首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Dunitic xenoliths from late Palaeogene, alkaline basalt flows on Ubekendt Ejland, West Greenland contain olivine with 100 × Mg/(Mg + Fe), or Mg#, between 92.0 and 93.7. Orthopyroxene has very low Al2O3 and CaO contents (0.024–1.639 and 0.062–0.275 wt%, respectively). Spinel has 100 × Cr/(Cr + Al), or Cr#, between 46.98 and 95.67. Clinopyroxene is absent. The osmium isotopic composition of olivine and spinel mineral separates shows a considerable span of 187Os/188Os values. The most unradiogenic 187Os/188Os value of 0.1046 corresponds to a Re-depletion age of ca. 3.3 Gy, while the most radiogenic value of 0.1336 is higher than present-day chondrite. The Os isotopic composition of the xenoliths is consistent with their origin as restites from a melt extraction event in the Archaean, followed by one or more subsequent metasomatic event(s). The high Cr# in spinel and low modal pyroxene of the Ubekendt Ejland xenoliths are similar to values of some highly depleted mantle peridotites from arc settings. However, highly depleted, arc-related peridotites have higher Cr# in spinel for a given proportion of modal olivine, compared to cratonic xenolith suites from Greenland, which instead form coherent trends with abyssal peridotites, dredged from modern mid-ocean ridges. This suggests that depleted cratonic harzburgites and dunites from shallow lithospheric mantle represent the residue from dry melting in the Archaean.  相似文献   

2.
Olivine in spinel peridotite xenoliths from the Bismarck Archipelago northeast of Papua New Guinea, which were transported to the surface by Quaternary basalts, shows spinel inclusions up to 25 μm long and 200 nm wide. These inclusions mainly occur as inhomogeneously distributed needles and subordinately as octahedral grains in olivine of veined metasomatic peridotites as well as peridotites without obvious metasomatism. The needles very often occur in swarms with irregular spacing in between them. Similar spinel inclusions in olivine have only previously been reported from ultramafites of meteoritic origin. Composition and orientation of the spinel inclusions were determined by transmission electron microscopy (TEM) and analytical electron microscopy (AEM). Both the needles and the grains display a uniform crystallographic orientation in the host olivine with [001]O1//[1ˉ10]Spl and (100)Ol// (111)Spl. The needles eare elongated parallel [010] in olivine, which is the same in all olivine grains. As these needles have no relation to the metasomatic sections in the peridotite, it is concluded that they are primary features of the rock. Although the composition of the spinel needles is often very similar to the large chromian spinel octahedra in the matrix, the small octahedral spinel inclusions in olivine are in part Mg-rich aluminous spinel and sometimes almost pure magnetite. The spinel needles are suggested to have formed by exsolution processes during cooling of Al- and Cr-rich, high-temperature olivine during the initial formation of the lithospheric mantle at the mid-ocean ridge. The Al-rich spinel octahedra probably formed by the breakdown of an Al-rich phase such as phlogopite or by metasomatism, whereas the magnetite was generated by oxidizing fluids. These oxidizing fluids may either have been set free by dehydration of the underlying, subducted plate or by the Quaternary magmatism responsible for the transport of the xenoliths to the seafloor. Received: 25 May 2000 / Accepted: 12 July 2000  相似文献   

3.
Hualalai Volcano, Hawaii, is best known for the abundant and varied xenoliths included in the historic 1800 Kaupulehu alkalic basalt flow. Xenoliths, which range in composition from dunite to anorthosite, are concentrated at 915-m elevation in the flow. Rare cumulate ultramafic xenoliths, which include websterite, olivine websterite, wehrlite, and clinopyroxenite, display complex pyroxene exsolution textures that indicate slow cooling. Websterite, olivine websterite, and one wehrlite are spinel-bearing orthopyroxene +olivine cumulates with intercumulus clinopyroxene +plagioclase. Two wehrlite samples and clinopyroxenite are spinel-bearing olivine cumulates with intercumulus clinopyroxene+orthopyroxene + plagioclase. Two-pyroxene geothermometry calculations, based on reconstructed pyroxene compositions, indicate that crystallization temperatures range from 1225° to 1350° C. Migration or unmixing of clinopyroxene and orthopyroxene stopped between 1045° and 1090° C. Comparisons of the abundance of K2O in plagioclase and the abundances of TiO2 and Fe2O3in spinel of xenoliths and mid-ocean ridge basalt, and a single 87Sr/ 86Sr determination, indicate that these Hualalai xenoliths are unrelated to mid-ocean ridge basalt. Similarity between the crystallization sequence of these xenoliths and the experimental crystallization sequence of a Hawaiian olivine tholeiite suggest that the parental magma of the xenoliths is Hualalai tholeiitic basalt. Xenoliths probably crystallized between about 4.5 and 9 kb. The 155°–230° C of cooling which took place over about 120 ka — the age of the youngest Hualalai tholeiitic basalt — yield maximum cooling rates of 1.3×10–3–1.91×10–3 °C/yr. Hualalai ultramafic xenoliths with exsolved pyroxenes crystallized from Hualalai tholeiitic basalt and accumulated in a magma reservoir located between 13 and 28 km below sealevel. We suspect that this reservoir occurs just below the base of the oceanic crust at about 19 km below sealevel.  相似文献   

4.
西藏普兰地幔橄榄岩中尖晶石内的钙长石包裹体及其成因   总被引:1,自引:5,他引:1  
郭国林  徐向珍  李金阳 《岩石学报》2011,27(11):3197-3206
西藏普兰超镁铁岩体之东南缘与玄武岩接触界线附近的地幔橄榄岩中除有粒状半自形的钙长石产出外,还在尖晶石中发现有呈蠕虫状、浑圆状的钙长石包裹体存在.研究发现两种产状的钙长石An值都大于95且均无环带构造,说明钙长石从高Ca/Al比值的熔体中结晶时具有结晶时间短、结晶速度快的特点,可能形成于地壳较浅部位.从化学成分来看,包裹体形态的钙长石具有较高的Cr2O3含量,其寄主矿物尖晶石的Cr#值低且TiO2含量比深海橄榄岩中的尖晶石低得多,推断钙长石包裹体与寄主矿物尖晶石是在液相条件下几乎同时结晶的产物.综合研究表明钙长石包裹体的成因可能是玄武岩熔体在地壳较浅部位侵入方辉橄榄岩时,高温的玄武质熔体提供热源,使得方辉橄榄岩中尖晶石内的Cpx+ Opx细粒矿物包裹体在高温环境下发生熔融,发生Opx+ Cpx+ Sp→Ol+ Pl的反应,由于这种情况下尖晶石有剩余,故新生成的橄榄石和钙长石矿物仍然包裹于尖晶石内,从而形成尖晶石内部呈蠕虫状的钙长石包裹体.  相似文献   

5.
Iron isotope and major- and minor-element compositions of coexisting olivine, clinopyroxene, and orthopyroxene from eight spinel peridotite mantle xenoliths; olivine, magnetite, amphibole, and biotite from four andesitic volcanic rocks; and garnet and clinopyroxene from seven garnet peridotite and eclogites have been measured to evaluate if inter-mineral Fe isotope fractionation occurs in high-temperature igneous and metamorphic minerals and if isotopic fractionation is related to equilibrium Fe isotope partitioning or a result of open-system behavior. There is no measurable fractionation between silicate minerals and magnetite in andesitic volcanic rocks, nor between olivine and orthopyroxene in spinel peridotite mantle xenoliths. There are some inter-mineral differences (up to 0.2 in 56Fe/54Fe) in the Fe isotope composition of coexisting olivine and clinopyroxene in spinel peridotites. The Fe isotope fractionation observed between clinopyroxene and olivine appears to be a result of open-system behavior based on a positive correlation between the Δ56Feclinopyroxene-olivine fractionation and the δ56Fe value of clinopyroxene and olivine. There is also a significant difference in the isotopic compositions of garnet and clinopyroxene in garnet peridotites and eclogites, where the average Δ56Feclinopyroxene-garnet fractionation is +0.32 ± 0.07 for six of the seven samples. The one sample that has a lower Δ56Feclinopyroxene-garnet fractionation of 0.08 has a low Ca content in garnet, which may reflect some crystal chemical control on Fe isotope fractionation. The Fe isotope variability in mantle-derived minerals is interpreted to reflect subduction of isotopically variable oceanic crust, followed by transport through metasomatic fluids. Isotopic variability in the mantle might also occur during crystal fractionation of basaltic magmas within the mantle if garnet is a liquidus phase. The isotopic variations in the mantle are apparently homogenized during melting processes, producing homogenous Fe isotope compositions during crust formation.  相似文献   

6.
The mantle xenoliths in the Quaternary ChangbaishanVolcano in southern Jilin Province contain spinel-facies lherzolites. The equilibration temperatures for these samples range from 902oC to 1064oC based on the two-pyroxene thermometer of Brey and K?hler (1990), and using the oxybarometry of Nell and Wood (1991), the oxidation state was estimated from FMQ-1.32 to -0.38 with an average value of FMQ-0.81 (n?=?8), which is comparable to that of abyssal peridotites and the asthenospheric mantle. The fO2 values of peridotites, together with their bulk rock compositions (e.g., Mg#, Al2O3, CaO, Ni, Co, Cr) and mineral compositions (e.g., Mg# of olivine and pyroxene, Cr# [=Cr/[Cr+Al]] and Mg# [=Mg/[Mg+Fe2+] of spinel), suggest that the present-day subcontinental lithospheric mantle (SCLM) beneath the Changbaishan Volcano most likely formed from an upwelling asthenosphere at some time after the late Mesozoic and has undergone a low degree of partial melting. The studied lherzolite xenoliths show low concentrations of S, Cu, and platinum group elements (PGE), which plot a flat pattern on primitive-mantle normalized diagram. Very low concentrations in our samples suggest that PGEs occur as alloys or hosted by silicate and oxide minerals. The compositions of the studied samples are similar to those of peridotite xenoliths in the Longgang volcanic field (LVF) in their mineralogy and bulk rock compositions including the abundance of chalcophile and siderophile elements. However, they are distinctly different from those of peridotite xenoliths in other areas of the North China Craton (NCC) in terms of Cu, S and PGE. Our data suggest that the SCLM underlying the northeastern part of the NCC may represent a distinct unit of the newly formed lithospheric mantle.  相似文献   

7.
Granulite xenoliths within alkali olivine basalts of the Pali-Aike volcanic field, southern Chile, contain the mineral assemblage orthopyroxene + clinopyroxene + plagioclase + olivine + green spinel. These granulites are thought to be accidental inclusions of the lower crust incorporated in the mantle-derived basalt during its rise to the surface. Symplectic intergrowths of pyroxene and spinel developed between olivine and plagioclase imply that the reaction olivine+plagioclase = Al-orthopyroxene + Al-clinopyroxene + spinel (1) occurred during subsolidus cooling and recrystallization of a gabbroic protolith of the granulites.Examination of fluid inclusions in the granulites indicates the ubiquitous presence of an essentially pure CO2 fluid phase. Inclusions of three different parageneses have been recognized: Type I inclusions occur along exsolution lamellae in clinopyroxene and are thought to represent precipitation of structurally-bound C or CO2 during cooling of the gabbro. These are considered the most primary inclusions present. Type II inclusions occur as evenly distributed clusters not associated with any fractures. These inclusions probably represent entrapment of a free fluid phase during recrystallization of the host grains. IIa inclusions are found in granoblastic grains and have densities of 0.68–0.88 g/cm3. Higher density (=0.90–1.02 g/cm3) IIb inclusions occur only in symplectite phases. Secondary Type III CO2+glass inclusions with =0.47–0.78 g/cm3 occur along healed fractures where basalt has penetrated the xenoliths. Type III inclusions appear related to exsolution of CO2 from the host basalt during its ascent to the surface. These data suggest that CO2 is an important constituent of the lower crust under conditions of granulite facies metamorphism, indicated by Type I and II fluid inclusions, and of the mantle, as indicated by Type III inclusions.Correlation of fluid inclusion densities with P-T conditions calculated from both two-pyroxene geothermometry and reation (1) indicate emplacement of a gabbroic pluton at 1,200–1,300° C, 4–6 kb; cooling was accompanied by a slight increase in pressure due to crustal thickening, and symplectite formation occurred at 850±35° C, 5–7 kb. Capture of the xenoliths by the basalt resulted in heating of the granulites, and CO2 from the basalt was continuously entrapped by the xenoliths over the range 1,000–1,200° C, 4–6 kb. Examination of fluid inclusions of different generations can thus be used in conjunction with other petrologic data to place tight constraints on the specific P-T path followed by the granulite suite, in addition to indicating the nature of the fluid phase present at depth.  相似文献   

8.
We report Lithium (Li) concentrations and isotopic compositions for co-existing olivine, orthopyroxene (opx), and clinopyroxene (cpx) mineral separates from depleted and metasomatised peridotite xenoliths hosted by basaltic lavas from northwestern Ethiopian plateau (Gundeweyn area). The peridotites contain five lherzolites and one harzburgite and are variably depleted and enriched in LREE relative to HREE. In both depleted and enriched lherzolites, Li is preferentially incorporated into olivine (2.4-3.3 ppm) compared to opx (1.4-2.1 ppm) and cpx (1.4-2.0 ppm) whereas the Li contents of olivines (5.4 ppm) from an enriched harzburgiteare higher than those of lherzolites. Olivines from the samples show higher Li abundances than normal mantle olivines (1.6-1.9 ppm) indicating the occurrence of Li enrichments through melt-preroditite interaction. The average δ7 Li values range from +2.2 to +6.0‰ in olivine, from -0.1 to +2.0‰ in opx and from -4.4 to -0.9‰ in cpx from the lherzolites. The Li isotopic composition (3.5‰) of olivines from harzburgite fall within the range of olivine from lherzolites but the opxs show low in δ7Li (-2.0‰). Overall Li isotopic compositions of olivines from the peridotites fall within the range of normal mantle olivine, δ7Li values of ~+4±2‰ within uncertainty, reflecting metasomatism (enrichment) of the peridotites by isotopically heavy Li-rich asthenospheric melt. Li isotope zonation is also observed in most peridotite minerals. Majority of olivine grains display isotopically heavy cores and light rims and the reverse case is observed for some olivine grains. Orthopyroxene and clinopyroxene grains show irregular distribution in δ7Li. These features of Li isotopic compositions within and between grains in the samples reflect the effect of diffusion-driven isotopic fractionation during meltperidotite interaction and cooling processes.  相似文献   

9.
Iron isotopes, together with mineral elemental compositions of spinel peridotite xenoliths and clinopyroxenites from Hannuoba and Hebi Cenozoic alkaline basalts, were analyzed to investigate iron isotopic features of the lithospheric mantle beneath the North China Craton. The results show that the Hannuoba spinel peridotite xenoliths have small but distinguishable Fe isotopic variations. Overall variations in δ57Fe are in a range of ?0.25 to 0.14‰ for olivine, ?0.17 to 0.17‰ for orthopyroxene, ?0.21 to 0.27‰ for clinopyroxene, and ?0.16 to 0.26‰ for spinel, respectively. Clinopyroxene has the heaviest iron isotopic ratio and olivine the lightest within individual sample. No clear linear relationships between the mineral pairs on “δ-δ” plot suggest that iron isotopes of mineral separates analyzed have been affected largely by some open system processes. The broadly negative correlations between mineral iron isotopes and metasomatic indexes such as spinel Cr#, (La/Yb)N ratios of clinopyroxenes suggest that iron isotopic variations in different minerals and peridotites were probably produced by mantle metasomatism. The Hebi phlogopite-bearing lherzolite, which is significantly modified by metasomatic events, appears to be much heavier isotopically than clinopyroxene-poor lherzolite. This study further confirms previous conclusions that the lithospheric mantle has distinguishable and heterogeneous iron isotopic variations at the xenoliths scale. Mantle metasomatism is the most likely cause for the iron isotope variations in mantle peridotites.  相似文献   

10.
The Gibeon Kimberlite Province of southern Namibia comprises more than 75 group 1 kimberlite pipes and dykes. From the Gibeon Townsland 1 pipe, 38 upper mantle xenoliths (23 garnet lherzolites and 15 garnet harzburgites) were collected and minerals were analysed by electron microprobe for major elements. Pressures and temperatures of crystallisation for xenoliths with either coarse equant, porphyroclastic and mosaic-porphyroclastic textures were estimated by a number of combinations of geothermometers and geobarometers judged to be reliable and accurate for peridotites by Brey and Köhler (1990): The P-T estimates for equilibrated xenoliths agree within the errors of the methods and plot within the stability field of graphite. The P-T values for coarse equant xenoliths fall close to a geothermal gradient of about 44?mW/m2 within a very restricted pressure range. The porphyroclastic xenoliths yield similar and higher temperatures at similar depths. In these xenoliths Ca in orthopyroxene and Ca in olivine increase towards the rims and are high in the neoblasts indicating a stage of transient heating at depth. The mosaic-porphyroclastic xenolith minerals yield the highest temperatures, are unzoned and indicate internal mineral equilibrium. The depth of origin for the xenoliths from Gibeon Townsland 1 ranges from 100 to 140 km. The “cold”, coarse equant peridotites are relatively enriched garnet lherzolites with comparatively (to the “hot” peridotites) low modal orthopyroxene contents, whereas the “hot”, mosaic-porphyroclastic peridotites are depleted garnet harzburgites with high modal amounts of orthopyroxene. This is opposite to the findings for peridotites from the Kaapvaal craton where the cold peridotites are depleted harzburgites with high modal orthopyroxene and many of the hot peridotites are fertile lherzolites with low modal abundance of orthopyroxene. We present a model in which the high temperature, depleted garnet harzburgites are equated to the cold, coarse equant peridotites from the Kaapvaal craton. It is envisaged that this material was detached and transported laterally by an upwelling, deflected plume.  相似文献   

11.
《Lithos》2007,93(1-2):175-198
The Neoproterozoic (∼ 820 Ma) Aries micaceous kimberlite intrudes the central Kimberley Basin, northern Western Australia, and has yielded a suite of 27 serpentinised ultramafic xenoliths, including spinel-bearing and rare, metasomatised, phlogopite–biotite and rutile-bearing types, along with minor granite xenoliths. Proton-microprobe trace-element analysis of pyrope and chromian spinel grains derived from heavy mineral concentrates from the kimberlite has been used to define a ∼ 35–40 mW/m2 Proterozoic geotherm for the central Kimberley Craton. Lherzolitic chromian pyrope highly depleted in Zr and Y, and Cr-rich magnesiochromite xenocrysts (class 1), probably were derived from depleted garnet peridotite mantle at ∼ 150 km depth. Sampling of shallower levels of the lithospheric mantle by kimberlite magmas in the north and north-extension lobes entrained high-Fe chromite xenocrysts (class 2), and aluminous spinel-bearing xenoliths, where both spinel compositions are anomalously Fe-rich for spinels from mantle xenoliths. This Fe-enrichment may have resulted from Fe–Mg exchange with olivine during slow cooling of the peridotite host rocks. Fine exsolution rods of aluminous spinel in diopside and zircon in rutile grains in spinel- and rutile-bearing serpentinised ultramafic xenoliths, respectively, suggest nearly isobaric cooling of host rocks in the lithospheric mantle, and indicate that at least some aluminous spinel in spinel-facies peridotites formed through exsolution from chromian diopside. Fe–Ti-rich metasomatism in the spinel-facies Kimberley mantle probably produced high-Ti phlogopite–biotite + rutile and Ti, V, Zn, Ni-enriched aluminous spinel ± ilmenite associations in several ultramafic xenoliths. U–Pb SHRIMP 207Pb/206Pb zircon ages for one granite (1851 ± 10 Ma) and two serpentinised ultramafic xenoliths (1845 ± 30 Ma; 1861 ± 31 Ma) indicate that the granitic basement and lower crust beneath the central Kimberley Basin are at least Palaeoproterozoic in age. However, Hf-isotope analyses of the zircons in the ultramafic xenoliths suggest that the underlying lithospheric mantle is at least late Archean in age.  相似文献   

12.
The ophiolitic peridotites in the Wadi Arais area, south Eastern Desert of Egypt, represent a part of Neoproterozoic ophiolites of the Arabian-Nubian Shield (ANS). We found relics of fresh dunites enveloped by serpentinites that show abundances of bastite after orthopyroxene, reflecting harzburgite protoliths. The bulk-rock chemistry confirmed the harzburgites as the main protoliths. The primary mantle minerals such as orthopyroxene, olivine and chromian spinel in Arais serpentinites are still preserved. The orthopyroxene has high Mg# [=Mg/(Mg + Fe2+)], ~0.923 on average. It shows intra-grain chemical homogeneity and contains, on average, 2.28 wt.% A12O3, 0.88 wt.% Cr2O3 and 0.53 wt.% CaO, similar to primary orthopyroxenes in modern forearc peridotites. The olivine in harzburgites has lower Fo (93?94.5) than that in dunites (Fo94.3?Fo95.9). The Arais olivine is similar in NiO (0.47 wt.% on average) and MnO (0.08 wt.% on average) contents to the mantle olivine in primary peridotites. This olivine is high in Fo content, similar to Mg-rich olivines in ANS ophiolitic harzburgites, because of its residual origin. The chromian spinel, found in harzburgites, shows wide ranges of Cr#s [=Cr/(Cr + Al)], 0.46?0.81 and Mg#s, 0.34?0.67. The chromian spinel in dunites shows an intra-grain chemical homogeneity with high Cr#s (0.82?0.86). The chromian spinels in Arais peridotites are low in TiO2, 0.05 wt.% and YFe [= Fe3+/(Cr + Al + Fe3+)], ~0.06 on average. They are similar in chemistry to spinels in forearc peridotites. Their compositions associated with olivine’s Fo suggest that the harzburgites are refractory residues after high-degree partial melting (mainly ~25?30 % partial melting) and dunites are more depleted, similar to highly refractory peridotites recovered from forearcs. This is in accordance with the partial melting (>20 % melt) obtained by the whole-rock Al2O3 composition. The Arais peridotites have been possibly formed in a sub-arc setting (mantle wedge), where high degrees of partial melting were available during subduction and closing of the Mozambique Ocean, and emplaced in a forearc basin. Their equilibrium temperature based on olivine?spinel thermometry ranges from 650 to 780 °C, and their oxygen fugacity is high (Δlog ?O2?=?2.3 to 2.8), which is characteristic of mantle-wedge peridotites. The Arais peridotites are affected by secondary processes forming microinclusions inside the dunitic olivine, abundances of carbonates and talc flakes in serpentinites. These microinclusions have been formed by reaction between trapped fluids and host olivine in a closed system. Lizardite and chrysotile, based on Raman analyses, are the main serpentine minerals with lesser antigorite, indicating that serpentines were possibly formed under retrograde metamorphism during exhumation and near the surface at low T (<400 °C).  相似文献   

13.
Metasomatic oxidation of upper mantle periodotite   总被引:1,自引:0,他引:1  
Examination of Fe3+ in metasomatized spinel peridotite xenoliths reveals new information about metasomatic redox processes. Composite xenoliths from Dish Hill, California possess remnants of magmatic dikes which were the sources of the silicate fluids responsible for metasomatism of the peridotite part of the same xenoliths. Mössbauer spectra of mineral separates taken at several distances from the dike remnants provide data on Fe3+ contents of minerals in the metasomatized peridotite. Clinopyroxenes contain 33% of total iron (FeT) as Fe3+ (Fe3+/FeT=0.33); orthopyroxenes contain 0.06–0.09 Fe3+/FeT; spinels contain 0.30–0.40 Fe3+/FeT; olivines contain 0.01–0.06 Fe3+/FeT; and metasomatic amphibole in the peridotite contains 0.85–0.90 Fe3+/FeT. In each mineral, Fe3+ and Fe2+ cations per formula unit (p.f.u.) decrease with distance from the dike, but the Fe3+/FeT ratios of each mineral do not vary. Clinopyroxene, spinel, and olivine Fe3+/FeT ratios are significantly higher than in unmetasomatized spinel peridotites. Metasomatic changes in Fe3+/FeT ratios in each mineral are controlled by the oxygen fugacity of the system, but the mechanism by which each phase accommodates this ratio is affected by crystal chemistry, kinetics, rock mode, fluid composition, fluid/rock ratio, and fluid-mineral partition coefficients. Ratio increases in pyroxene and spinel occur by exchange reactions involving diffusion of Fe3+ into existing mineral grains rather than by oxidation of existing Fe2+ in peridotite mineral grains. The very high Fe3+/FeT ratio in the metasomatic amphibole may be a function of the high Fe3+/FeT of the metasomatic fluid, crystal chemical limitations on the amount of Fe3+ that could be accommodated by the pyroxene, spinel, and olivine of the peridotite, and the ability of the amphibole structure to accommodate large amounts of 3 + valence cations. In the samples studied, metasomatic amphibole accounts for half of the bulk-rock Fe2O3. This suggests that patent metasomatism may produce a greater change in the redox state of mantle peridotite than cryptic metasomatism. Comparison of the metasomatized samples with unmetasomatized peridotites reveals that both Fe2+ and Fe3+ cations p.f.u. were increased during metasomatism and 50% or more of iron added was Fe3+. With increasing distance from the dike, the ratio of added Fe3+ to added Fe2+ increases. The high Fe3+/FeT of amphibole and phlogopite in the dikes and in the peridotite, and the high ratios of added Fe3+/added Fe2+ in pyroxenes and spinel suggest that the Fe3+/FeT ratio of the metasomatic silicate fluid was high. As the fluid perolated through and reacted with the peridotite, Fe3+ and C–O–H volatile species were concentrated in the fluid, increasing the fluid Fe3+/FeT.  相似文献   

14.
A suite of ultramafic mantle xenoliths from the TUBAF and EDISONseamounts in the Bismarck Archipelago NE of Papua New Guineawas sampled by video-guided grab. The xenoliths, which weretransported to the sea floor by rift-related, Quaternary trachybasalts,mainly represent part of the oceanic mantle. Mineral zoningin peridotite xenoliths testifies to slow cooling after mantleformation at a mid-ocean ridge. Cooling rates in the range of1°C/Ma were calculated from zoning of Ca in olivine usingthe Lasaga algorithm. Subsequent to this cooling, a strong metasomatismaffected the mantle peridotites when metasomatic agents emergedfrom the underlying slab of a subduction zone, which was stalledabout 15 my ago. This resulted in the formation of orthopyroxene-,clinopyroxene-, phlogopite- and hornblende-bearing veins crosscuttingspinel peridotites and olivine clinopyroxenites, as well aspervasively metasomatized plagioclase lherzolites. The metasomaticxenoliths reveal strong chemical disequilibria between the metasomaticminerals and the adjacent, unaltered host rock minerals, whichare especially prominent in the veined samples. Temperaturesduring the metasomatic overprint, estimated using spinel–olivinethermometry, range between 660 and 950°C. Oxygen barometryreveals an elevated oxygen fugacity, with  相似文献   

15.
Iron isotopes, together with mineral elemental compositions of spinel peridotite xenoliths and clinopyroxenites from Hannuoba and Hebi Cenozoic alkaline basalts, were analyzed to investigate iron isotopic features of the lithospheric mantle beneath the North China Craton. The results show that the Hannuoba spinel peridotite xenoliths have small but distinguishable Fe isotopic variations. Overall variations in δ57Fe are in a range of −0.25 to 0.14‰ for olivine, −0.17 to 0.17‰ for orthopyroxene, −0.21 to 0.27‰ for clinopyroxene, and −0.16 to 0.26‰ for spinel, respectively. Clinopyroxene has the heaviest iron isotopic ratio and olivine the lightest within individual sample. No clear linear relationships between the mineral pairs on “δ-δ” plot suggest that iron isotopes of mineral separates analyzed have been affected largely by some open system processes. The broadly negative correlations between mineral iron isotopes and metasomatic indexes such as spinel Cr#, (La/Yb)N ratios of clinopyroxenes suggest that iron isotopic variations in different minerals and peridotites were probably produced by mantle metasomatism. The Hebi phlogopite-bearing lherzolite, which is significantly modified by metasomatic events, appears to be much heavier isotopically than clinopyroxene-poor lherzolite. This study further confirms previous conclusions that the lithospheric mantle has distinguishable and heterogeneous iron isotopic variations at the xenoliths scale. Mantle metasomatism is the most likely cause for the iron isotope variations in mantle peridotites.  相似文献   

16.
Previous studies on iron isotope compositions of subduction zone magmas have revealed significant and complex variations that have great bearings on petrogenetic processes in the mantle wedge, e.g., partial melting, fluid metasomatism and redox state. However, interpretations for the fractionations are highly debatable and lack direct constraints from mantle wedge peridotites. This study presents iron isotope compositions for whole rocks and mineral separates in fresh forearc peridotites from the Yushigou ophiolite, North Qilian orogen in northern Tibet. Major and trace element compositions of whole rock and mineral indicate that the peridotites are highly depleted forearc peridotites overprinted by melt metasomatism, in contrast to the long‐holding opinion that the peridotites are derived from mid‐oceanic ridges. The minerals fall on a line with a slope of ~1 on the plot of δ56Fe vs. δ56Fe, indicating isotope equilibrium between minerals. δ56Fe fractionation between olivine and orthopyroxene is within the range of 0~0.05, while fractionation between olivine and spinel is about 0.05~0.10. The fractionation trend between olivine and spinel is opposite to previous theoretical and experimental constraints, which may be due to substantial Cr substitution into the spinel. This indicates that negative correlations between spinel Cr#, fO2 and spinel δ56Fe in previous studies are probably a reflection of gradual Cr enrichment in spinel during melt extraction, and spinel δ56Fe values are not a proxy for oxygen fugacity. Whole rock δ56Fe values are well correlated with mineral δ56Fe values, varying from overlapping with depleted mantle to slightly lower than depleted mantle. Therefore, variations in iron isotope compositions of subduction zone magmas are probably due to combined effect of source heterogeneity and partial melting fractionation.  相似文献   

17.
Three groups of ultramafix xenoliths were collected from alkali basalt in the island of Hierro, Canary Islands: (1) Cr-diopside series (spinel harzbugite, lherzolite, dunite); (2) Al-augite series xenoliths (spinel wherlite, olivine clinopyroxenite, dunite, olivine websterite); (3) gabbroic xenoliths. The main textures are granoblastic, porphyroclastic and granular, but poikilitic textures, and symplectitic intergrowths of clinopyroxene (cpx) + spinel (sp)±orthopyroxene (opx)±olivine (ol) (in rare cases cpx+opx), occur locally. Textural relations and large inter- and intra-sample mineral chemical variations testify to a complex history of evolution of the mantle source region, involving repeated heating, partial melting, and enrichment associated with infiltration by basaltic melts. The oldest assemblage in the ultramafic xenoliths (porphyroclasts of ol+opx±sp±cpx) represents depleted abyssal mantle formed within the stability field of spinel lherzolite. The neoblast assemblage [ol+cpx+ sp±opx±plagioclase (plag)±ilmenite (il)±phlogopite (phlog)] reflect enrichment in CaO+Al2O3+Na2O+ FeO±TiO2±K2O±H2O through crystal/liquid separation processes and metasomatism. The Al-augite-series xenoliths represent parts of the mantle where magma infiltration was much more extensive than in the source region of the Cr-diopside series rocks. Geothermometry indicates temperature fluctuations between about 900–1000 and 1200°C. Between each heating event the mantle appears to have readjusted to regional geothermal gradient passing 950°C at about 12 kbar. The gabbroic xenoliths represent low-pressure cumulates.  相似文献   

18.
Relative to the North China Craton, the subcontinental lithospheric mantle (SCLM) beneath the Central Asian Orogenic Belt is little known. Mantle-derived peridotite xenoliths from the Cenozoic basalts in the Xilinhot region, Inner Mongolia, provide samples of the lithospheric mantle beneath the eastern part of the belt. The xenoliths are predominantly lherzolites with minor harzburgites, and can be subdivided into three groups, based on the REE patterns of clinopyroxenes. Group 1 peridotites (LREE-enriched), with low modal Cpx (3–7%), high Mg# in olivine (> 90.6) and Cr# in spinel (> 43.8), low whole-rock CaO + Al2O3 contents (1.62–3.22 wt.%) and estimated temperatures of 1043–1126 °C, represent moderately refractory SCLM that has experienced carbonatite-related metasomatism. Group 2 peridotites (LREE-depleted), with high modal Cpx (9–13%), low Mg# in olivine (< 90.6) and Cr# in spinel (< 20.0), high whole-rock CaO + Al2O3 contents (4.93–6.37 wt.%) and estimated temperatures of 814–970 °C, show affinity with Phanerozoic fertile SCLM that has undergone silicate-related metasomatism. Group 3 peridotites (convex-upward REE patterns), show wide ranges of olivine-Mg# (88.4–90.6), spinel-Cr# (11.5–47.6), and modal Cpx (3–14%) that overlap Groups 1 and 2. Their spinels have high TiO2 contents (> 0.41 wt.%), implying involvement of reactions between melt and peridotites. The estimated temperatures of Group 3 (1033–1156 °C) are similar to those of Group 1. We suggest that the pre-existing moderately refractory lithospheric mantle (i.e., Group 1) beneath the eastern part of the Central Asian Orogenic Belt was strongly penetrated by upwelling asthenospheric material, and the cooling of this material produced fertile lithospheric mantle (i.e., Group 2). The present lithospheric mantle of this area consists of interspersed volumes of younger fertile and older more refractory lithosphere, with the fertile type dominating the shallower levels of the mantle.  相似文献   

19.
Li isotope fractionation in peridotites and mafic melts   总被引:4,自引:0,他引:4  
We have measured the Li isotope ratios of a range of co-existing phases from peridotites and mafic magmas to investigate high-temperature fractionations of 7Li/6Li. The Li isotopic compositions of seven mantle peridotites, reconstructed from analyses of mineral separates, show little variation (δ7Li 3.2-4.9‰) despite a wide range in fertility and radiogenic isotopic compositions. The most fertile samples yield a best estimate of δ7Li ∼ 3.5‰ for the upper mantle. Bulk analyses of olivine separates from the xenoliths are typically ∼1.5‰ isotopically lighter than co-existing orthopyroxenes, suggestive of a small, high-temperature equilibrium isotope fractionation. On the other hand, bulk analyses of olivine phenocrysts and their host melts are isotopically indistinguishable. Given these observations, equilibrium mantle melting should generate melts with δ7Li little different from their sources (<0.5‰ lighter). In contrast to olivine and orthopyroxene, that dominate peridotite Li budgets, bulk clinopyroxene analyses are highly variable (δ7Li = 6.6‰ to −8.1‰). Phlogopite separated from a modally metasomatised xenolith yielded an extreme δ7Li of −18.9‰. Such large Li isotope variability is indicative of isotopic disequilibrium. This inference is strongly reinforced by in situ, secondary ion mass-spectrometry analyses which show Li isotope zonation in peridotite minerals. The simplest zoning patterns show isotopically light rims. This style of zoning is also observed in the phenocrysts of holocrystalline Hawaiian lavas. More dramatically, a single orthopyroxene crystal from a San Carlos xenolith shows a W-shaped Li isotope profile with a 40‰ range in δ7Li, close to the isotope variability seen in all terrestrial whole rock analyses. We attribute Li isotope zonation in mineral phases to diffusive fractionation of Li isotopes, within mineral phases and along melt pathways that pervade xenoliths. Given the high diffusivity of Li, the Li isotope profiles we observe can persist, at most, only a few years at magmatic temperatures. Our results thus highlight the potential of Li isotopes as a high-resolution geospeedometer of the final phases of magmatic activity and cooling.  相似文献   

20.
Clinopyroxenes in the metamorphic alpine peridotites from Ronda, Béni Bouchera, Lanzo and Othris have 87Sr86Sr ratios in the range of 0.70228 – 0.70370, similar to ocean ridge tholeiitic rock. Insofar as these lherzolites represent mantle sources, the present data allows simple evolutionary models relating basalt genesis and alpine peridotite. The highly radiogenic Sr reported in many whole rock alpine peridotites may be due to contamination in olivine and thus, earlier models that deny a simple relationship between alpine peridotite and the oceanic gabbros and basalts need a re-evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号