首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carbon isotopic composition of 66 inclusion-containing diamonds from the Premier kimberlite, South Africa, 93 inclusion-containing diamonds and four diamonds of two diamond-bearing peridotite xenoliths from the Finsch kimberlite, South Africa was measured. The data suggest a relationship between the carbon isotopic composition of the diamonds and the chemical composition of the associated silicates. For both kimberlites similar trends are noted for diamonds containing peridotite-suite inclusions (P-type) and for diamonds containing eclogite-suite inclusions (E-type): Higher δ13C P-type diamonds tend to have inclusions lower in SiO2 (ol), Al2O3 (opx, gt), Cr2O3, MgO, Mg(Mg + Fe) (ol, opx, gt) and higher in FeO (ol, opx, gt) and CaO (gt). Higher δ13C E-type diamonds tend to have inclusions lower in SiO2, Al2O3 (gt, cpx), MgO, Mg(Mg + Fe) (gt), Na2O, K2O, TiO2 (cpx) and higher in CaO, Ca(Ca + Mg) (gt, cpx).Consideration of a number of different models that have been proposed for the genesis of kimberlites, their xenoliths and diamonds shows that they are all consistent with the conclusion that in the mantle, regions exist that are characterized by different mean carbon isotopic compositions.  相似文献   

2.
Based on the measurements of refractive index,specific gravity,unit cell parameter,and mineral chemistry and infrared absorption spectrum analyses of pyropes in kimberlites from China,systematic studies of the Physical properties and compositional variations of pyropes of different colors and diverse paragenetic types,within and between kimberlite provinces have been undertaken,The origin of pyropes in the Kimberlites and the depth of their formation have been discussed.Pyropes of the purple series are different from those of the orange series in physical and chemical properties,for exaple,pyropes of the puple series are higher in α0,RI,SG,Cr2O3,MgO,Cr/(Cr Al),Mg/(Mg Fe),and Mg/(Mg Ca),and lower in Al2O3,Fe2O3 FeO than those of the orange series.The classification of garnets in kimberlites from china by the Dawson and Stephens‘ method(1975) has been undertaken and clearly demonstrates that pyropes of diamond-rich kimberlites contain much more groups than those of diamond-poor,especially diamond-free kimberlites.The higher in α0,RI,SG,Cr2O(3.Cr/(Cr Al),knorringite and Cr-component the pyropes are ,the richer in diamond the kimberlites will be.The infrared absorption spectrum patterns of pyropes change with their chemical composition regularly,as reflected in the shape and position of infrared absorption peaks.Two absortpion bands at 862-901 cm^-1 will grade into degeneration from splitting and the absorption band positions of pyropes shift toward lower frequency with increasing Cr2O3 content and Cr/(Cr Al) ratio of pyropes,LREE contents of orange pyrope megacrysts are similar to those of porple pyrope macrocrysts,but the former is higher in HREE than the latter,showing their different chondrite-normalized patterns.The formation pressures of pyropes calculated by Cr-component,Ca-component,knorringite molecules of pyropes show that some pyropes of the purple series in diamondiferous kimberlites fall into the diamond stability field.but all pyropes of diamond-free kimberlites lie outside the diamond stability field.The megacrysts were formed through early crystallization of kimberlites magma at high pressure condition,the majority of the purple pyrope macrocrysts have been derived from disaggregated xenoliths but the minoirty of them appear to be fragments of the discrete megacryst pyropes,or phenocrysts.  相似文献   

3.
Clinopyroxene and orthopyroxene megacrysts containing garnet lamellae up to 1.2 mm thick as an exsolved phase are found rarely in kimberlites from Frank Smith and Bellsbank. Chemically the clinopyroxenes are characteristically subcalcic, being within the range of 100 Ca/Ca + Mg + Fe = 27 to 36, and the orthopyroxenes are characterized by high Al2O3 and Cr2O3. Immediately after crystallization during very slow cooling, clinopyroxene and orthopyroxene exsolve wide-spaced orthopyroxene and clinopyroxene phases parallel to (100) of the host phases, respectively, then both host and exsolved phases exsolve garnet lamellae. Topotactic relations between pyroxenes and garnet are determined by X-ray for the first time. Partitioning of major and minor elements among the coexisting clinopyroxene, orthopyroxene and garnet in pyroxene megacrysts is the same as that of the granular-type garnet peridotite xenoliths in Lesotho and South African kimberlies. Mineralogy and chemistry indicate that subcalcic clinopyroxene and orthopyroxene megacrysts contain respectively about 10 and 3 mole % of the garnet molecule in solid solution.  相似文献   

4.
5.
Equations and graphs have been devised to correct for the adverse effects of magnesium upon the Na-K-Ca chemical geothermometer. Either the equations or graphs can be used to determine appropriate temperature corrections for given waters with calculated NaKCa temperatures > 70°C and R < 50, where R = {Mg(Mg + Ca + K)} × 100 with cation concentrations expressed in equivalents. Waters with R > 50 are probably derived from relatively cool aquifers with temperatures approximately equal to the measured spring temperature, irrespective of much higher calculated Na-K-Ca temperatures.  相似文献   

6.
Micaceous kimberlites from South Africa and Canada contain two types of groundmass mica less than 1 mm across. Very rare Type I micas are relatively iron-rich with mg [ = Mg/(Mg + Fe)] 0.45–0.65, TiO2 3–6 wt%, Al2O3 14–16wt%, no Fe3+ required in tetrahedral sites, low NiO (~0.02 wt%), and relatively high na [Na2O/(Na2O + K2O)] 0.02–0.03. The much more abundant Type II micas are variable in composition, but relative to Type I micas are more magnesium (mg 0.80-0.93), lower in TiO2 (0.7–4.0 wt%) and Al2O3 (6.8–14.2 wt%), have substantial Fe3+ in tetrahedral sites, and have relatively low na. Both types may have rims with compositions indicative of mica-‘serpentine’ mixtures resulting from reaction with a highly aqueous fluid. The petrographically-determined ‘serpentine’ is chemically of two types: Fe-rich serpentine and Fe-rich talc. Associated phases in the ground-mass vary from one kimberlite to another: calcite, dolomite, diopside, chromite, Mg-ilmenite, perovskite, barite, pyrite, pentlandite, millerite?, heazlewoodite?, quartz.Inter-grain variations in composition of Type II micas may result from establishment of local reservoirs on a mm scale, consequent upon mechanical mixing and competition of other phases for minor elements (e.g. chromite for Cr, serpentine for Ni).Type I micas may result from an intrusive precursor (carbonatitic?) to kimberlite, perhaps genetically related, which was incorporated into a later pulse of kimberlite from which the Type II micas crystallized.  相似文献   

7.
Differences in the chemical composition of metamorphic and igneous pyroxene minerals may be attributed to a transfer reaction, which determines the Ca content of the minerals, and an exchange reaction, which determines the relative Mg:Fe2+ ratios. Natural data for associated Ca pyroxene (Cpx) and orthopyroxene (Opx) or pigeonite are combined with experimental data for Fe-free pyroxenes, to produce the following equations for the Cpx slope of the solvus surface: > 1080°C: T = 1000(0.468 + 0.246XCpx ? 0.123 ln (1–2 [Ca]))< 1080°C: T = 1000(0.054 + 0.608XCpx ? 0.304 ln (1–2 [Ca])), and the following equation for the temperature-dependence of the Mg-Fe distribution coefficient: T = 1130(ln Kp + 0.505), where T is absolute temperature, X is Fe2+(Mg + Fe2+)), [Ca] is Ca(Ca + Mg + Fe2+) in Cpx, and KD is the distribution coefficient, defined as XOpx/(1 ? XOpx) ÷ XCpx/(1 ? Cpx).The transfer and exchange equations form useful temperature indicators, and when applied to 9 sets of well-studied rocks, yield pairs of temperatures that are in good agreement. For example, temperatures obtained for the Bushveld Complex are 1020°C (solvus equation) and 980°C (exchange equation), based on 7 specimens. The uncertainty in these numbers, due to precision and accuracy errors, is estimated to be ±60°.  相似文献   

8.
Synthetic diopsides in the join CaMgSi2O6 CaCrAlSiO6 have been studied by means of crystal-field theory. These diopsides are either blue or pale green in colour. The former forms at lower temperatures and the latter at higher temperatures. The optical spectra and colours can be unequivocally explained based on the assumption that Cr3+ions occupy both tetrahedral and octahedral sites in the diopsides. In the blue diopsides Cr3+ions are present in two kinds of spin state, i.e., tetrahedrally coordinated low spin and octahedrally coordinated high spin. On heating the blue diopsides, tetrahedral occupancy of chromium decreases sharply due to spin transformation from tetrahedral low spin to octahedral high spin. Above 1,160° C nearly all chromium ions are present in octahedral sites with high spin state and the diopsides become pale green in colour. Some petrogenetic applications of the resultes are discussed.  相似文献   

9.
10.
Electron microprobe analyses yielded mean values of F 0.43 andCl 0.08 wt.% for primary-textured phlogopites in coarse, depleted garnet-lherzolite xenoliths from kimberlites. Most secondary-textured phlogopites have too low Cl (0.01–0.08 wt.%) to be metamorphic precursors of primary-textured phlogopites. MARID-suite phlogopites and many megacrysts in kimberlites have low Cl (~ 0.02wt.%), and some but not necessarily all secondary micas may result from infiltration of kimberlite into peridotite xenoliths. A good correlation between P and F in some oceanic basalts and gabbros might suggest that these elements are derived mainly from F-rich apatite inthe mantle, and that whitlockite is not present in the source region. Mantle-derived mica and amphibole have such low Cl that it is necessary to attribute Cl in oceanic basalts and gabbros either to substantial Cl in the source apatite, or to Cl from invading solutions, or both: three apatites from the mantle contain 0.8–1.0 wt.% Cl, and others contain lower amounts. The halogen contents of kimberlitic magmas can be explained by incorporation of Cl-bearing mica and F-rich apatite during melting of peridotites, but compositional constraints are weak.  相似文献   

11.
The concentrations of noble gas isotopes of He, Ne and Ar have been measured in eight mineral separates of the Bruderheim chondrite. The cosmic-ray-produced nuclides 21Ne and 38Ar were correlated by a computer least-squares fitting program with the elemental composition in each separate of potential targets for nuclear production yielding the following production equations: [21Ne, 10?8 cm3/g] = k(0.45[Mg] + 0.085[Si] + 0.060[S] + 0.017[Ca] + 0.0044[Fe + Ni]); [38Ar, 10?8 cm3/g] = k(2.6[K] + 0.37[Ca] + 0.08[Ti + Cr + Mn] + 0.021[Fe + Ni]) with elemental concentrations in weight per cent and k equal to the reciprocal of the cosmic-ray exposure age of Bruderheim. The P(S)/P(Cr + Mn + Fe + Ni) weight production ratio for 3He was determined to be 1.53; relative productions of 3He from O, Mg and Si and 21Ne from Al proved to be incalculable.  相似文献   

12.
Coexisting garnets and ilmenites have been synthesized at high pressure (21–40 kb) within the temperature range between 900 and 1100 °C from pyrolite-less-40% olivine and olivine basanite with various water contents. The two compositions yield phases with a range in the 100 Mg/Mg+Fe ratio for both garnet (41–76) and ilmenite (15–47). The distribution coefficient for iron and magnesiaum (K D(Fe, Mg) ilm-ga = 4.0±0.5) for coexisting phases does not appear to vary with change in the bulk composition or temperature of synthesis. The synthesized ilmenites are of similar composition to those of kimberlites in 100 Mg/Mg+Fe ratio and Al2O3 and Cr2O3 solid solution. Cr2O3 content in ilmenite is dependent on Cr2O3 in the bulk composition and also on Fe2O3 content of ilmenite. Fe2O3 content of ilmenite is very sensitive to f O2 and natural ilmenites from peridotites have formed under low f O2. Al2O3 solid solution in ilmenite as well as TiO2 in coexisting garnet tend to be higher with higher temperature. All the variety of compositions of ilmenites from kimberlites may be obtained from rocks rather close in composition to those used in experiments, within the same range of pressure and temperature but at variable oxygen fugacities.  相似文献   

13.
Megacrysts and polymineralic fragments of extraordinary diversity from a Tertiary monchiquitic dyke of Ubekendt Ejland comprise three groups: (1) Cr-diopside-fassaitic diopside + olivine, Fo90.5?81.5 + CrAl spinels. (II) Fassaitic salite-ferrisalite + KTi-pargasite-ferropargasite + apatite + AlTi-magnetite, (III) Scapolite + hyalophane + potassium feldspar + nepheline + analcime. By comparison with mineralogy and phase relations in the host rock and experimental data from alkaline rocks the megacrysts are related to a sequence of crystallization from primitive monchiquitic to potassic phonolitic magmas rich in H2O and CO2 at 5–11 kb. Group I megacrysts formed at temperatures of 1300-1150°C and group II between ? 1150–?800°C and fo2 < 10?9 bar at the latter temperature. High Pco2 may have stabilized the scapolite in the more evolved liquid and K-feldspar and nepheline began to crystallize at ca. 800°C possibly together with the ferrisalite.  相似文献   

14.
An end member of the tourmaline series with a structural formula □(Mg2Al)Al6(BO3)3[Si6O18](OH)4 has been synthesized in the system MgO-Al2O3-B2O3-SiO2-H2O where it represents the only phase with a tourmaline structure. Our experiments provide no evidence for the substitutions Al → Mg + H, Mg → 2H, B + H → Si, and AlAl → MgSi and we were not able to synthesize a phase “Mg-aluminobuergerite” characterized by Mg in the (3a)-site and a strong (OH)-deficiency reported by Rosenberg and Foit (1975). The alkali-free tourmaline has a vacant (3a)-site and is related to dravite by the □ + Al for Na + Mg substitution. It is stable from at least 300°C to about 800°C at low fluid pressures and 100% excess B2O3, and can be synthesized up to a pressure of 20 kbars. At higher temperatures the tourmaline decomposes into grandidierite or a boron-bearing phase possibly related to mullite (“B-mullite”), quartz, and unidentified solid phases, or the tourmaline melts incongruently into corundum + liquid, depending on pressure. In the absence of excess B2O3 tourmaline stability is lowered by about 60°C. Tourmaline may coexist with the other MgO-Al2O3-B2O3-SiO2-H2O phases forsterite, enstatite, chlorite, talc, quartz, grandidierite, corundum, spinel, “B-mullite,” cordierite, and sinhalite depending on the prevailing PTX-conditions.The (3a)-vacant tourmaline has the space group R3m with a =15.90 A?, c = 7.115 A?, and V = 1557.0 A?3. However, these values vary at room temperature with the pressure-temperature conditions of synthesis by ±0.015 A? in a, ±0.010 A? in c, and ±4.0 A?3 in V, probably as a result of MgAl order/disorder relations in the octahedral positions. Despite these variations intensity calculations support the assumed structural formula. Refractive indices are no = 1.631(2), nE = 1.610(2), Δn = 0.021. The infrared spectrum is intermediate between those of dravite and elbaite. The common alkali and calcium deficiencies of natural tourmalines may at least partly be explained by miscibilities towards (3a)-vacant end members. The apparent absence of (3a)-vacant tourmaline in nature is probably due to the lack of fluids that carry boron but no Na or Ca.  相似文献   

15.
It is proposed that the ‘M value’ of an igneous rock should be 100Mg/(Mg + ΣFe) and that the ‘Mg value’ should be 100Mg/(Mg + Fe2+). A plea is made to standardize any necessary corrections for Fe2O3 so that Fe2O3(Fe2O3 + FeO) = 02 for basic rocks.  相似文献   

16.
Two kimberlite pipes in Elliott County contain rare ultramafic xenoliths and abundant megacrysts of olivine (Fo85–93), garnet (0.21–9.07% Cr2O3), picroilmenite, phlogopite, Cr-poor clinopyroxene (0.56–0.88% Cr2O3), and Cr-poor orthopyroxene (<0.03–0.34% Cr2O3) in a matrix of olivine (Fo88–92), picroilmenite, Cr-spinel, magnetite, perovskite, pyrrhotite, calcite, and hydrous silicates. Rare clinopyroxene-ilmenite intergrowths also occur. Garnets show correlation of mg (0.79–0.86) and CaO (4.54–7.10%) with Cr2O3 content; the more Mg-rich garnets have more uvarovite in solution. Clinopyroxene megacrysts show a general decrease in Cr2O3 and increase in TiO2 (0.38–0.56%) with decreasing mg (0.87–0.91). Clinopyroxene megacrysts are more Cr-rich than clinopyroxene in clinopyroxene-ilmenite intergrowths (0.06–0.38% Cr2O3) and less Cr-rich than peridotite clinopyroxenes (1.39–1.46% Cr2O3). Orthopyroxene megacrysts and orthopyroxene inclusions in olivine megacrysts form two populations: high-Ca, high-Al (1.09–1.16% CaO and 1.16–1.18% Al2O3) and low-Ca, low-Al (0.35–0.46% CaO and 0.67–0.74% Al2O3). Three orthopyroxenes belonging to a low-Ca subgroup of the high-Ca, high-Al group were also identified (0.86–0.98% CaO and 0.95–1.01% Al2O3). The high-Ca, high-Al group (Group I) has lower mg (0.88–0.90) than low-Ca, low-Al group (Group II) with mg=0.92–0.93; low mg orthopyroxenes (Group Ia) have lower Cr2O3 and higher TiO2 than high mg orthopyroxenes (Group II). The orthopyroxene megacrysts have lower Cr2O3 than peridotite orthopyroxenes (0.46–0.57% Cr2O3). Diopside solvus temperatures indicate equilibration of clinopyroxene megacrysts at 1,165°–1,390° C and 1,295°–1,335° C for clinopyroxene in clinopyroxene-ilmenite intergrowths. P-T estimates for orthopyroxene megacrysts are bimodal: high-Ca, high-Al (Group I) orthopyroxenes equilibrated at 1,165°–1,255° C and 51–53 kb (± 5kb) and the low-Ca, low-Al (Group II) orthopyroxenes equilibrated at 970°–1,020°C and 46–56 kb (± 5kb). Garnet peridotites equilibrated at 1,240°–1,360° C and 47–49 kb. Spinel peridotites have discordant temperatures of 720°–835° C (using spinel-olivine Fe/Mg) and 865°–1,125° C (Al in orthopyroxene).Megacrysts probably precipitated from a fractionating liquid at >150 km depth. They are not disaggregated peridotite because: (1) of large crystal size (up to 1.5 cm), (2) compositions are distinctly different from peridotite phases, and (3) they display fractionation trends. The high mg, low T orthopyroxenes and the clustering of olivine rims near Fo89–90 reflect liquid changes to higher MgO contents due to (1) assimilation of wall-rock and/or (2) an increase in Fe3+/Fe2+ and subsequently MgO/FeO as a result of an increase in f o.  相似文献   

17.
18.
19.
The carbonato and hydrogencarbonato complexes of Mg2+ were investigated at 25 and 50° in solutions of the constant ClO4? molality (3 M) consisting preponderantly of NaClO4. The experimental data could be explained assuming the following equilibria: Mg2+ + CO2B + H2O ag MgHCO+3 + H+, log 1β1 = ?7.644 ± 0.017 (25°), ?7.462 ± 0.01 1 (50°), Mg2+ + 2 CO2g + 2 H2Oag Mg(HCO3)02 ± 2 H+, log 1β2 = ?15.00 ± 0.14 (25°), ?15.37 ± 0.39 (50°), Mg2+ + CO2g + H2Oag MgCO03 + 2 H+, log 1k1 = ?15.64 ± 0.06 (25°),?15.23 ± 0.02 (50°), with the assumption γMgCO30 = γMg(HCO3)02, ΔG0(I = 0) for the reaction MgCO03 + CO2g + H2O = Mg(HCO3)02 was estimated to be ?3.91 ± 0.86 and 0.6 ± 2.4 kJ/mol at 25 and 50°C, respectively. The abundance of carbonate linked Mg(II) species in fresh water systems is discussed.  相似文献   

20.
Optical and analytical studies were performed on 400 N2 + CO2 gas bearing inclusions in dolomites and quartz from Triassic outcrops in northern Tunisia. Other fluids present include brines (NaCl and KCl bearing inclusions) and rare liquid hydrocarbons. At the time of trapping, such fluids were heterogeneous gas + brine mixtures. In hydrocarbon free inclusions the N2(N2+ CO2) mole ratio was determined using two different non-destructive and punctual techniques: Raman microprobe analysis, and optical estimation of the volume ratios of the different phases selected at low temperatures. In the observed range of compositions, the two methods agree reasonably well.The N2 + CO2 inclusions are divided into three classes of composition: (a) N2(N2 + CO2) > 0,57: Liquid nitrogen is always visible at very low temperature and homogenisation occurs in the range ?151°C to ? 147°C (nitrogen critical temperature) dry ice (solid CO2) sublimates between ?75°C and ?60°C; (b) 0,20 < N2(N2 + CO2) ? 0,57: liquid nitrogen is visible at very low temperature but dry ice melts on heating; liquid and gas CO2 homogenise to liquid phase between ?51°C to ?22°C; (c) N2(N2 + CO2) ? 0,20: liquid nitrogen is not visible even at very low temperature (?195°C) and liquid and gas CO2 homogenise to liquid phase between ?22°C and ?15°C. The observed phases changes are used to propose a preliminary phase diagram for the system CO2-N2 at low temperatures.Assuming additivity of partial pressures, isochores for the CO2-N2 inclusions have been computed. The intersection of these isochores with those for brine inclusions in the same samples may give the P and T of trapping of the fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号