首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compact type A (CTA) inclusions are one of the major types of coarse-grained refractory inclusions found in carbonaceous chondrites. They have not been studied in a systematic fashion, leading to some uncertainties and unproven assumptions about their origin. To address this situation, we studied a total of eight CTAs from Allende, Efremovka and Axtell by scanning electron-microscopic and electron and ion-microprobe techniques. These inclusions are very melilite-rich, ranging from ∼60 vol% to nearly monomineralic. Also present are Mg–Al spinel (5–20%), perovskite (trace–∼3%) and, in some samples, Ti-rich (∼17 wt% TiO2tot) fassaite (trace–∼20%), and rhönite (≤1%). Melilite compositions are mostly between Åk15 and Åk40. Chondrite-normalized REE abundance patterns for melilite (flat at ∼10 × CI with positive Eu anomalies) and fassaite (slight HREE enrichment relative to LREE and negative Eu anomalies) are like those for their counterparts in once-molten type B inclusions. The patterns for rhönite have positive slopes from La through Lu and abundances <10 × CI for La and 35–60 × CI for Lu. Features of CTAs that suggest that they were once molten include: rounded inclusion shapes; positively correlated Sc and V abundances in fassaite; radially oriented melilite laths at inclusion rims; and the distribution of trace elements among the phases. Fractional crystallization models show that, with one exception, the REE contents of perovskite and fassaite arose by crystallization of these phases from late, residual liquids that would have resulted from prior crystallization of the observed proportions of melilite and spinel from liquids having the bulk compositions of the inclusions. One Allende CTA (TS32), however, has several features (irregular shape, reversely zoned melilite, fassaite REE contents) that are not readily explained by crystallization from a melt. This inclusion may have undergone little melting and may be dominated by relict grains.  相似文献   

2.
3.
This work presents new trace element and petrographic data for three forsterite-bearing, Ca-Alrich inclusions from the Allende meteorite: TE, 818a, and 110-A. Such inclusions form a continuum with Type B1 and B2 Ca-Al-rich inclusions (CAIs), and we refer to them as “Type B3” CAIs. Textures, mineral chemistries, crystal-chemically fractionated REE patterns, and other properties suggest that Type B3 crystallized from partly molten evaporative residues. The concentrations of refractory lithophile elements are lower than in Type B1 and Type B2, in approximately inverse proportion to the higher concentrations of Mg and Si in the Type B3's. The refractory trace element abundances of the forsterite-bearing, isotopically anomalous FUN CAIs TE and CG14 suggest that they formed at higher temperatures and under more oxidizing conditions than other Type B CAIs, thus strengthening the previously observed link between relatively oxidized CAI compositions and FUN properties.We also present evidence that 818a was strongly re-heated and modified in the nebula after its initial crystallization: it consists of a core of coarse-grained Ti-Al-pyroxene (Tpx), forsterite, spinel and metal grains and a thick, surrounding mantle of melilite that has been almost totally converted to fine-grained alteration products. In the core, the mean concentrations of refractory lithophiles and siderophiles are similar (both ~ 14 × CI), but in the mantle, the refractory siderophiles are a factor of 2 lower (~ 9 × CI) than the refractory lithophiles (~18 × CI). Because the core and mantle display similar, mineralogically-fractionated REE patterns (both sloping up from La to Lu), the pre-alteration mantle could not have formed during fractional crystallization of the primary CAI nor as a later condensate over the core. A 3-stage formation process is required for 818a: (1) crystallization of the primary CAI rich in Tpx throughout; (2) re-heating and partial volatilization of Mg and Si from the outer portion of the CAI, causing an increase in the concentration of refractory lithophiles, a loss of siderophiles, and converting Tpx to melilite; (3) metasomatic alteration of the melilite-rich mantle.  相似文献   

4.
Lightly altered Al-rich inclusions in amoeboid olivine aggregates have cores containing primary melilite + fassaite + spinel + perovskite and no secondary alteration products. In moderately altered inclusions, whose cores now contain only fassaite + spinel + perovskite, melilite was replaced by a fine-grained mixture of grossular + anorthite + feldspathoids and perovskite was partially replaced by ilmenite. In heavily altered inclusions, fassaite has been replaced by a mixture of phyllosilicates + ilmenite and the remaining primary phases are spinel ± perovskite. In very heavily altered inclusions, no primary phases remain, the spinel having reacted to form either phyllosilicates or a mixture of olivine + feldspathoids. This sequence of alteration reactions may reflect successively lower solar nebular equilibration temperatures. During alteration, SiO2, Na2O, K2O, FeO, Cr2O3, H2O and Cl were introduced into the inclusions and CaO was lost. MgO may have been lost during the melilite reaction and added during formation of phyllosilicates. Electron microprobe analyses indicate that the phyllosilicates are a mixture of Na-rich phlogopite and chlorite or Alrich serpentine. Thermodynamic calculations suggest that, at a solar nebular water fugacity of 10−6, Na-rich phlogopite could have formed from fassaite at ~470 K and chlorite from Na-rich phlogopite at ~328 K. Olivine mantling Al-rich inclusions is not serpentinized, suggesting that these objects stopped equilibrating with the nebular gas above 274 K.  相似文献   

5.
The coarse-grained, igneous, anorthite-rich (Type C) CAIs from Allende studied (100, 160, 6-1-72, 3529-40, CG5, ABC, TS26, and 93) have diverse textures and mineralogies, suggesting complex nebular and asteroidal formation histories. CAIs 100, 160, 6-1-72, and 3529-40 consist of Al,Ti-diopside (fassaite; 13-23 wt% Al2O3, 2-14 wt% TiO2), Na-bearing åkermanitic melilite (0.1-0.4 wt% Na2O; Åk30-75), spinel, and fine-grained (∼5-10 μm) anorthite groundmass. Most of the fassaite and melilite grains have “lacy” textures characterized by the presence of abundant rounded and prismatic inclusions of anorthite ∼5-10 μm in size. Lacy melilite is pseudomorphed to varying degrees by grossular, monticellite, and pure forsterite or wollastonite. CAI 6-1-72 contains a relict Type B CAI-like portion composed of polycrystalline gehlenitic melilite (Åk10-40), fassaite, spinel, perovskite, and platinum-group element nuggets; the Type B-like material is overgrown by lacy melilite and fassaite. Some melilite and fassaite grains in CAIs 100 and 160 are texturally similar to those in the Type B portion of 6-1-72. CAIs ABC and TS26 contain relict chondrule fragments composed of forsteritic olivine and low-Ca pyroxene; CAI 93 is overgrown by a coarse-grained igneous rim of pigeonite, augite, and anorthitic plagioclase. These three CAIs contain very sodium-rich åkermanitic melilite (0.4-0.6 wt% Na2O; Åk63-74) and Cr-bearing Al,Ti-diopside (up to 1.6 wt% Cr2O3, 1-23 wt% Al2O, 0.5-7 wt% TiO2). Melilite and anorthite in the Allende Type C CAI peripheries are replaced by nepheline and sodalite, which are crosscut by andradite-bearing veins; spinel is enriched in FeO. The CAI fragment CG5 is texturally and mineralogically distinct from other Allende Type Cs. It is anorthite-poor and very rich in spinel poikilitically enclosed by Na-free gehlenitic melilite (Åk20-30), fassaite, and anorthite; neither melilite nor pyroxene have lacy textures; secondary minerals are absent. The Al-rich chondrules 3655b-2 and 3510-7 contain aluminum-rich and ferromagnesian portions. The Al-rich portions consist of anorthitic plagioclase, Al-rich low-Ca pyroxene, and Cr-bearing spinel; the ferromagnesium portions consist of fosteritic olivine, low-Ca pyroxene, and opaque nodules.We conclude that Type C CAIs 100, 160, 6-1-72, and 3529-40 formed by melting of coarse-grained Type B-like CAIs which experienced either extensive replacement of melilite and spinel mainly by anorthite and diopside (traces of secondary Na-bearing minerals, e.g., nepheline or sodalite, might have formed as well), or addition of silica and sodium during the melting event. CG5 could have formed by melting of fine-grained spinel-melilite CAI with melilite and spinel partially replaced anorthite and diopside. CAIs ABC, 93, and TS-26 experienced melting in the chondrule-forming regions with addition of chondrule-like material, such as forsteritic olivine, low-Ca pyroxene, and high-Ca pyroxene. Anorthite-rich chondrules formed by melting of the Al-rich (Type C CAI-like) precursors mixed with ferromagnesian, Type I chondrule-like precursors. The Allende Type C CAIs and Al-rich chondrules experienced fluid-assisted thermal metamorphism, which resulted in pseudomorphic replacement of melilite and anorthite by grossular, monticellite, and forsterite (100, 160, 6-1-72, 3592-40) or by grossular, monticellite, and wollastonite (ABC, 93, TS-26). The pseudomorphic replacement was followed or accompanied by iron-alkali metasomatic alteration resulting in replacement of melilite and anorthite by nepheline and sodalite, enrichment of spinel in FeO, and precipitation of salite-hedenbergite pyroxenes, wollastonite, and andradite in fractures and pores in and around CAIs.  相似文献   

6.
Amoeboid olivine aggregates (AOAs) are the most common type of refractory inclusions in CM, CR, CH, CV, CO, and ungrouped carbonaceous chondrites Acfer 094 and Adelaide; only one AOA was found in the CBb chondrite Hammadah al Hamra 237 and none were observed in the CBa chondrites Bencubbin, Gujba, and Weatherford. In primitive (unaltered and unmetamorphosed) carbonaceous chondrites, AOAs consist of forsterite (Fa<2), Fe, Ni-metal (5-12 wt% Ni), and Ca, Al-rich inclusions (CAIs) composed of Al-diopside, spinel, anorthite, and very rare melilite. Melilite is typically replaced by a fine-grained mixture of spinel, Al-diopside, and ±anorthite; spinel is replaced by anorthite. About 10% of AOAs contain low-Ca pyroxene replacing forsterite. Forsterite and spinel are always 16O-rich (δ17,18O∼−40‰ to −50‰), whereas melilite, anorthite, and diopside could be either similarly 16O-rich or 16O-depleted to varying degrees; the latter is common in AOAs from altered and metamorphosed carbonaceous chondrites such as some CVs and COs. Low-Ca pyroxene is either 16O-rich (δ17,18O∼−40‰) or 16O-poor (δ17,18O∼0‰). Most AOAs in CV chondrites have unfractionated (∼2-10×CI) rare-earth element patterns. AOAs have similar textures, mineralogy and oxygen isotopic compositions to those of forsterite-rich accretionary rims surrounding different types of CAIs (compact and fluffy Type A, Type B, and fine-grained, spinel-rich) in CV and CR chondrites. AOAs in primitive carbonaceous chondrites show no evidence for alteration and thermal metamorphism. Secondary minerals in AOAs from CR, CM, and CO, and CV chondrites are similar to those in chondrules, CAIs, and matrices of their host meteorites and include phyllosilicates, magnetite, carbonates, nepheline, sodalite, grossular, wollastonite, hedenbergite, andradite, and ferrous olivine.Our observations and a thermodynamic analysis suggest that AOAs and forsterite-rich accretionary rims formed in 16O-rich gaseous reservoirs, probably in the CAI-forming region(s), as aggregates of solar nebular condensates originally composed of forsterite, Fe, Ni-metal, and CAIs. Some of the CAIs were melted prior to aggregation into AOAs and experienced formation of Wark-Lovering rims. Before and possibly after the aggregation, melilite and spinel in CAIs reacted with SiO and Mg of the solar nebula gas enriched in 16O to form Al-diopside and anorthite. Forsterite in some AOAs reacted with 16O-enriched SiO gas to form low-Ca pyroxene. Some other AOAs were either reheated in 16O-poor gaseous reservoirs or coated by 16O-depleted pyroxene-rich dust and melted to varying degrees, possibly during chondrule formation. The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into magnesian (Type I) chondrules. Secondary mineralization and at least some of the oxygen isotope exchange in AOAs from altered and metamorphosed chondrites must have resulted from alteration in the presence of aqueous solutions after aggregation and lithification of the chondrite parent asteroids.  相似文献   

7.
Most of the petrologic data available for Type B inclusions comes from Type B1s. Relatively little comes from the B2s, and there has not been a systematic comparison of the properties of their two most abundant minerals. In this work, we document the compositions and zoning patterns of melilite and fassaite in Type B2 inclusions, and compare and contrast them with the features of their counterparts in Type B1 inclusions. We find that melilite compositions in Type B2 inclusions are similar to those of Type B1s, with maximum Åk contents of ∼75 mol % and a positive correlation between Åk and Na2O contents. Asymmetrically zoned melilite is common in Type B2s as are melilite grains with reversely zoned regions, and the reversely zoned portions of crystals are thicker than in B1s. In B2s, like B1s, fassaite is zoned with decreasing Ti, Sc, and V oxide contents from cores to rims of grains. Approximately half of the Ti is trivalent, but unlike that in B1s, within fassaite grains in B2s the Ti3+/(Ti3+ + Ti4+) ratio does not decrease from core to rim, and sharp enrichments (“spikes”) in Ti3+ and V are not observed. Sector-zoned fassaite is much more common in B2s than in B1s. The differences we observed can be accounted for by the differences in bulk compositions between B1s and B2s. Type B2 inclusions tend to have higher SiO2 contents, hence higher An/Ge component ratios, than Type B1s. Phase equilibria show that, compared to B1s, in B2s less melilite should crystallize prior to the appearance of fassaite, so that in B2s a higher proportion of melilite cocrystallizes with fassaite, causing more of the crystals to be reversely zoned; more melilite crystallizes while adjacent to other crystals, leading to asymmetrical zoning; and with more liquid available, transport of components to growing fassaite occurs more readily than in B1s, facilitating crystal growth and giving rise to sector zoning. The lack of zoning with respect to Ti3+/Titot and the absence of Ti3+-, V-rich spikes suggest that Type B2 melts maintained equilibrium with the nebular gas throughout crystallization, while the interiors of B1s were probably isolated from the gas, perhaps by their melilite mantles. This makes the similarity of Na-Åk relationships in B1 and B2 melilite difficult to understand, but apparently enclosure by melilite mantles was not necessary for the retention of Na2O during crystallization of Type B refractory inclusions.  相似文献   

8.
The equilibrium crystallization sequence at 1 atmosphere in air of a melt corresponding in composition to the average composition of Type B Ca-Al-rich inclusions from the Allende meteorite is: spinel (1550°C) → melilite (1400°C; Åk22) → anorthite (1260°C) → Ti-Al-rich clinopyroxene (1230°C; “Ti-fassaite”). The melilite becomes increasingly åkermanitic with decreasing temperature. The pyroxene is similar in composition to fassaites from Type B inclusions. Preliminary results suggest that the crystallization sequence is similar at oxygen fugacities near the iron-wüstite buffer.The results of these experiments have been integrated with available phase equilibrium data in the system CaO-MgO-Al2O3-SiO2TiO2 and a phase diagram for predicting the crystallization sequences of liquids with compositions of coarse-grained Ca-Al-rich inclusions has been developed.Available bulk compositions of coarse-grained inclusions form a well-defined trend in terms of major elements, extending from Type A and Bl inclusions near the spinel-melilite join to more pyroxene-rich Type B2 inclusions. The trend deviates from the expected sequence of solid condensates from a nebular gas at P = 10?3 atm if pure diopside is assumed to be the clinopyroxene that condenses. The Type A-B1 end of the trend is similar in composition to calculated equilibrium condensates at 1202–1227°C and the trend as a whole parallels the sequence of condensates expected from diopside condensation at ~ 1170°C. The trend is consistent to first order with the condensation of solid Ti-rich fassaite in place of pure diopside at higher temperatures than those at which pure diopside is predicted to condense. Partially molten condensates may be likely in this case or if the nebular pressure is higher than 10?3 atm.  相似文献   

9.
The performance characteristics of PANURGE, a modified CAMECA IMS3F ion microprobe, have been studied at a mass resolving power of 5000 for the purpose of determining isotopic ratios at a precision level approaching that of counting statistics using beam switching. The techniques used for this type of measurement are described. Using this approach, the isotopic composition of Mg and Si and the atomic ratio of AlMg in minerals from the Allende inclusion WA and the Allende FUN inclusion Cl have been measured with the ion microprobe at high mass resolving power. Enrichments in 26Mg of up to 260%. have been found. Mg and AlMg measurements on cogenetic spinel inclusions and host plagioclase crystals yield Mg-Al isochrons in excellent agreement with precise mineral isochrons determined by thermal emission mass spectrometry. The measurements confirm the presence of substantial excess 26Mg in WA (26Mg127Al = 5 × 10?5) and its near absence in Cl (26Mg127Al < 4 × 10?6). In WA plagioclase, data for which 27Al24Mg = 300 to 1000 define a linear array with 26Mg127Al = 3 × 105 and with initial 26Mg24Mg composition 30%. greater than in high Mg phases. This suggests a metamorphic reequilibration of Mg in Allende plagioclase at least 0.6 my after WA formation. There were no variations in detected 26Mg127Al in WA plagioclase associated with concentration of 26Mg1 into isolated clusters. We have confirmed by ion probe measurements that the Mg composition in Allende Cl is highly fractionated and is uniform among pyroxene, melilite, plagioclase, spinel crystals and spinel included in melilite and plagioclase crystals. Likewise, the Si composition is mass fractionated and is the same in pyroxene, melilite and plagioclase.  相似文献   

10.
There are two types of white, coarse-grained, Ca-Al-rich inclusions in Allende. Type A inclusions contain 80–85 per cent melilite, 15–20 per cent spinel, 1–2 per cent perovskite and rare plagioclase, hibonite, wollastonite and grossularite. Clinopyroxene, if present, is restricted to thin rims around inclusions or cavities in their interiors. Type B inclusions contain 35–60 per cent pyroxene, 15–30 per cent spinel, 5–25 per cent plagioclase and 5–20 per cent melilite. The coarse pyroxene crystals in Type B's contain >15 per cent Al2O3 and >1.8 per cent Ti, some of which is trivalent. Type A pyroxenes contain <9 per cent Al2O3 and <0.7 per cent Ti.Electron microprobe analyses of 600 melilite, 39 pyroxene, 35 plagioelase, 33 spinel and 20 perovskite grains were performed in 16 Type A, 1 intermediate and 9 Type B inclusions in Allende and 1 Type A in Grosnaja. Melilite composition histograms from individual Type A inclusions are usually peaked between Ak10 and Ak30 and are 15–20 mole % wide while those from Type B inclusions are broader, unpeaked and displaced to higher åkermanite contents. Most pyroxenes contain < 1 per cent FeO. All plagioclase is An 98 to An 100. Spinel is almost pure MgAl2O4. Perovskite contains small (< 1 per cent) but significant amounts of Mg, Al, Fe, Y, Zr and Nb.Inferred bulk chemical compositions of Type A inclusions are rather close to those expected for high-temperature condensates. Those of Type B inclusions suggest slightly lower temperatures but their Ca/Al ratio seems less than the Type A's, indicating that the Type B's may not be their direct descendants. Some textural features suggest that the inclusions are primordial solid condensetes while others indicate that they may have been melted after condensation. Fragmentation and metamorphism may have also occurred after condensation.  相似文献   

11.
The oxygen isotopic micro-distributions within and among minerals in a coarse-grained Ca, Al-rich inclusion (CAI), 7R-19-1 from the Allende meteorite, were measured by in situ using secondary ion mass spectrometry (SIMS). All values of O isotopic ratios in 7R-19-1 minerals fall along the carbonaceous chondrite anhydrous mineral mixing (CCAM) line on a δ17OSMOW vs. δ18OSMOW plot. Major refractory minerals (spinel, fassaite and melilite) in 7R-19-1 showed large negative anomalies of Δ17O in the order, spinel (−21‰) > 16O-rich melilite (∼−18‰) > fassaite (−15 to +1‰) > 16O-poor melilite (−8 to +2‰). However, the lower limit values of Δ17O are similar at about −21‰, a value commonly observed in CAIs. The similarity in the extreme values of the isotope anomaly anomalies suggests that crystallization of all CAIs started from an 16O enrichment of 21‰ (Δ17O) relative to terrestrial values. The order of the O isotopic anomalies observed for 7R-19-1, except for 16O-poor melilite, is parallel to the crystallization sequence determined by experiment from CAI liquid (Stolper, 1982), indicating that the O isotopic exchange in 7R-19-1 occurred between CAI melt and surrounding gas while 7R-19-1 was crystallizing from the 16O enriched CAI liquid (∼−21‰ in Δ17O) in the 16O-poor solar nebula. However, the a single crystallization sequence during the cooling stage cannot explain the existence of 16O-poor melilite. The presence of 16O-poor melilite suggests that multiple heating events occurred during CAI formation. The sharp contact between 16O-rich and 16O-poor melilite crystals and within 16O-rich melilite indicates that these multiple heatings occurred quickly. Based on the O isotopic and chemical compositions, fassaite crystals were aggregates of relic crystals formed from CAI melt whichthat have had various O isotopic compositions from the remelting processes. The results of intra-mineral distributions of O isotopes also support multiple heating events during CAI formation.  相似文献   

12.
High-precision analyses of Ti are reported for samples from a variety of meteorite classes. The expanded data base for Allende inclusions still shows Ti isotopic anomalies in every inclusion. All the coarse-grained inclusions give quite similar patterns, but fine-grained inclusions show more variable, and sometimes larger, anomalies. One inclusion, 3675A, was analyzed because others identified it as a possible “FUN” inclusion due to its mass-fractionated Mg. This designation is supported by the significantly more complex Ti isotopic pattern for 3675A compared to all our other Allende inclusions. Available data fail to suggest that any particular Allende mineral phase, including a chromite-carbon fraction from an acid residue, is especially rich in anomalous Ti. We also find anomalous Ti in a bulk sample of a Cl chondrite and in matrix separates from C2 chondrites. The excesses of 50Ti are smaller than for Allende inclusions, and subtle differences in Ti isotopic patterns tentatively suggest that parent materials for C1-C2 matrix and Allende inclusions are not directly related. Analyses of chondrules from unequilibrated ordinary chondrites did not yield clear evidence for anomalous Ti, but some “larger than usual” deficits at 5046 give encouragement for future work in this direction. Comparing the magnitude of isotopic shifts at 50Ti and 16O for all these meteorite samples indicates that they are not correlated, but the data do not preclude a correlation between concentrations of “exotic” 50Ti and 16O atoms.Whether or not Allende “FUN” inclusions are considered, at least 4 distinct isotopic components of Ti are required to account for the observed isotopic variations. The Ti data cannot be plausibly explained in terms of an early solar-system particle irradiation; instead, neutron-rich hydrostatic burning within a star is probably responsible for the dominant 50Ti anomalies, while s-process mechanisms are viable sources for some of the more subtle Ti variations. We suggest that the Ti anomalies are linked to a diversity of nucleosynthetic sources and the highly refractory behavior of Ti. Therefore, some form of “chemical memory” from the ISM, rather than “late stage supernova injection”, is most likely responsible for the preservation of observed isotopic heterogeneities.  相似文献   

13.
The oxygen isotopic distribution in an amoeboid olivine aggregate (AOA), TTA1-02, from the Allende CV3 chondrite has been determined by secondary ion mass spectrometry. The irregular shaped TTA1- 02 (5×3mm) consists mostly of olivine grains of ca. 5μm in diameter. Olivine grains of Mg-rich (Fo95) and Fe-rich (Fo60) composition are in direct contact with each other, with a sharp compositional boundary. Oxygen isotopic compositions of Fe-rich olivine grains are 16O-poor (Δ17O ≅ −5‰), whereas Mg-rich olivine is 16O-rich (Δ17O ≅ −25‰). Several Al-rich inclusions (<ca. 500 μm in diameter) are enclosed by olivine grains in the AOA. Oxygen isotopic compositions of spinel and fassaite in Al-rich inclusions are 16O-rich (Δ17O ≅ −20‰), whereas those of anorthite, nepheline and phyllosilicate are 16O-poor (Δ17O ≅ −5‰). We propose the following sequence of events during the formation of AOAs in the Allende meteorite: 1) Formation of Al-rich inclusions with 16O-rich oxygen isotopic composition; 2) Accretion of Mg-rich olivine grains with 16O-rich oxygen isotopic composition around Al-rich inclusions; 3) Accretion into parent body; and 4) Aqueous alteration in the parent body, which led to crystallization of 16O-poor minerals, Fe-rich olivine, anorthite, nepheline, and phyllosilicate. This is reflecting reactions among primary 16O-rich AOA minerals and aqueous fluid having 16O-poor oxygen isotopic composition. Fe-rich olivine grains precipitated from aqueous fluids, which partially dissolved pre-existing Mg-rich olivine grains. Sintering and Mg-Fe diffusion occurred during thermal metamorphism. Anorthite, nepheline and phyllosilicate in Al-rich inclusions replaced primary anorthite or melilite during the aqueous alteration stage.  相似文献   

14.
The forsterite-bearing Type B (FoB) CAI SJ101 consists of three major structural units: (1) light patches of sector-zoned, poikilitic Al-rich clinopyroxene (Cpx) with numerous inclusions of small spinel grains and aggregates and subordinate amounts of Mg-rich melilite (Mel) and anorthite (An) (Sp-Cpx lithology), (2) dark sinuous bands of Al-rich clinopyroxene with large (up to ∼300 × 60 μm) poikilitically enclosed euhedral forsterite (Fo) crystals (Fo-Cpx lithology), and (3) the external Cpx-Sp-An rim overlying the entire inclusion. The two major lithologies are always separated by a transition zone of clinopyroxene poikilitically enclosing both forsterite and spinel. The patches of the Sp-Cpx lithology exhibit significant textural and mineralogical variability that is size-dependent. Small patches typically consist of Cpx and spinel with minor remnants of melilite and/or its alteration products. Large patches contain Mel-An-rich cores with either equigranular-ophitic-subophitic or ‘lacy’ textures reminiscent of those in Types B or C CAIs, respectively. All silicates poikilitically enclose numerous spinel grains of identical habit. Both melilite and anorthite gradually disappear toward the boundary with the Fo-Cpx lithology. Neither the evaporation mantle of Al-rich melilite typical of other FoBs nor the Wark-Lovering rim is present. Secondary minerals include grossular, monticellite, magnetite, and a few grains of wollastonite, andradite, and nepheline.Being a rather typical FoB mineralogically and chemically, texturally SJ101 differs from other FoBs in displaying the nearly complete segregation of forsterite from spinel which occur only in the Fo-Cpx and Sp-Cpx lithologies, respectively. The complex, convoluted internal structure of SJ101 suggests that the coarse-grained Sp-An-Mel-Cpx cores and Fo-Cpx lithology represent the precursor materials of FoBs, proto-CAIs and Fo-rich accretionary rims. While the inferred chemistry and mineralogy of the Fo-rich rims are fairly typical, the high Åk content in SJ101 melilite (78.7-82.3 mol.%) implies that the SJ101 proto-CAIs represent a new type of CAIs that has not been sampled before. This type of CAIs might have formed by remelting of spinel-rich condensates.The Group II REE pattern, slightly negative δ29Si and δ25Mg values, and nearly solar ratios of the major elements in the bulk SJ101 suggest that its precursors, proto-CAIs and Fo-rich rims, could have formed by a non-equilibrium condensation in a closed system of solar composition somewhat depleted in a super-refractory evaporation residue. The proposed formation scenario of SJ101 invokes a non-steady cooling and condensation of the nebular gas interrupted by at least two distinct melting episodes required to account for the igneous textures of the Mel-An-Cpx-rich cores (proto-CAIs) and the Fo-Cpx lithology.  相似文献   

15.
16.
17.
The aluminum-rich (>10 wt% Al2O3) objects in the CH carbonaceous chondrite North West Africa (NWA) 739 include Ca,Al-rich inclusions (CAIs), Al-rich chondrules, and isolated mineral grains (spinel, plagioclase, glass). Based on the major mineralogy, 54 refractory inclusions found in about 1 cm2 polished section of NWA 739 can be divided into hibonite-rich (16%), grossite-rich (26%), melilite-rich (28%), spinel-pyroxene-rich (16%) CAIs, and amoeboid olivine aggregates, (AOA's, 17%). Most CAIs are rounded, 25–185 μm (average=70 μm) in apparent diameter, contain abundant, tiny perovskite grains, and typically surrounded by a single- or double-layered rim composed of melilite and/or Al-diopside; occasionally, layers of spinel+hibonite and forsterite are observed. The AOAs are irregularly shaped, 100–250 μm (average=175 μm) in size, and consist of forsterite, Fe,Ni-metal, and CAIs composed of Al-diopside, anorthite, and minor spinel. One AOA contains compact, rounded melilite-spinel-perovskite CAIs and low-Ca pyroxene replacing forsterite. The Al-rich (>10 wt% bulk Al2O3) chondrules are divided into Al-diopside-rich and plagioclase-rich. The Al-diopside-rich chondrules, 50–310 μm (average=165 μm) in apparent diameter, consist of Al-diopside, skeletal forsterite, spinel, ±Al-rich low-Ca pyroxene, and ±mesostasis. The plagioclase-rich chondrules, 120–455 μm (average=285 μm) in apparent diameter, are composed of low-Ca and high-Ca pyroxenes, forsterite, anorthitic plagioclase, Fe,Ni-metal nodules, and mesostasis. The isolated spinel occurs as coarse, 50–125 μm in size, subhedral grains, which are probably the fragments of Al-diopside chondrules. The isolated plagioclase grains are too coarse (60–120 μm) to have been produced by disintegration of chondrules or CAIs; they range in composition from nearly pure anorthite to nearly pure albite; their origin is unclear. The Al-rich objects show no evidence for Fe-alkali metasomatic or aqueous alteration; the only exception is an Al-rich chondrule fragment with anorthite replaced by nepheline. They are texturally and mineralogically similar to those in other CH chondrites studied (Acfer 182, ALH85085, PAT91467, NWA 770), but are distinct from the Al-rich objects in other chondrite groups (CM, CO, CR, CV). The CH CAIs are dominated by very refractory minerals, such as hibonite, grossite, perovskite and gehlenitic melilite, and appear to have experienced very low degrees of high-temperature alteration reactions. These include replacement of grossite by melilite, of melilite by anorthite, diopside, and spinel, and of forsterite by low-Ca pyroxene. Only a few CAIs show evidence for melting and multilayered Wark-Lovering rims. These observations may suggest that CH CAIs experienced rather simple formation history and escaped extensive recycling. In order to preserve the high-temperature mineral assemblages, they must have been efficiently isolated from the hot nebular region, like some chondrules and the zoned Fe,Ni-metal grains in CH chondrites.  相似文献   

18.
Amoeboid olivine aggregates (AOAs) in primitive (unmetamorphosed and unaltered) carbonaceous chondrites are uniformly 16O-enriched (Δ17O ∼ −20‰) and consist of forsterite (Fa<2), FeNi-metal, and a refractory component (individual CAIs and fine-grained minerals interspersed with forsterite grains) composed of Al-diopside, anorthite, ±spinel, and exceptionally rare melilite (Åk<15); some CAIs in AOAs have compact, igneous textures. Melilite in AOAs is replaced by a fine-grained mixture of spinel, Al-diopside, and anorthite. Spinel is corroded by anorthite or by Al-diopside. In ∼10% of > 500 AOAs studied in the CR, CV, CM, CO, CH, CB, and ungrouped carbonaceous chondrites Acfer 094, Adelaide, and LEW85332, forsterite is replaced to a various degree by low-Ca pyroxene. There are three major textural occurrences of low-Ca pyroxene in AOAs: (i) thin (<10 μm) discontinuous layers around forsterite grains or along forsterite grain boundaries in AOA peripheries; (ii) haloes and subhedral grains around FeNi-metal nodules in AOA peripheries, and (iii) thick (up to 70 μm) continuous layers with abundant tiny inclusions of FeNi-metal grains around AOAs. AOAs with low-Ca pyroxene appear to have experienced melting of various degrees. In the most extensively melted AOA in the CV chondrite Leoville, only spinel grains are relict; forsterite, anorthite and Al-diopside were melted. This AOA has an igneous rim of low-Ca pyroxene with abundant FeNi-metal nodules and is texturally similar to Type I chondrules.Based on these observations and thermodynamic analysis, we conclude that AOAs are aggregates of relatively low temperature solar nebular condensates originated in 16O-rich gaseous reservoir(s), probably CAI-forming region(s). Some of the CAIs were melted before aggregation into AOAs. Many AOAs must have also experienced melting, but of a much smaller degree than chondrules. Before and possibly after aggregation, melilite and spinel reacted with the gaseous SiO and Mg to form Ca-Tschermakite (CaAl2SiO6)-diopside (CaMgSi2O6) solid solution and anorthite. Solid or incipiently melted olivine in some AOAs reacted with gaseous SiO in the CAI- or chondrule-forming regions to form low-Ca pyroxene: Mg2SiO4 + SiO(g) + H2O(g) = Mg2Si2O6 + H2(g). Some low-Ca pyroxenes in AOAs may have formed by oxidation of Si-bearing FeNi-metal: Mg2SiO4 + Si(in FeNi) + 2H2O(g) = Mg2Si2O6 + 2H2(g) and by direct gas-solid condensation: Mg(g) + SiO(g) +H2O(g) = Mg2Si2O6(s) + H2(g) from fractionated (Mg/Si ratio < solar) nebular gas.Although bulk compositions of AOAs are rather similar to those of Type I chondrules, on the projection from spinel onto the plane Ca2SiO4-Mg2SiO4-Al2O3, these objects plot on different sides of the anorthite-forsterite thermal divide, suggesting that Type I chondrules cannot be produced from AOAs by an igneous fractionation. Formation of low-Ca pyroxene by reaction of AOAs with gaseous SiO and by melting of silica-rich dust accreted around AOAs moves bulk compositions of the AOAs towards chondrules, and provide possible mechanisms of transformation of refractory materials into chondrules or chondrule precursors. The rare occurrences of low-Ca pyroxene in AOAs may indicate that either AOAs were isolated from the hot nebular gas before condensation of low-Ca pyroxene or that condensation of low-Ca pyroxene by reaction between forsterite and gaseous SiO was kinetically inhibited. If the latter is correct, then the common occurrences of pyroxene-rich Type I chondrules may require either direct condensation of low-Ca pyroxenes or SiO2 from fractionated nebular gas or condensation of gaseous SiO into chondrule melts.  相似文献   

19.
Amoeboid olivine aggregates (AOAs) in primitive carbonaceous chondrites consist of forsterite (Fa<2), Fe,Ni-metal, spinel, Al-diopside, anorthite, and rare gehlenitic melilite (Åk<15). ∼10% of AOAs contain low-Ca pyroxene (Fs1-3Wo1-5) that is in corrosion relationship with forsterite and is found in three major textural occurrences: (i) thin (<15 μm) discontinuous layers around forsterite grains or along forsterite grain boundaries in AOA peripheries; (ii) 5-10-μm-thick haloes and subhedral grains around Fe,Ni-metal nodules in AOA peripheries, and (iii) shells of variable thickness (up to 70 μm), commonly with abundant tiny (3-5 μm) inclusions of Fe,Ni-metal grains, around AOAs. AOAs with the low-Ca pyroxene shells are compact and contain euhedral grains of Al-diopside surrounded by anorthite, suggesting small (10%-20%) degree of melting. AOAs with other textural occurrences of low-Ca pyroxene are rather porous. Forsterite grains in AOAs with low-Ca pyroxene have generally 16O-rich isotopic compositions (Δ17O < −20‰). Low-Ca pyroxenes of the textural occurrences (i) and (ii) are 16O-enriched (Δ17O < −20‰), whereas those of (iii) are 16O-depleted (Δ17O = −6‰ to −4‰). One of the extensively melted (>50%) objects is texturally and mineralogically intermediate between AOAs and Al-rich chondrules. It consists of euhedral forsterite grains, pigeonite, augite, anorthitic mesostasis, abundant anhedral spinel grains, and minor Fe,Ni-metal; it is surrounded by a coarse-grained igneous rim largely composed of low-Ca pyroxene with abundant Fe,Ni-metal-sulfide nodules. The mineralogical observations suggest that only spinel grains in this igneous object were not melted. The spinel is 16O-rich (Δ17O ∼ −22‰), whereas the neighboring plagioclase mesostasis is 16O-depleted (Δ17O ∼ −11‰).We conclude that AOAs are aggregates of solar nebular condensates (forsterite, Fe,Ni-metal, and CAIs composed of Al-diopside, anorthite, spinel, and ±melilite) formed in an 16O-rich gaseous reservoir, probably CAI-forming region(s). Solid or incipiently melted forsterite in some AOAs reacted with gaseous SiO in the same nebular region to form low-Ca pyroxene. Some other AOAs appear to have accreted 16O-poor pyroxene-normative dust and experienced varying degrees of melting, most likely in chondrule-forming region(s). The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into chondrules. The original 16O-rich signature of the precursor materials of such chondrules is preserved only in incompletely melted grains.  相似文献   

20.
Recent 182Hf-182W age determinations on Allende Ca-, Al-rich refractory inclusions (CAIs) and on iron meteorites indicate that CAIs have initial ε182W (−3.47 ± 0.20, 2σ) identical to that of magmatic iron meteorites after correction of cosmogenic 182W burn-out (−3.47 ± 0.35, 2σ). Either the Allende CAIs were isotopically disturbed or the differentiation of magmatic irons (groups IIAB, IID, IIIAB, and IVB) all occurred <1 m.y. after CAI formation. To assess the extent of isotopic disturbance, we have analyzed the elemental distribution of Hf and W in two CAIs, Ef2 from Efremovka (CV3 reduced), and Golfball from Allende (CV3 oxidized). Fassaite is the sole host of Hf (10-25 ppm) and, therefore, of radiogenic W in CAIs, with 180Hf/184W > 103, which is lowered by the ubiquitous presence of metal inclusions to 180Hf/184W > 10 in bulk fassaite. Metal alloy (Ni ∼ 50%) is the sole host of W (∼500 ppm) in Ef2, while opaque assemblages (OAs) and secondary veins are the hosts of W in Golfball. A large metal alloy grain from Ef2, EM2, has 180Hf/184W < 0.006. Melilite has both Hf and W below detection limits (<0.01 ppm), but the presence of numerous metallic inclusions or OAs makes melilite a carrier for W, with 180Hf/184W < 1 in bulk melilite. Secondary processes had little impact on the 182Hf-182W systematics of Ef2, but a vein cross-cutting fassaite in Golfball has >100 ppm W with no detectable Pt or S. This vein provides evidence for transport of oxidized W in the CAI. Because of the ubiquitous distribution of OAs, interpretations of the 182Hf-182W isochron reported for Allende CAIs include: (i) all W in the OAs was derived by alteration of CAI metal, or (ii) at least some of the W in OAs may have been equilibrated with radiogenic W during metamorphism of Allende. Since (ii) cannot be ruled out, new 182Hf-182W determinations on CAIs from reduced CV3 chondrites are needed to firmly establish the initial W isotopic composition of the solar system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号