverse weathering reactions in tropical muds and deltaic deposits, the largest sediment depocenters on Earth, confirms the general importance of these processes in oceanic elemental cycles.  相似文献   

9.
Silicon stable isotopes can be used to trace the biogeochemical pathways of Si as it moves from its continental sources to its sink in ocean sediments. Along the way, Si is incorporated into clay minerals, taken up by plants where it forms plant opal, and leached into rivers, the major land-to-ocean conduit. Compared to igneous rocks, the waters that drain continents are enriched in heavy Si isotopes, but the mechanisms that control fractionation have not been elucidated. We studied Si isotope fractionation along a 4 million yr basaltic soil chronosequence on the Hawaiian Islands. Using the natural context of these samples in combination with laboratory experiments, we demonstrate that the isotopic composition of dissolved Si in weathering systems is determined by the combined effects of rock disintegration, clay mineral neosynthesis, and Si biocycling. Weathering preferentially releases 28Si into solution, whereas secondary mineral formation preferentially removes 28Si from solution. In humid environments, leached soils have lost large amounts of this soluble Si, thus creating a net loss of 30Si from the entire soil system. As soils develop and greater fractions of Si reside in neoformed clay minerals, δ30Sibulk soil values change progressively toward more negative values; basalt δ30Si values are about −0.5‰, but older soils have δ30Si values up to −2.5‰. The difference between the solid and solution δ30Si values remains more or less constant with progressive weathering, and therefore, soil water from older soils has a more negative δ30Si composition. In the upper horizons of the Hawaiian soils, this weathering-driven δ30Si shift is modified by the addition of unweathered primary minerals via dust, carrying δ30Si values of about −0.5‰, and by biocycling of Si via plants, producing negative δ30Si values in phytoliths and positive δ30Si values in soil solutions derived from upper horizons. Due to the high concentrations of dissolved Si in these near-surface layers, rivers have more positive δ30Si values than predicted based on the weathering status of the lower horizons. When combined with published δ30Si values from large rivers worldwide, we find that the results from Hawaii point to weathering control of Si isotopes delivered to the oceans, and thus, to an important continent-ocean linkage that warrants further investigation.  相似文献   

10.
REE geochemical studies of surficial sediment samples from the Yellow Sea of China have shown:(1)The average content of RE2O3 in the Yellow Sea sediments is 175 ppm,close to that in the East China Sea sediments.The REE distribution patterns in the Yellow Sea sediments are also similar to anomalies.These REE characteristics are typical of the continental crust.(2)The contents of REE are controlled mainly by the sediment grain size,i.e.,REE contents increase gradually with decreasing sediment grain size.REE are present mainly in clay minerals.In addition,REE contents are controlled obviously by heavy minerals.REE abundances in heavy minerals are much greater than those in light minerals.(3)Correlation analysis shows that REE have a close relationship with siderophile elements,especially Ti,which has the largest correlation coefficient relative to REE.Terrigenous clastic materials subjected to weathering and transport are suggested to be the main source of REE in the Yellow Sea sediments.  相似文献   

11.
The Dianchi, Erhai and Fuxian lakes lie in faulted basins in a subtropical humid region of the Yunnan Plateau, China. Three groups of authigenic minerals have been recognized in their recent sediments - carbonate minerals, Fe-bearing minerals and silica minerals. The main authigenic minerals are goethite, calcite, aragonite, siderite and quartzine. Goethite is chemically precipitated from a colloidal suspension. Calcite is a widespread chemical precipitate that is present in deep parts of the lakes and in shallow areas associated with aquatic macrophytes. Aragonite is mainly biochemical in origin, and commonly associated with shallow benthos. Siderite forms in reducing environments, associated with pore waters with a high PCO2 that resulted from microbial degradation of organic matter. It forms mainly in deep-water environments. Quartzine, which occurs mainly in delta front and prodeltaic sites, forms from diatom dissolution and dissolved silica introduced by streams. Six authigenic mineral associations are recognized, each of which can be related to depositional setting within the lake and the stage of lake development. The same associations can also be recognized in a 480-m-long core recovered from Dianchi Lake. Strong reducing environments and migrating pore fluids with high PCO2 have led to the early diagenetic alteration of some of the initial authigenic minerals. Using the mineral associations from the modern lakes, the Pliocene to Recent history of Dianchi Lake has been interpreted, and is in general agreement with palaeoenvironmental reconstructions based upon palaeontological and other evidence.  相似文献   

12.
The supply and accumulation of silica in the marine environment   总被引:4,自引:0,他引:4  
Rivers and submarine hydrothermal emanations supply 6.1 × 1014g SiO2/yr to the marine environment. Approximately two-thirds of the silica supplied to the marine environment can be accounted for in continental margin and deep-sea deposits. Siliceous deep-sea sediments located beneath the Antarctic Polar Front (Convergence) account for over a fourth (1.6 × 1014g SiO2/yr) of the silica supplied to the oceans. Deep-sea sediment accumulation rates beneath the Polar Front are highest in the South Atlantic with values as large as 53cm/kyr during the last 18.000 yr. Siliceous sediments in the Bering Sea, Sea of Okhotsk, and Subarctic North Pacific accumulate 0.6 × 1014g SiO2/yr or 10% of the dissolved silica input to the oceans. The accumulation of biogenic silica in estuarine deposits removes a maximum of 0.8 × 1014g SiO2/yr. Although estuarine silica versus salinity plots indicate extensive removal of riverine silica from surface waters, the removal rates must be considered as maximum values because of dissolution of siliceous material in estuarine sediments and bottom waters. Siliceous sediments from continental margin upwelling areas (e.g. Gulf of California, Walvis Bay, or Peru-Chile coast) have the highest biogenic silica accumulation rates in the marine environment (69 g SiO2 cm2/kyr). Despite the rapid accumulation of biogenic silica, upwelling areas account for less than 5% of the silica supplied to the marine environment because they are confined laterally to such small areas.  相似文献   

13.
Organogenic sediments (sapropels) in lakes are characterized by a reduced type of diagenesis, during which organic compounds are decomposed, the chemical composition of the pore waters is modified, and authigenic minerals (first of all, pyrite) are formed. Pyrolysis data indicate that organic matter undergoes radical transformatons already in the uppermost sapropel layers, and the composition of this organic matter is principally different from the composition of the organic matter of the its producers. The sapropels contain kerogen, whose macromolecular structure starts to develop during the very early stages of diagenesis, in the horizon of unconsolidated sediment (0–5 cm). The main role in the diagenetic transformations of organic matter in sediments is played by various physiological groups of microorganisms, first of all, heterotrophic, which amonifying, and sulfate-reducing bacteria. SO42? and Fe2+ concentrations in the pore waters of the sediments are determined to decrease (because of bacterial sulfate reduction), while concentrations of reduced Fe and S species (pyrite) in the solid phase of the sediment, conversely, increase. Comparative analysis shows that, unlike sapropels in lakes in the Baikal area, sapropels in southern West Siberia are affected by more active sulfate reduction, which can depend on both the composition of the organic matter and the SO42? concentration in the pore waters.  相似文献   

14.
A simple, reliable, and high-performance method has been proposed for direct determination of the isotopic composition of authigenic uranium in silica lacustrine sediments. The method is based on studying the kinetics of the selective extraction of authigenic uranium from sediments with weak solutions of ammonium hydrocarbonate followed by the ICP-MS analysis of the nuclides. To estimate the contamination of authigenic uranium by terrigenous one, the contents of 232Th and some other clastogenic elements in the extracts were measured simultaneously. The selectivity of extraction of authigenic uranium from the sediments treated with a 1% NH4HCO3 solution appeared to be no worse than 99%. The method was used to analyze the isotopic composition of authigenic uranium at several key horizons of a core dated before. The measurements directly prove that the 234U/238U values in Baikal water varied depending on climate, which contradicts the previous statements. The measured 234U/238U ratios in paleo-Baikal water match the values reconstructed from isotopic data for total uranium in the sediments on the supposition that the U/Th ratio is constant in the terrigenous part of the sediment. Direct experimental determination of total and authigenic nuclides in sediments enhances the potentiality of the method for absolute 234U-230Th dating of carbonate-barren lacustrine sediments, including those from Lake Baikal, within the intervals corresponding to the periods of glaciation, where the sediments contain a large fraction of terrigenous component. Given the fractions of terrigenous and authigenic uranium are accurately determined, we have an opportunity to study the variability of the sources of terrigenous matter and to refine the previous model for reconstructing the climate humidity in East Siberia.  相似文献   

15.
The dissolved silica concentration in waters of Lake Superior probably is in a steady state because it is not influenced significantly by man, and the climate, topography and vegetation in the drainage area of the lake have been stable for the past 4000 years. Therefore the rate at which dissolved silica is introduced to the lake should equal the output rate.The primary inputs are: tributaries (4.1–4.6 × 108kgSiO2/yr), diffusion from sediment pore waters (0.21?0.78 × 108kgSiO2/yr) and atmospheric loading (0.26 × 108kgSiO2/yr). Silica is lost from the lake waters by: outflow through the St. Marys River, diatom deposition, adsorption onto particulates in the sediments, and authigenic formation of new silicate minerals. Tributary outflow accounts for less than one half the annual input of silica, and diatom deposition and silica adsorption withdraw less than 10% of the annual input. Therefore the formation of new silicate phases must be the dominant sink for dissolved silica in Lake Superior. The specific phases formed are not identified in the bottom sediments. X-ray diffraction studies suggest that smectite is one product, and amorphous ferroaluminum silicates may be another product.Mathematical modeling of the dissolved silica response to lake eutrophication suggests that the phosphate loading to Lake Superior would have to increase by about 250-fold to cause a silica depletion rate equal to that reported for Lake Michigan, assuming no change in the rate of upwelling of deep waters.  相似文献   

16.
The terrestrial biogenic Si (BSi) pool in the soil-plant system is ubiquitous and substantial, likely impacting the land-ocean transfer of dissolved Si (DSi). Here, we consider the mechanisms controlling DSi in forest soil in a temperate granitic ecosystem that would differ from previous works mostly focused on tropical environments. This study aims at tracing the source of DSi in forest floor leachates and in soil solutions under various tree species at homogeneous soil and climate conditions, using stable Si isotopes and Ge/Si ratios. Relative to granitic bedrock, clays minerals were enriched in 28Si and had high Ge/Si ratios, while BSi from phytoliths was also enriched in 28Si, but had a low Ge/Si ratio. Such a contrast is useful to infer the relative contribution of silicate weathering and BSi dissolution in the shallow soil on the release of DSi in forest floor leachate solutions. The δ30Si values in forest floor leachates (−1.38‰ to −2.05‰) are the lightest ever found in natural waters, and Ge/Si ratios are higher in forest floor leachates relative to soil solution. These results suggest dissolution of 28Si and Ge-enriched secondary clay minerals incorporated by bioturbation in organic-rich horizons in combination with an isotopic fractionation releasing preferentially light Si isotopes during this dissolution process. Ge/Si ratios in soil solutions are governed by incongruent weathering of primary minerals and neoformation of secondary clays minerals. Tree species influence Si-isotopic compositions and Ge/Si ratios in forest floor leachates through differing incorporation of minerals in organic horizons by bioturbation and, to a lesser extent, through differing Si recycling.  相似文献   

17.
About 5 per cent of all feldspars in sediments are authigenic. This amounts to 0·94 per cent of the total sedimentary mass. At least 2.1 × 1018 kg Na and 3.4 × 1018kg K have been removed from sea water by reconstitution of authigenic feldspars in the total mass of surviving sediments. Consequently, 9.3 × 1019 moles CO2 have been released by the formation of authigenic albite and 8.8 × 1019 moles CO2 by the formation of authigenic K-feldspar.  相似文献   

18.
Despite considerable work on other trace elements, the incorporation of dissolved silicon from cave waters into speleothems has not been previously investigated. In this study, the controls on dissolved Si in cave waters and on adsorbed Si in resulting speleothems are therefore investigated. Bedrock (dolomite), soil water, dripping water, and cave carbonates were retrieved from Heshang Cave situated in the central Yangtze valley of China and were subjected to analysis of dissolved Si content (plus accompanying Ca and Fe analyses). Soil waters have Si/Ca of 45.5 mmol/mol, compared to only 3.2 mmol/mol in the dolomite bedrock, demonstrating that >80% of the dissolved Si must come from dissolution of silicate minerals in the soil. Drip waters have a dissolved Si concentration of ≈4.2 μg/mL, similar to that in the overlying soil water. Actively growing cave carbonates have a Si/Ca of 0.075 mmol/mol suggesting a partition coefficient for incorporation of dissolved silicon of 0.0014, in good agreement with previous laboratory studies. Extrapolating the results of these laboratory studies to the cave environment suggests that changes in Si/Ca in cave carbonates are likely to be primarily controlled by changes in drip-water Si/Ca. The drip-water Si/Ca will, in turn, be controlled by the rate of wind-blown silicate supply; by soil weathering rates; by rainfall dilution; and by precipitation of calcite. The general expectation is that these effects combine to produce high Si/Ca in speleothems during times of low rainfall. A δ18O record from a Heshang Cave stalagmite which grew between 20 and 11 thousand years ago allows these controls to be tested. Correlation of high Si/Ca with high δ18O demonstrates that regional rainfall exerts significant (but not complete) control on speleothem Si/Ca. With further understanding, speleothem Si/Ca may provide a proxy for past rainfall to complement existing proxies such as δ18O and Mg/Ca.  相似文献   

19.
刘勇  李广雪 《地学前缘》2022,29(5):88-101
基于东海北部陆架表层沉积物的泥温、粒度分析与重矿物鉴定数据,结合末次盛冰期(LGM)以来的东海海平面演化阶段分析,提取高海面期以来底层水团承载的沉积重矿物空间分布规律与信息记录。结果表明优势矿物种的迁移路径与区域环流系统密切相关,进而可示踪东海北部物质的大致输运方向。依据透明矿物(普通角闪石、帘石类、稳定矿物)、金属矿物(不透明矿物)、片状矿物及自生矿物等优势重矿物种迁移路径的判断和讨论,将研究区初步划分为5类矿物区,分别为冷涡矿物区(Ⅰ区)、黄海沿岸流与跨陆架流矿物区(Ⅱ区)、长江冲淡水矿物区(Ⅲ区)、暖流矿物区(Ⅳ区)和复合矿物区(Ⅴ区)。Ⅰ区受济州岛西南冷涡影响显著,高含量的自生黄铁矿指示了强还原的沉积环境;Ⅱ区是黄海沿岸流与跨陆架流(ECSC)南向输运老黄河三角洲物质的重要通道,帘石类矿物、金属矿物、片状矿物的含量变化可指示输运的路径;Ⅲ区是长江冲淡水东扩的重要通道,普通角闪石、片状矿物、石榴石为示踪的特征矿物;Ⅳ区是陆架水团混合了台湾暖流和对马暖流水体的区域,区内“洁净”的暖流水阻隔陆源物质向东输运,其西侧为物源供给侧,形成优势矿物低值区,东侧物质供给匮乏,海侵改造沉积出露,重矿物及优势矿物种呈高值;Ⅴ区是区域环流系统季节性变化与强度差异影响下的复合作用区,区内矿物学特征与邻区相比无明显优势。从矿物迁移路径的角度认识东海北部陆架的物质输运与聚集过程,可进一步理解优势矿物示踪意义与区域环流系统动力环境的响应机制。  相似文献   

20.
The pH of various saline solutions — waters from the Dead Sea, Red Sea, the Mediterranean and salt springs from the Tiberias area — and of their artificial equivalents was found to increase on dilution with distilled water. The effect is confined to waters containing more than 1.2–1.5% dissolved solids, and is roughly proportional to the original salinity of the solution. The effect is not found in solutions devoid of HCO3 salts. It is concluded that in strong brines, dissociation of bicarbonate salts is depressed; on dilution dissociation increases, hydroxide ions are formed and the pH increases. It follows that in evaporate sediments carbonate minerals might be stable at pH-values as low as 5.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号